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This paper studies the asymptotic distribution of the multiparameter eigenvalues of a right definite
multiparameter Sturm-Liouville eigenvalue problem. A uniform asymptotic analysis of the oscillation number
of solutions of a single Sturm-Liouville type equation with potential depending on a general parameter is
given; these results are then applied to the system of multiparameter Sturm-Liouville equations to give the
asymptotic eigenvalue distribution for the system as a function of a "multi-index" oscillation number.
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1. Introduction

Consider the fc-parameter Sturm-Liouville eigenvalue problem

l,r=l,...,k, (1.1)

= 0, r=l,...,k. (1.2)

where qr,r=l,...,k, are real valued, continuous functions on the interval C/ = [0,1],vrs,
r,s=l,...,k, are real valued, twice continuously differentiable (C2) function on U and
ar,/?re[0,27i]. A /c-tuple X. = (XU...,Ak) of real numbers is called an eigenvalue of (1.1),
(1.2) if, for each r, there exists a non-trivial solution ur of equation (1.1) satisfying the
boundary conditions (1.2). We assume that the eigenvalue problem (1.1), (1.2) is
uniformly "right definite", i.e.

det vrs(xr)>0 for all (*„ . . . , x*)e t / \ (1.3)

With this assumption the basic result regarding the existence of eigenvalues of (1.1), (1.2)
is Klein's oscillation theorem (see [8]):

Theorem 1.1. For each multi-index i = ( i , , . . . , i j , where il,...,ik, are non-negative
integers, there exists a unique eigenvalue k' of (1.1), (1.2) such that, for each r, a
corresponding solution o / ( l . l ) , (1.2) has precisely ir zeros in the open interval (0,1).

In this paper we study the asymptotic behaviour of the eigenvalues X' of (1.1), (1.2),
for large ||i||, and we give a fairly simple characterization of this behaviour in terms of
the coefficient functions vrs. For the case fc = 2, this problem has been studied in great
detail by Faierman in the papers [6,7]. Faierman's analysis is much more complicated
than ours and he obtains more detailed results, but at the cost of more restrictive

35

https://doi.org/10.1017/S0013091500005873 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500005873


36 B. P. RYNNE

hypotheses. He also obtains results regarding the eigenfunctions of (1.1), (1.2), which we
do not consider. His bounds on the eigenfunctions have been extended to the general k-
parameter situation by Schafke and Volkmer in [11].

2. Preliminary results and notation

We begin by discussing the asymptotic behaviour of the number of zeros of the
general solution of a second order differential equation similar to (1.1), depending on a
single parameter. Our results will be based on the following hypothesis. Suppose that /
is a real valued C2 function defined on U.

Hypothesis F. Suppose that the set {xeU:f(x)>0} can be decomposed into the union
of a finite number of disjoint, open intervals It = (al,af), i=\,...,n, (together with any of
the end points a{, which are not zeros of f) and there exists a constant K > 1 such that on
each interval /, either

\(x-almx)\ \(x-a}mX)\
(i)

fix) /(*)
(ii) there is an increasing function Jt such that,

; (2.2)

or (i) holds with a\ replaced by of, and (ii) holds with J decreasing.
Now, let | | / | | = sup{|/(x)|:xe[/}, and let [/]+ denote the function x-»max{/(x),0},

x £ U. The closure of a set A will be denoted by A.

Lemma 2.1. Consider the differential equation

w"(x) + p(x)w(x) + ^/(x)w(x)=O, xeU, (2.3)

where p is a real valued, continuous function on U and f satisfies hypothesis F. Then for
all (i>0, the number of zeros v(w) of any solution w of (2.3) in the interval (0,1) satisfies

v(w) = * - V / 2 J [/(*)] V2<fct +0(1), (2.4)

Proof. By hypothesis F, there are at most n +1 subintervals of U on which / is not
strictly positive. On each such subinterval it follows from the Sturm comparison
principle (see [4]) that any solution w of (2.3) can have at most 7t~ 1||p||1/2 + 3 zeros.
Now, letting v(w; /) denote the number of zeroes of w in any interval /, it follows that

£ (2.5)
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where |O(l)|^(n + l)(7t"1||p||1/2 + 3) + 2n (the term In is the number of end points of the
intervals /;). We now estimate the number of zeros in an interval /;. To simplify the
notation, and without loss of generality, we will temporarily omit the subscript i, and
suppose that a1 =0, a2 = c, and conditions (i) and (ii) hold as stated in hypothesis F.

By Ex. 2.5 on p. 197 of [10], equation (2.3) has the general solution

= A(nf(x)y1/4 (sin L1/2J f(t)112 dt + s\ + e ( A xel, (2.6)

in which A and 5 are arbitrary constants, and

\e(x)\,^f(x))-ll2\e'(x)\^exp{Vx_c(F)}-l, xel, (2.7)

where

Since / is C2 on [0,c] and f(x)^0 on (0,c],

so, by condition (i) in hypothesis F, we find that for all xel,

and hence, by (2.2),

where C = (K2 + ||p||)/C. Thus, since / is increasing we have

VXiC{F)^n~l'2Cj'(x)-i'2x-1, xel.

Now define the number y^ to be the solution of the equation

1'2*-1 = 1/(2^2)

if a solution exists (since / is increasing, such a solution is unique), otherwise let yM = c.
By construction,

J / ) , xe(y,,c),

and hence by (2.7)
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xe(y,,c). (2.8)

Now define the strictly decreasing continuous function g:^,c)->(R by

It follows from (2.6) and (2.8) that any zero x of w in (?„, c) must satisfy

g{x)e(nn- n/4,nn + n/4) (2.9)

for some integer n, and since, by (2.8),

|-/i1/2/(x)1/2cosg(x) + e'(jc)|>0

for all x satisfying (2.9), there is at most one zero satisfying (2.9) for each integer n. In
addition, by (2.8) and the intermediate value theorem, for any n such that the image of g
contains the interval [tin — n/4, nn + re/4] there is a zero of w satisfying (2.9). Hence, the
number of zeros, v(w; (yu, c)), of the solution w in the interval (yu,c) satisfies

v{w;(yll,c)) = n-1n1'2] f(x)112 dx + O(l),

where |O(l)|g3/2. By hypothesis F,

JC6[O,yJ. (2.10)

Thus, using the definition of y^ we have

and hence

where
We now estimate the number of zeros of w in the interval (0,yp]. By (2.10) and the

Sturm comparison principle we have

https://doi.org/10.1017/S0013091500005873 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500005873


ASYMPTOTIC DISTRIBUTION OF MULTIPARAMETER EIGENVALUES 39

Combining this with (2.11) shows that

(where we have reinstated the subscript i and the general end points a[ for /,) with
|O(l)|gC/C+_3/2 + 7:-1||p||1/2 + CK + 3^7i"1||p||1/2 + 2CK + 5. Since [/(*)] +=/(x) on
the intervals /,, and [/(x)] + =0 otherwise, this estimate together with (2.5) yields (2.4).

The asymptotic estimate (2.4) of Lemma 2.1 is, essentially, known; see for example
[5]. However, the function / is usually regarded as fixed, whereas below it will be
essential to regard it as depending on a parameter £ belonging to some parameter space
X (in fact, the parameter will be ty||k|| ar>d X will be a portion of the unit sphere in
Uk). Thus zeros of / may coalesce as £ varies, and the number of zeros and their orders
may change. To ensure that the bound for the error term in (2.4) is independent of £ we
will impose the following hypothesis.

Hypothesis UF. Suppose that the function f:UxX->U is such that for each £,eX the
function /(•,£): 1/->IR satisfies hypothesis F, and let n(Q, K(^) denote the number of
intervals and the constant in hypothesis F. Then f is said to satisfy hypothesis UF if n(E)
and K(£) are uniformly bounded for £eX, i.e. there exist constants n>0, K>0, such that

Now, if a function / satisfies hypothesis UF then the result of Lemma 2.1 holds for
each £eX (with the constants n, K of hypothesis UF). Thus we have the following
result.

Lemma 2.2. Consider the differential equation

(2.12)

where p is a real valued, continuous function on U and f satisfies hypothesis UF. Then for
all fi>0, and £eX, the number of zeros v(w) of any solution w of (2.12) in the interval
(0,1) satisfies

i (2.13)

We note that the exact form of the bound for the error term given in Lemma 2.2 is
not particularly important and could be improved. Its value lies in the fact that it is
given explicitly in terms of ||p||, n and K, and is independent of £, and \i. The importance
of this will become clear below.
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40 B. P. RYNNE

We will now show that hypothesis UF holds when X is a compact topological space
and the function / depends continuously on (x, £) and has an analytic (in x) extension
to a complex neighbourhood of U.

Lemma 2.3. Suppose that X is a compact topological space and A is a complex
domain containing U, and suppose that f:AxX->C is continuous on AxX and for each
E,eX the function f(-,£)^0 is analytic on A. Also suppose that f\VxX (the restriction of f
to U x X) is real valued. Then f\Vxx satisfies hypothesis UF.

Proof. By shrinking A, if necessary, we may suppose that A is bounded and the
hypotheses of the theorem also hold on a domain A containing A. Choose a point
£oeX and let z,(^0), i=l,...,n0 be the zeros of the function /(-,^0) in A., counting
multiplicities (the fact that f(-,£0) is analytic on AzsA ensures that the number of zeros
in A is finite). By Rouche's theorem there is an open neighbourhood NocX of £0 such
that for each £eJV0 there are exactly n0 zeros z,(<̂ ), i=l,...,n0, of /(-,£) in A (if f{-,£0)
has a zero on the boundary of A, we shrink A further and choose No sufficiently small
to ensure that these zeros do not enter A as t, varies over No). Also, if the collection of
zeros Z(£) = (zl(l;) , zno(<!;)) is regarded as an unordered «0-tuple in the sense described
in Section 2.5.2 of [9], then the mapping £->Z(<!;) is continuous on No in the sense of
[9]. For each £eN0, xeA, x#z,(^), i=\,...,nQ, we now define g(x,£) by the formula

(2.14)

It follows from Taylor's theorem that the points x = z,(£) are removable singularities of
the function £(•,£) (see Ch. 4, Section 3.1 of [1]), thus we can extend the definition of
g(-,£) to the whole of A, to yield an analytic function on A (which we continue to
denote by g(-,£)). In addition, g(x,£0) is a continuous function of (x,£) in AxN0.
This follows from (2.14) and the continuity of the no-tuple Z(£), except at points
(x,«J)=(z,-(^),^), i=l,...,nQ. To prove the continuity of g at such a point, say (z^^),^),
we choose a contour CcA surrounding z/^i) and not passing through any zero z^^)
and let C~ denote the open subset of C surrounded by the contour C. Then Cauchy's
integral formula

g(x,Q = ̂ -.I^Qd{, xeC~,
2 J (2m J

c ( - x

holds for all £ in a neighbourhood Af, of ^ sufficiently small that the zeros z,(<̂ ) are
bounded away from C for ^eN^ Since g(x,£) is continuous on CxNu g(x,£,) is
continuous on C~ xJV,.

Now let A' be a domain containing U such that A'<=A. Then g is a continuous, non-
zero function on the compact set S = NoxA' (g is non-zero on S since any zero of g
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would contribute another zero of / other than the zeros z,-(£)). Similarly it can be shown
that the functions g'{x, £), g"(x, £), are continuous on S (where ' denotes derivative with
respect to x). Thus there exist constants Mo,mo>0 such that

\gr\x,£)\ZM0,r = 0,l,2,\g(x,Q\*m0, (x,QeS. (2.15)

Now choose an arbitrary point £eN0 and for each i=l,...,n0, let c,(̂ ) = Rez,(^). We
suppose, without loss of generality, that the numbering of the zeros z,(^) is such that

•&„(& Now, for i=l , . . . ,n0 , let

and Uei

/,+(£) = {xel/ : / (x,Q>0 and e

taking eo{£) = — ex(^), eno + l(£) = 2—eno(£). Note that some of these sets may be empty.
Considering only the non-empty sets /*(£), we obtain a collection of disjoint, open
intervals which cover the set {xe U:f(x,£)>()} (except for any end points e at which
f(e,Z)>0).

Now suppose that /(
+(^) is non-empty. For any xe I ?(£,),

( x - « » ( n (* - z/
ix

Similarly it can be shown that

|(x-yAx,O|^M, + 2M, ^ (2,7)

Next suppose that i < n0 (the case i = n0 is similar), and define the function

7(x, {) = [I Ix - z/^) | n IeM - zffl |. * e /;
+ (£).

Clearly /(-,<^) is increasing on If(£), and

leffl-z.ffl|
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42 B. P. RYNNE

Since I*(£) is non-empty we must have e^)>e,(<^), for j>i, so |x — Z;(^)| is decreasing
on /(

+(£). Hence

J

k\ei(i)-eJ({)\2
 + \lmzJ($)\2 = 4'

and so

~^^T^<— 2"°, xe/,+K). (2.19)
Mo /(x, ^ m0

The inequalities (2.16), (2.17) and (2.19) show that f\UxX satisfies conditions (i) and (ii)
as stated in hypothesis F on the non-empty intervals /;+(<f;); similarly it can be shown
that the alternative form of conditions (i) and (ii) hold on the non-empty intervals /;"(£)•
The constants in (2.16), (2.17) and (2.19) are clearly uniform with respect to £ in JV0, as
is the number of zeros of /(•,£) in U, so hypothesis UF holds for £ in JV0. Since the set
X is assumed to be compact it can be covered by a finite collection of such
neighbourhoods, and choosing the maximum values of the corresponding finite collec-
tion of constants proves that hypothesis UF holds for all £eX. This completes the
proof of the lemma.

The condition /(-,<f;)#0, £,eX, above is not necessary, e.g. f(x, £) = £, sin x, £e[0,1]
satisfies hypothesis UF. However, f(x, £,) = £ sin (x/^), £e(0,1], /(x,0) = 0, does not.

In the case of general C functions hypothesis F is satisfied by functions / which
behave 'roughly' like powers of (x — a) near a zero a; e.g. x", n>0, or x"logx satisfy it,
whereas exp (— 1/x) does not. However, general conditions which ensure that hypothesis
UF holds are not known.

We now introduce some further notation. For any point a e R \ we write a > 0
(respectively a^O) if, and only if, ar>0 (respectively ar^0), for all r=l,...,k and we let
IR+ (respectively R+) denote the set of points ae(Rfc for which a > 0 (respectively a2:
For each r = 1,..., k, we define the functions

vr(x):=(»rl(jc),...,orlk(x)), * . -v r (x) :=£
5 = 1

Clearly, the function <J>: R*-»R* is continuous and for all X.elR\ <|>(X.)̂ 0. Also, for any
real
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(2.20)

Let Q denote the set of points X for which <|>(X.)>0, and let Q be the closure of Q. It
follows from (2.20) that the sets Q and Q are cones (a set AczUk is said to be a cone if,
for any aeA, cue A for all c>0). We will now prove some simple preliminary lemmas
concerning <f> and Q. The Euclidean norm on Uk will be denoted by | | | | . In the
following, co istants ch i = l ,2 , . . . , will be strictly positive and may depend on the
functions pr, rs, but will not depend on X, or any other variables.

Lemma 2.4. There is a constant c1>0 such that for any XeUk, there is an r, lg r^ fc ,
such that

\X-yr(x)\^Cl\\X\\, xeU.

Proof. Suppose that the lemma is false. Then there must exist a X^O such that for
each r = 1,... k, there is a point x° e U with

However, th s contradicts the right definiteness assumption (1.3), which proves the
lemma.

Lemma 2.5. There are constants c 2 , c 3 >0 such that for all XeQ,

(2.21)

Proof. If X e Q, then ty(X) > 0 and so by Lemma 2.4 there must be an r such that

cA\X\\^X-yr(x), xeU.

Thus the first inequality in (2.21) holds for all XeQ, and hence, by continuity of ((>, it
holds for all XeQ. The second inequality in (2.21) follows immediately from the
definition of <j> and the boundedness of the functions vrs.

Lemma 2.6. Suppose that V, X2eQ and \\Xl\\, | |X 2 | | g 1. Then:

(i) HcK^-cK^II^IIX2-).1!!3/2; (2.22)

(ii) if tyXJ) ^ (£> • • • > £)> J ~ 1.2, for some e, 0 < e ̂  1, then

\X2-V\\; (2.23)

(iii) suppose that for all XeQ with | |> . | |^1, all r=l,...,k, and all ye[0 ,1] , the set
{xeU:X-\r(x)^ —y} has Lebesgue measure at least c6y

1'2. Then,
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lltK^I-W^II^H*2-*1!!- (2-24)

Proof. Suppose that \i: = X2 — Xl^0. Then by Lemma 2.4 there is an r such that

||, xeU (2.25)

(or (i-vr(x)^ — Ci||(i||, xeU, in which case we interchange V and X2 to obtain (2.25)).
By definition,

<l>rCk2)~(fi,(l1) = $d(x)dx. (2.26)

where 5(x): = [X1 •\r(x) + \i-vr(x)']1/2-[}.1 -vr(x)]+/2- Now let a be the maximum of the
function X^-v, in U. Since VeQ, it follows from continuity that a^O. Using (2.25) and
the simple inequality

it can be seen that

l H K H M I } ) - 1 / 2 , xeP, (2.27)

'2, xeN, (2.28)

where

P = {xeU:Xl -vr(x)^0}, N = {xeU:0>X1 .\r(x)^-c9\\ti\\},

where c9 = ̂ min{l,c1}. Since the functions vrs are C2 on U it follows that | P | ^
and there is a sufficiently small constant c n such that

max {|P|, |N|}>Cl l | | | i | | , (2.29)

where |- | denotes Lebesgue measure (we use the assumption that \\^l\\, | |X2||^1 here).
Also, when the hypothesis of part (iii) of the lemma holds, (2.29) can be replaced with
the stronger inequality

cu| |n| |1 /2. (2.30)

Suppose that a^||(i||. Then by (2.26) and (2.27),

^(X 2 ) -^(^ 1 )^c 8 | | j i | | a - 1 / 2 c 1 0 a = c8c10||(i||a
1'2. (2.31)

Since a^| |n| | , (2.22) follows immediately from this inequality. Also, we easily see that
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1), (2-32)

and (2.23) now follows from (2.31), (2.32) and the assumption that ^ ( X ' J ^ e . Assuming
the hypothesis of (iii), (2.24) follows from (2.26), (2.27), (2.28), and (2.30).

Now suppose that a<||(i | | . Then (2.22), (2.23) and (2.24) again follow from the above
inequalities in a similar manner. This completes the proof of the lemma.

We remark that the measure condition (iii) of Lemma 2.6 holds if, for each XeQ,
| |X | | ^1 , r=l,...,k, the maximum value of the function x->X.\r(x) is attained in the
interior of U, i.e. where the derivative of the function is zero. However, this is not a
necessary condition for (iii) to hold.

3. The main result

We can now prove our main result. For any e>0, let Uk denote the set {aelR + : | | a | | ^
( £ , . . . , £ ) } •

Theorem 3.1. Suppose that the functions (x,X)—>X.vr(x), (x,X)eUxQ, r=l,...,k,
satisfy hypothesis UF (with bounds nr and Kr). Then the mapping <)>:(?—>lR*+ is a
homeomorphism. Letting <fy~1:Mk+-*Q denote the inverse of this homeomorphism, the
eigenvalues of the multiparameter problem satisfy

Xi = ^2<l)-1(i) + O(||i|r) = 7r2||i||2(|,-1(i/||i||) + O( | | im, (3.1)

for all multi-indices i #0 . If s>0, then for all \eUk,

Xi = 7r2«j,-1(i) + e-1O(||i||) = 7t2||i||2(l,-1(i/||i||) + e-1O(||i | |). (3.2)

/ / the hypothesis of part (iii) of Lemma 2.6 holds then

X^Tr^-'OJ + OdlilH^lliH^-^i/llilD + Odlill), (3.3)

for all i^O.

Proof. For each r=l,...,k let Tr denote the self-adjoint differential operator
associated with the differential expression on the left-hand side of (1.1), with X = 0,
together with the boundary conditions (1.2). We will assume that the greatest eigenvalue
of each operator Tr is strictly negative and the functions qr are negative. This
assumption entails no loss of generality since we can ensure that this condition holds by
making a translation of the eigenvalue parameter X, see Lemma 2.1 of [2], and this
translation only affects the values of the eigenvalues X' by 0(1), which does not affect the
statement of the theorem. With this assumption it follows immediately that any
eigenvalue X' of (1.1), (1.2) must belong to Q.
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Consider the eigenvalue k', for any multi-index i#0 . By definition, for each r there is

a solution of the differential equation (1.1) with ir zeros in (0,1). Thus, by Lemma 2.2,

where the term 0(1) is bounded by a constant (given in Lemma 2.2) depending on the

constants nr and Kr, but not on k. By rearranging (3.4) and using (2.20), we find that

-1) . (3.5)

| = 1 and choose a sequence of multi-indices i",
>a as n-*co. By Theorem 1.1 the eigenvalues

k'" exist for all n = l,2,..., and by Lemma 2.5 and (3.5), the sequence X.'7||i"||2 is
bounded, so it has an accumulation point, k*, say. It follows from (3.5) and the
continuity of <|> that

Now choose any aelR+ such that ||a
n=l ,2 , . . . , such that ||i"||->oo and n\"/\

and hence the range of <|> contains the set {ae(R + : ||a|| = 1}. Combining this with (2.20)
shows that the range of <|> is U+.

This result, together with Lemma 2.6, shows that the equation

«K*) = a (3.6)

has a unique solution keQ for all ae(R+. Thus we can define the bijective function
fy~l:Uk+^>Q. Now, for 7 = 1,2, choose any c-'elR'V with | | c ' | |^c j 1 / 2 . Then by Lemma
2.5, < | ) -V)^U and by Lemma 2.6 (with kJ = 4>-\ci)eQ,j=l,2),

||c2-c1||^c^|j<t>-1(c2)-<t>-1(c1)||3/2- (3.7)

This, together with (2.20), shows that the function $~l is continuous and so, by
definition, the mapping cj):Q->R+ is a homeomorphism. Also, since k'eQ, for all i, (3.1)
follows immediately from (2.22). Similarly, (3.2) and (3.3) follow from (3.5) together with
(2.23) and (2.24) respectively. This completes the proof of the theorem.

Combining Lemma 2.3 and Theorem 3.1 yields the following result.

Theorem 3.2. / / the functions vrs, r,s=l,...,k, are analytic and X.. vr = 0, X#0, then
the results of Theorem 3.1 hold.

Finally we remark that it can be shown that Q = — C, where C is the "comparison
cone" of Binding and Browne [3], although Q= —C need not be true (the minus sign
here is not significant, it occurs because of the way in which we have written the
multiparameter system, compared with that in [3]). The cone C is used in [3] to
"compare" the multiparameter eigenvalues, e.g. it is shown in [3] that
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X'eJi'-C, for all j - i ^ O , (3.8)

(again the minus sign arises from the different definitions of the multiparameter
systems). Theorems 3.1 and 3.2 show that, in these cases, the cone C is, essentially, the
best possible comparison cone in the sense that (3.8) cannot hold for any cone C'czQ
with Q\C non-empty and open.
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