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This work reports the application of a model-free deep reinforcement learning (DRL)
based flow control strategy to suppress perturbations evolving in the one-dimensional
linearised Kuramoto–Sivashinsky (KS) equation and two-dimensional boundary layer
flows. The former is commonly used to model the disturbance developing in flat-plate
boundary layer flows. These flow systems are convectively unstable, being able to
amplify the upstream disturbance, and are thus difficult to control. The control action is
implemented through a volumetric force at a fixed position, and the control performance is
evaluated by the reduction of perturbation amplitude downstream. We first demonstrate the
effectiveness of the DRL-based control in the KS system subjected to a random upstream
noise. The amplitude of perturbation monitored downstream is reduced significantly, and
the learnt policy is shown to be robust to both measurement and external noise. One
of our focuses is to place sensors optimally in the DRL control using the gradient-free
particle swarm optimisation algorithm. After the optimisation process for different
numbers of sensors, a specific eight-sensor placement is found to yield the best control
performance. The optimised sensor placement in the KS equation is applied directly
to control two-dimensional Blasius boundary layer flows, and can efficiently reduce
the downstream perturbation energy. Via flow analyses, the control mechanism found
by DRL is the opposition control. Besides, it is found that when the flow instability
information is embedded in the reward function of DRL to penalise the instability, the
control performance can be further improved in this convectively unstable flow.

Key words: boundary layer control, machine learning

1. Introduction

Active flow control is of wide interest due to its extensive industrial applications where the
fluid motion is manipulated with energy-consuming controllers towards a desired target,
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such as the reduction of drag, the enhancement of heat transfer, and delay of the transition
from a laminar flow to turbulence (Brunton & Noack 2015). Depending on whether we
have a model for describing the dynamics of the fluid motion, the control strategies
can be categorised into model-based and model-free methods. The former assumes the
controller’s complete awareness of a model that can describe the flow behaviour accurately
(e.g. Navier–Stokes equations). The linear system theory acts as the foundation for the
model-based controllers, such as linear quadratic regulator and model predictive control.
The model-based approach has been applied widely in the active flow control of academic
flows (Kim & Bewley 2007; Sipp et al. 2010; Sipp & Schmid 2016).

In real-world flow conditions, however, an accurate flow model is often unavailable.
Even in the case where a model can be assumed, once the flow condition changes
drastically, beyond the predictability of the model, the control performance will also
deteriorate. Model-free techniques based on a system identification method can tackle
this issue and have enjoyed success to some extent in controlling flows. Nevertheless,
limitations also exist for this method, such as a large number of free parameters
(Sturzebecher & Nitsche 2003; Hervé et al. 2012). Thus more advanced model-free control
methods based on machine learning (ML) have been put forward and studied to cope
with the complex flow conditions (Lee et al. 1997; Gautier et al. 2015; Duriez, Brunton
& Noack 2017; Rabault et al. 2019; Park & Choi 2020). In this work, we examine the
performance of a model-free deep reinforcement learning (DRL) algorithm in controlling
convectively-unstable flows, subjected to random upstream noise. Our investigation will
begin with the one-dimensional (1-D) Kuramoto–Sivashinsky (KS) equation, which can
be regarded as a reduced model of laminar boundary layer flows past a flat plate, and
then extend to the controlling of the two-dimensional (2-D) boundary layer flows. One
of our focuses is to optimise the placement of sensors in the flow to maximise the
efficiency of the DRL control. In the following, we will first review the recent works
on DRL-based flow control and the optimisation of sensor placement in other control
methods.

1.1. DRL-based flow control
With the advancement of ML technologies, especially deep neural networks and the
ever-increasing amount of data, DRL burgeons and has proven its power in solving
complex decision-making problems in various applications, including robotics (Kober,
Bagnell & Peters 2013), game playing (Mnih et al. 2013) and flow control (Rabault et al.
2019). In particular, DRL refers to an automated algorithm that aims to maximise a reward
function by evaluating the state of an environment with which the DRL agent can interact
via sensors. It is particularly suitable for flow control due to their similar settings, and
is being researched actively in the field of active flow control (Rabault & Kuhnle 2019;
Brunton, Noack & Koumoutsakos 2020; Brunton 2021).

Based on a Markov process model and the classical reinforcement learning algorithm,
Guéniat, Mathelin & Hussaini (2016) first proposed an experiment-oriented control
approach and demonstrated its effectiveness in reducing the drag in a cylindrical wake
flow. Pivot et al. (2017) presented a proof-of-concept application of DRL control strategy
to 2-D cylinder wake flow, and achieved a 17 % reduction of drag by rotating the cylinder.
Koizumi, Tsutsumi & Shima (2010) adopted the DRL-based feedback control to reduce the
fluctuation of the lift force acting on the cylinder due to the Kármán vortex shedding via
two synthetic jets. They compared the DRL-based control with traditional model-based
control, and found that DRL achieved a better performance. A subsequent well-cited work
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that has attracted much attention to DRL in the fluid community is due to Rabault et al.
(2019). They applied the DRL-based control to stabilise the Kármán vortex alley via two
synthetic jets on a cylinder that was confined between two flat walls, and analysed the
control strategy by comparing the macroscopic flow features before and after the control.
These pioneering works laid the foundation of the DRL-based active flow control and have
sparked great interest of the fluid community in DRL.

Other technical improvements and parameter investigations have been achieved. Rabault
& Kuhnle (2019) proposed a multi-environment strategy to further accelerate the training
process of the DRL agent. Xu et al. (2020) applied the DRL-based control to stabilise
the vortex shedding of a primary cylinder via the counter-rotating small cylinder pair
downstream of the primary one. Tang et al. (2020) presented a robust DRL control strategy
to reduce the drag of a cylinder using four synthetic jets. The DRL agent was trained
with four different Reynolds numbers (Re), but was proved to be effective for any Re
between 60 and 400. Paris, Beneddine & Dandois (2021) also studied a robust DRL
control scheme to reduce the drag of a cylinder via two synthetic jets. They focused on
identifying the (sub-)optimal placement of the sensors in the cylinder wake flow from
a predefined matrix of the sensors. Ren, Rabault & Tang (2021) further extended the
DRL-based control of the cylinder wake from the laminar regime to the weakly turbulent
regime with Re = 1000. Li & Zhang (2022) incorporated the physical knowledge from
stability analyses into the DRL-based control of confined cylinder wakes, which facilitated
the sensor placement and the reward function design in the DRL framework. Moreover,
Castellanos et al. (2022) assessed both DRL-based control and linear genetic programming
control (LGPC) for reducing the drag in a cylindrical wake flow at Re = 100. It was
found that DRL was more robust to different initial conditions and noise contamination,
while LGPC was able to realise control with fewer sensors. Pino et al. (2022) provided
a detailed comparison between some global optimisation techniques and ML methods
(LGPC and DRL) in different flow control problems, to better understand how the DRL
performs.

All the aforementioned works are implemented through numerical simulations. Fan
et al. (2020) first demonstrated experimentally the effectiveness of DRL-based control
for reducing the drag in turbulent cylinder wakes through the counter-rotation of a pair of
small cylinders downstream of the main one. Shimomura et al. (2020) proved the viability
of DRL-based control for reducing the flow separation around a NACA0015 aerofoil in
experiments. The control was realised through adjusting the burst frequency of a plasma
actuator, and the flow reattachment was achieved under angles of attack 12◦ and 15◦.
For a more detailed description of the recent studies of DRL-based flow control in fluid
mechanics, readers are referred to the latest review papers on this topic (Rabault et al.
2020; Garnier et al. 2021; Viquerat, Meliga & Hachem 2021).

After reviewing the works on DRL applied to flow control, we would like to point out
one important research direction that deserves to be explored further, which is to embed
domain knowledge or flow physics including symmetry or equivariance in the DRL-based
control strategy. It has been demonstrated in other scientific fields that ML methods
embedded with domain knowledge or symmetry properties inherent in the physical system
can outperform the vanilla ML methods (Ling, Kurzawski & Templeton 2016; Zhang,
Shen & Zhai 2018; Karniadakis et al. 2021; Smidt, Geiger & Miller 2021; Bogatskiy et al.
2022). This will not only enhance the sample efficiency, but also guarantee the physical
property of the controlled result. In the DRL community, only a few scattered attempts
have been made (Belus et al. 2019; Zeng & Graham 2021; Li & Zhang 2022), and more
works need to be followed in this direction to fully unleash the power of DRL in controlling
flows.
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1.2. Sensor placement optimisation
Sensors probe the states of the dynamical system. The extracted information can be used
further for a variety of purposes, such as classification, reconstruction or reduced-order
modelling of a high-dimensional system through a sparse set of sensor signals (Brunton
et al. 2016; Loiseau, Noack & Brunton 2018; Manohar et al. 2018), and state estimation
of large-scale partial differential equations (Khan, Morris & Stastna 2015; Hu, Morris &
Zhang 2016). Here, we focus mainly on the field of active flow control, where sensors are
used to collect information from the flow environment as feedback to the actuator. The
effect of sensor placement on flow control performance has been investigated in boundary
layer flows (Belson et al. 2013) and cylinder wake flows (Akhtar et al. 2015). Identifying
the optimal sensor placement is of great significance to the efficiency of the corresponding
control scheme.

Initially, some heuristic efforts were made to guide the sensor placement through modal
analyses. For instance, Strykowski & Sreenivasan (1990) placed a second, much smaller
cylinder in the wake region of the primary cylinder, and recorded the specific placements
of the second cylinder, which led to an effective suppression of the vortex shedding. Later,
Giannetti & Luchini (2007) found that the specific placements determined by Strykowski
& Sreenivasan (1990) in fact corresponded to the wavemaker region where the direct and
adjoint eigenmodes overlapped. Akervik et al. (2007) and Bagheri et al. (2009) proposed
that in the framework of flow control, sensors should be placed in the region where the
leading direct eigenmode has a large magnitude, and actuators should be placed in the
region where the leading adjoint eigenmode has a large magnitude when the adjoint modes
and the global modes have a small overlap. Likewise, Natarajan, Freund & Bodony (2016)
developed an extended method of structural sensitivity analysis to help place collocated
sensor–actuator pairs for controlling flow instabilities in a high-subsonic diffuser. Such
placements based on physical characteristics of the flow system may be appropriate for the
globally unstable flow where the whole flow system beats at a particular frequency and the
major disturbances never leave a specific region (such flows are called absolutely unstable;
cf. Huerre & Monkewitz 1990).

However, for a convectively-unstable flow system with a large transient growth, such
a method failed to predict the optimal placement, as demonstrated by Chen & Rowley
(2011). They proposed to address the optimal placement issue using a mathematically
rigorous method. They identified the H2 optimal controller in conjunction with the
optimal sensor and actuator placement via the conjugate gradient method, in order to
control perturbations evolving in spatially developing flows modelled by the linearised
Ginzburg–Landau equation (LGLE). Colburn (2011) improved the method by working
directly with the covariance of the estimation error instead of the Fisher information
matrix. Chen & Rowley (2014) further demonstrated the effectiveness of this method in the
Orr–Sommerfeld/Squire equations for the optimal sensor and actuator placement. Oehler
& Illingworth (2018) analysed the trade-offs when placing sensors and actuators in the
feedback flow control based on the LGLE. Manohar, Kutz & Brunton (2021) studied
the optimal sensor and actuator placement issue using balanced model reduction with a
greedy optimisation method. The effectiveness of this method was demonstrated in the H2
optimal control of the LGLE, where a placement was achieved similar to that in Chen &
Rowley (2011) but with less runtime. More recently, Sashittal & Bodony (2021) proposed
a data-driven method to generate a linear reduced-order model of the flow dynamics and
then optimised the sensor placement using an adjoint-based method. Jin, Illingworth &
Sandberg (2022) explored the optimal sensor and actuator placement in the context of
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feedback control of vortex shedding using a gradient minimisation method, and analysed
the trade-offs when placing sensors.

In most of the aforementioned studies, traditional model-based controllers were
considered and gradient-based methods were adopted to solve the optimisation problem
of the sensor placement, as the gradients of the control objective with respect to
sensor positions can be calculated using explicit formulas involved in the model-based
controllers. However, in the context of data-driven DRL-based flow control, such accurate
gradient information is unavailable because of its model-free probing and controlling of
the flow system in a trial-and-error manner. The sensor placement affects the DRL-based
control performance in a non-trivial way. Thus studies on the optimised sensor placement
in DRL-based flow control are important but currently rare. In the DRL context, Rabault
et al. (2019) attempted to use much fewer sensors – 5 and 11 – to perform the same DRL
training, and found that the resulting control performance was far less satisfactory than that
of the original placement of 151 sensors (see their Appendix). Paris et al. (2021) proposed
a novel algorithm named S-PPO-CMA to obtain the (sub-)optimal sensor placement.
Nevertheless, they selected the best sensor layout from some predefined sensors, and
the sensor position cannot change in the optimisation process. Ren et al. (2021) reported
that an a posteriori sensitivity analysis was helpful to improve the sensor layout, but this
method was implemented as a post-processing data analysis, unable to provide guidelines
for the sensor placement a priori (see also Pino et al. 2022). Li & Zhang (2022) proposed
a heuristic way to place the sensors in the wavemaker region in the confined cylindrical
wake flow, and the optimal layout was not determined theoretically in an optimisation
problem. For optimisation problems where the gradient information is unavailable, it
is natural to consider non-gradient-based methods such as genetic algorithm (GA) and
particle swarm optimisation (PSO) (Koziel & Yang 2011). For instance, Mehrabian &
Yousefi-Koma (2007) adopted a bio-inspired invasive weed optimisation algorithm to
place optimally piezoelectric actuators on the smart fin for vibration control. Yi, Li & Gu
(2011) utilised a generalised GA to find the optimal sensor placement in the structural
health monitoring (SHM) of high-rise structures. Blanloeuil, Nurhazli & Veidt (2016)
applied a PSO algorithm to improve the sensor placement in an ultrasonic SHM system.
The improved sensor placement enabled better detection of multiple defects in the target
area. Wagiman et al. (2020) adopted a PSO algorithm to find an optimal light sensor
placement of an indoor lighting control system. A 24.5 % energy saving was achieved
with the optimal number and position of sensors. These works enlighten us on how to
distribute optimally the sensors in the model-free DRL control.

1.3. The current work
In the current work, we aim to study the performance of the model-free DRL-based
strategy in controlling convectively unstable flows. The difference between absolute
instability and convective instability is shown in figure 1 (Huerre & Monkewitz 1990).
An absolutely unstable flow is featured by an intrinsic instability mechanism and is thus
less sensitive to the external disturbance. A good example of this type of flow is the global
onset of vortex shedding in cylindrical wake flows, which have been studied extensively in
DRL-based flow control (Rabault et al. 2019; Fan et al. 2020; Paris et al. 2021; Li & Zhang
2022). On the contrary, the convectively unstable flow acts as a noise amplifier and is
able to selectively amplify the external disturbance, such as boundary layer flows and jets.
Compared to absolutely unstable flows, controlling a convectively unstable flow subjected
to unknown upstream disturbance is more challenging, representing a more stringent test

954 A37-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
20

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1020


D. Xu and M. Zhang

t t

xO

t

xO

(b)(a)

Figure 1. Schematic of absolute and convective instabilities. A localised infinitesimal perturbation can grow
at a fixed location, leading to (a) an absolute instability, or decay at a fixed location but grow as convected
downstream, leading to (b) a convective instability.

of the control ability of DRL. This type of flow is less studied in the context of DRL-based
flow control.

As a proof-of-concept study, in this work we will control the 1-D linearised
Kuramoto–Sivashinsky (KS) equation and the 2-D boundary layer flows. The KS equation
is supplemented with an outflow boundary condition, without translational and reflection
symmetries, and has been used widely as a reduced model of the disturbance developing
in the laminar boundary layer flows. We will investigate the sensor placement issue in the
DRL-based control by formulating an optimisation problem in the KS equation based on
the PSO method. Then the optimised sensor placement determined in the KS equation
will be applied directly to the 2-D Blasius boundary layer flow solved by the complete
Navier–Stokes (NS) equations, to evaluate the performance of DRL in suppressing the
convective instability in a more realistic flow. We were not able to optimise directly the
sensor placement in the 2-D boundary layer flow using the PSO method because the
computation in the latter case is exceedingly demanding. We thus circumvented this issue
by resorting to the reduced-order 1-D KS equation.

The paper is structured as follows. In § 2, we introduce the flow control problem. In § 3,
we present the numerical method adopted in this work. The results on DRL-based flow
control and the optimal sensor placement are reported in § 4. Finally, in § 5, we conclude
the paper with some discussions. In the appendices, we investigate the dynamics of the
nonlinear KS equation and its control when the nonlinear effect cannot be neglected, and
we propose a stability-enhanced design for the reward function to further improve the
control performance. In addition, we also provide an explanation of the time delay issue in
DRL-based control, and a brief introduction to the classical-model-based linear quadratic
regulator (LQR).

2. Problem formulation

We investigate the control of perturbation evolving in a flat-plate boundary layer flow
modelled by the linearised KS equation and the NS equations, as shown in figure 2. A
localised Gaussian disturbance is introduced at point d. Due to the convective instability
of the flow, the amplitude of the perturbation will grow exponentially with time while
travelling downstream, if uncontrolled. The closed-loop control system is formed by
introducing a spatially localised forcing at point u as the control action, which is
determined by the DRL agent based on the feedback signals collected by sensors (denoted
by green points in figure 2). The control objective is to minimise the downstream
perturbation measured by an output sensor at point z, trying to abate the exponential flow
instability.
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800
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Input

Output
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δ0
∗

d u z
x

Figure 2. Control set-up for a 2-D flat-plate boundary layer flow. Random noise is introduced at point d, and
a feedback control based on states collected by sensors is implemented at point u to minimise the downstream
perturbation measured at point z. Here, U∞ is the uniform free-stream velocity, and δ∗0 is the displacement
thickness of the boundary layer at the inlet of the domain shown by the grey box Ω = (0, 800)× (0, 30),
which is non-dimensionalised by δ∗0 .

2.1. Governing equation of the 1-D Kuramoto–Sivashinsky equation
The original KS equation was first used to describe flame fronts in laminar flames
(Kuramoto & Tsuzuki 1976; Sivashinsky 1977) and is one of the simplest nonlinear
PDEs that exhibit spatiotemporal chaos (Cvitanović, Davidchack & Siminos 2010). It
has become a common toy problem in the studies of ML, such as the data-driven
reduction of chaotic dynamics on an inertial manifold (Linot & Graham 2020) and the
DRL-based control of chaotic systems (Bucci et al. 2019; Zeng & Graham 2021). Here,
we investigate the 1-D linearised KS equation as a reduced-order model representation of
the disturbance developing in 2-D boundary layer flows; cf. Fabbiane et al. (2014) for a
detailed illustration of various model-based and adaptive control methods applied to the
KS equation. Specifically, the linearised KS equation can describe the flow dynamics at
a wall-normal position y = δ∗0 , where δ∗0 is the displacement thickness of the boundary
layer at the inlet of the computational domain, as shown in figure 2. The linearised step is
outlined briefly below. First, the original non-dimensionalised KS equation reads

∂v

∂t
+ v

∂v

∂x
= − 1

R
(
P ∂2v

∂x2 + ∂4v

∂x4

)
, x ∈ (0, L), (2.1)

where v(x, t) represents the velocity field, R is the Reynolds number (or Re in boundary
layer flows), P is a coefficient balancing energy production and dissipation, and finally L
is the length of the 1-D domain. Since we study a fluid system that is close to a steady
solution V (a constant), we can decompose the velocity into a combination of two terms as

v(x, t) = V + ε v′(x, t), (2.2)

where v′(x, t) is the perturbation velocity with ε � 1. Inserting (2.2) into (2.1) yields

∂v′

∂t
= −V

∂v′

∂x
− 1

R
(
P ∂2v′

∂x2 + ∂4v′

∂x4

)
− εv′ ∂v′

∂x
+ f (x, t), x ∈ (0, L), (2.3)

where the external forcing term f (x, t) now appears on the right-hand side for the
introduction of disturbance and control terms.

When the perturbation is small enough, we can neglect the nonlinear term −εv′ ∂v′/∂x
in (2.3) and obtain the following linearised KS equation to model the dynamics of
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streamwise perturbation velocity evolving in flat-plate boundary layer flows:

∂v′

∂t
= −V

∂v′

∂x
− 1

R
(
P ∂2v′

∂x2 + ∂4v′

∂x4

)
+ f (x, t), x ∈ (0, L), (2.4)

with the unperturbed boundary conditions

inflow v′∣∣
x=0 = 0,

∂v′

∂x

∣∣∣∣
x=0

= 0, outflow
∂3v′

∂x3

∣∣∣∣
x=L

= 0,
∂v′

∂x

∣∣∣∣
x=L

= 0. (2.5a–d)

We adopt the same parameter settings as those in Fabbiane et al. (2014), i.e. R = 0.25,
P = 0.05, V = 0.4 and L = 800, to model the 2-D boundary layer at Re = 1000.

The external forcing term f (x, t) in (2.4) includes both noise input and control input:

f (x, t) = bd(x) d(t)+ bu(x) u(t), (2.6)

where bd(x) and bu(x) represent the spatial distribution of noise and control inputs,
respectively; d(t) and u(t) correspond to the temporal signals. The downstream output
measured at point z is expressed by

z(t) =
∫ L

0
cz(x) v′(x, t) dx, (2.7)

where cz(x) is the spatial support of the output sensor. In this work, all three spatial
supports bd(x), bu(x) and cz(x) take the form of a Gaussian function

g(x; xn, σ ) = 1
σ

exp

(
−
(

x − xn

σ

)2
)
, (2.8a)

i.e. bd(x) = g(x; xd, σd), bu(x) = g(x; xu, σu), cz(x) = g(x; xz, σz). (2.8b)

We adopt the same spatial parameters used by Fabbiane et al. (2014), i.e. xd = 35, xu =
400, xz = 700 and σd = σu = σz = 4. In addition, the disturbance input d(t) in (2.6) is
modelled as Gaussian white noise with unit variance. In this work, we will use DRL to
learn an effective control law, i.e. how the control action u(t) in (2.6) varies with time, to
suppress the perturbation downstream.

2.2. Governing equations for the 2-D boundary layer
We will also test the DRL-based control in 2-D Blasius boundary layer flows, governed by
the incompressible NS equations

∂u
∂t

+ u · ∇u = −∇p + 1
Re

∇2u + f , ∇ · u = 0, (2.9a,b)

where u = (u, v)T is the velocity, t is time, p is the pressure, and f is the external
forcing term. Here, Re is the Reynolds number defined as Re = U∞δ∗0/ν, where U∞ is
the free-stream velocity, δ∗0 is the displacement thickness of the boundary layer at the inlet
of the computational domain, and ν is the kinematic viscosity. We non-dimensionalise the
length and the velocity by δ∗0 and U∞, respectively, and use Re = 1000 in all cases, which
is consistent with the value in the KS system. The computational domain isΩ = (0, Lx)×
(0, Ly) = (0, 800)× (0, 30), denoted by the grey box in figure 2. The inlet velocity profile
is obtained from the laminar base flow profile (Blasius solution). At the outlet of the
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Figure 3. Contour plots of the 2-D Gaussian spatial distribution bd(x, y): (a) streamwise component;
(b) wall-normal component.

domain, we impose the standard free-outflow condition with ( pI − (1/Re)∇u) · n = 0,
where I is the identity tensor, and n is the outward normal vector. At the bottom wall,
we apply the no-slip boundary condition, and at the top of the domain, we apply the
free-stream boundary condition with u = U∞ and dv/dy = 0.

The external forcing term f in the momentum equation includes both noise input d(t)
and control output u(t):

f = bd(x, y)d(t)+ bu(x, y)u(t), (2.10)

where bd and bu are the corresponding spatial distribution functions, similar to those in
(2.6) except that the current supports assume 2-D Gaussian functions:

bd(x, y) =
[

( y − yd) σx/σy
− (x − xd) σy/σx

]
exp

(
−(x − xd)

2

σ 2
x

− ( y − yd)
2

σ 2
y

)
,

bu(x, y) =
[

( y − yu) σx/σy
− (x − xu) σy/σx

]
exp

(
−(x − xu)

2

σ 2
x

− ( y − yu)
2

σ 2
y

)
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.11)

where σx = 4 and σy = 1/4 determine the size of the two spatial supports centred at
(xd, yd) = (35, 1) for noise input and (xu, yu) = (400, 1) for control input, respectively.
As an illustration, the streamwise and wall-normal components of the spatial support bd
are presented in figure 3, consistent with those in Belson et al. (2013).

The downstream output at point z is a measurement of the local perturbation energy
expressed by

z(t) =
N∑

i=1

[(
ui(t)− Ui

)2 +
(
vi(t)− Vi

)2
]
, (2.12)

where N is the number of uniformly distributed neighbouring points around point z at
(550, 1), and here we use a large N = 78; ui(t) and vi(t) are the instantaneous x- and
y-direction velocity components at point i; Ui and Vi are the corresponding base flow
velocities, i.e. a steady solution to the nonlinear NS equations.

The upstream noise input d(t) in (2.10) is modelled as Gaussian white noise with zero
mean and standard deviation 2 × 10−4. Induced by this random disturbance input, the
boundary layer flow considered here exhibits the behaviour of convective instability in
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the form of an exponentially growing Tollmien–Schlichting (TS) wave. The objective of
the DRL control is to suppress the growth of the unstable TS wave by modulating u(t) in
(2.10). In figure 2, the input and output positions are specified and will remain unchanged
in our investigation, but the sensor position will be improved in an optimisation problem
that will be discussed in § 4.5.

3. Numerical methods

3.1. Numerical simulation of the 1-D KS equation
We adopt the same numerical method used by Fabbiane et al. (2014) to solve the 1-D
linearised KS equation. The equation is discretised using a finite difference method on n =
400 discretised grid points. The second- and fourth-order derivatives are discretised based
on a centred five-node stencil, while the convective term is based on a one-node upwind
scheme due to the convective feature. Boundary conditions in (2.5a–d) are implemented
using four ghost nodes outside the left and right boundaries. The spatial discretisation
yields the following set of finite-dimensional state-space equations (also referred to as
plant hereafter):

v̇(t) = A v(t)+ Bd d(t)+ Bu u(t),

z(t) = Cz v(t),

}
(3.1)

where v(t) ∈ Rn represents the discretised values at n = 400 equispaced nodes, v̇(t) is its
time derivative, and A is the linear operator of the system. The input matrices Bd and
Bu, and output matrix Cz, are obtained by evaluating (2.8b) at the nodes. The implicit
Crank–Nicolson method is adopted for time marching

v(t +�t) = N−1
I [NE v(t)+�t (Bd d(t)+ Bu u(t))] , (3.2)

where N I = I − (�t/2)A, NE = I + (�t/2)A, and �t is the time step, chosen as �t = 1
in the current work.

We also investigate the dynamics of the weakly nonlinear KS equation when the
perturbation amplitude reaches a certain level, i.e. (2.3) together with boundary conditions
(2.5a–d), in Appendix A. Compared with the linear plant described by (3.1), the weakly
nonlinear plant has an additional nonlinear term on the right-hand side:

v̇(t) = A v(t)+ Bd d(t)+ Bu u(t)+ N(v(t)),

z(t) = Cz v(t),

}
(3.3)

where N represents the nonlinear operator. In terms of the time marching of (3.3), we adopt
a third-order semi-implicit Runge–Kutta scheme proposed by Kar (2006) and also used by
Bucci et al. (2019) and Zeng & Graham (2021), in which the nonlinear and external forcing
terms are time-marched explicitly, while the linear term is marched implicitly using a
trapezoidal rule.

It should be noted that the models given by A, Bu and Cz are only for the purpose
of numerical simulations, but not for the controller design. A DRL-based controller has
no awareness of the existence of such models; it learns the control law from scratch
through interacting with the environment and is thus model-free and data-driven, unlike
the model-based controllers whose design depends specifically on such models.
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2-D boundary layer flow

1-D KS equation

Artificial neural network

s → a

Agent

Action at

State st

Reward rt
Environment

Figure 4. The reinforcement learning framework in flow control. The agent is an artificial neural network; the
environment is a numerical simulation of the 1-D KS equation or 2-D boundary layer flow. Action is adjustment
of the external forcing; reward is reduction of the downstream perturbation; and state is streamwise velocities
collected by sensors.

3.2. Direct numerical simulation of the 2-D Blasius boundary layer
Flow simulations are performed to solve (2.9a,b) in the computational domain Ω using
the open source Nek5000 solver (Fischer, Lottes & Kerkemeier 2017). The spatial
discretisation is implemented using the spectral element method, where the velocity space
in each element is spanned by the Kth-order Legendre polynomial interpolants based
on the Gauss–Lobatto–Legendre quadrature points. According to the mesh convergence
study (not shown), we finally choose a specific mesh composed of 870 elements of the
order K = 7, with the local refinement implemented close to the wall. In terms of the
time integration, the two-step backward differentiation scheme is adopted in the unsteady
simulations, with time step 5 × 10−2 unit times, and the initial flow field is constructed
from similarity solutions of the boundary layer equations.

3.3. Deep reinforcement learning
In the context of a DRL-based method, the control agent learns a specific control policy
via interaction with the environment. The DRL framework in this work is shown in
figure 4, where the agent is represented by an artificial neural network and the environment
corresponds to the numerical simulation of the 1-D KS equation or the 2-D boundary layer,
as explained above. In general, the DRL works as follows: first, the agent receives states st
from the environment; then an action at is determined based on the states and is exerted on
the environment; finally, the environment returns a reward signal rt to evaluate the quality
of the previous actions. This loop continues until the training process converges, i.e. the
expected cumulative reward is maximised for each training episode.

In the current setting of both KS equation and boundary layer flows, states refer to
the streamwise velocities collected by sensors. Since the amplitude of velocity differs at
different locations, states are normalised by their respective mean values and standard
deviations before they are input to the agent. The number and position of sensors are
determined from an optimisation process to be detailed in § 4.5. Action corresponds to u(t)
in both (2.6) and (2.10), with predefined ranges [−5, 5] and [−0.01, 0.01], respectively.
Each control action is exerted on the environment for a duration of 30 numerical time steps
before the next update. This operation is the so-called sticky action, which is a common
choice in DRL-based flow control (Rabault & Kuhnle 2019; Rabault et al. 2019; Beintema
et al. 2020). Allowing quicker actions may be detrimental to the overall performance since
the action needs some time to make an impact on the environment (Burda et al. 2018). The
last crucial component in the DRL framework is reward, which is related directly to the
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control objective. For the 1-D KS system, the reward is defined as the negative perturbation
amplitude measured by the output sensor, i.e. the negative root-mean-square (r.m.s.) value
of z(t) in (2.7), while for the 2-D boundary layer flow, the reward is defined as the negative
local perturbation energy measured around point z, i.e. −z(t) in (2.12). However, due to
the time delay effect in convective flows, the instantaneous reward is not a real response
to the current action. To remedy the time mismatch, we store the simulation data first and
retrieve them later after the action has reached the output sensor. This operation helps the
agent to perceive the dynamics of the environment in a time-matched way, and thus leads
to a good training result. For details on the time delay and how to remove it, the reader
can refer to Appendix B. In addition, we also consider a stability-enhanced design for the
reward function, which will penalise the flow instability and further improve the control
performance (Appendix C).

In terms of the training algorithm for the agent, since the action space is continuous,
we adopt a policy-based algorithm named the deep deterministic policy gradient (DDPG),
which is essentially a typical actor–critic network structure (Sutton & Barto 2018). This
method has also been used in other DRL works (Koizumi et al. 2010; Bucci et al. 2019;
Zeng & Graham 2021; Kim et al. 2022; Pino et al. 2022). The actor network μφ(s), also
known as the policy network, is parametrised by φ and outputs an action a to be applied
to the environment for a given state s. The aim of the actor is to find an optimal policy
that maximises the expected cumulative reward, which is predicted by the critic network
Qθ (s, a) parametrised by θ . The loss function L(θ) for updating the parameters of the critic
reads

L(θ) = E
(s,a,r,s′)∼D

[
1
2

([
r(s, a)+ γQθtarg

(
s′, μφtarg(s

′)
)]− Qθ (s, a)

)2]
, (3.4)

where E represents the expectation of all transition data (s, a, r, s′) in sequence D; s,
a and r are the state, action and reward for the current step, respectively, and s′ is the
state for the next step. The right-hand side of the equation calculates the typical error in
reinforcement learning, i.e. temporal-difference error, and γ is the discount factor selected
as 0.95 here. The objective function L(φ) for updating the parameters of the actor is
obtained straightforwardly as

L(φ) = − E
s∼D

[
Qθ
(
s, μφ(s)

)]
. (3.5)

It should be noted that although the actor aims to maximise the Q value predicted by
the critic, only gradient descent rather than gradient ascent is embedded in the adopted
optimiser. Thus a negative sign is introduced on the right-hand side of (3.5).

In addition, some technical tricks such as experience memory replay and a combination
of evaluation net and target net are embedded in the DDPG algorithm, in order to cut off
the correlation among data and improve the stability of training. More technical details
on DDPG can be found in Silver et al. (2014) and Lillicrap et al. (2015). For other
hyperparameters used in the current study, the reader can refer to Appendix B.

3.4. Particle swarm optimisation
As mentioned earlier, sensors are used to collect flow information from the environment as
feedback to the DRL-based controller. Therefore, the sensor placement plays an important
role in determining the final control performance. Some studies investigated the optimal
sensor placement issue in the context of flow control using an adjoint-based gradient
descent method. In these studies, gradients of the objective function with respect to
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the sensor positions can be obtained exactly using explicit equations involved in the
model-based controllers (Chen & Rowley 2011; Belson et al. 2013; Oehler & Illingworth
2018; Sashittal & Bodony 2021). However, in our work, DRL-based control is model-free
and such gradient information is unavailable. Therefore, we adopt a gradient-free method
called particle swarm optimisation (PSO) to determine the optimal sensor placement in
DRL.

PSO is a type of evolutionary optimisation method that mimics the bird flock preying
behaviour and was originally proposed by Kennedy & Eberhart (1995). For an optimisation
problem expressed by

y = f (x1, x2, . . . , xD), (3.6)

where y is the objective function and x1, x2, . . . , xD are D design variables, PSO trains
a swarm of particles that move around in the searching space bounded by the lower and
upper boundaries, and update their positions iteratively according to the rule

vk
id = wvk−1

id + c1r1

(
pbest

id − xk−1
id

)
+ c2r2

(
sbest

d − xk−1
id

)
, (3.7a)

xk
id = xk−1

id + vk−1
id , (3.7b)

where vk
id is the dth-dimensional velocity of particle i at the kth iteration, and xk

id is the
corresponding position. The first term on the right-hand side of (3.7a) is the inertial term,
representing its memory on the previous state, with w being the weight. The second term is
called self-cognition, representing learning from its own experience, where pbest

id is the best
dth-dimensional position that the particle i has ever found for the minimum y. The third
term is called social cognition, representing learning from other particles, where sbest

d is
the best dth-dimensional position among all the particles in the swarm. In (3.7b), c1 and
c2 are scaling factors, and r1 and r2 are cognitive coefficients. After the iteration process
converges, these particles will gather near a specific position in the search space, and this
is the optimised solution.

For the optimal sensor placement in our case, design variables in (3.6) are sensor
positions x1, x2, . . . , xn (where n is the number of sensors), and the objective function
is related to the DRL-based control performance given the current sensor placement.
As shown in figure 5, a specific sensor placement is input to the DRL-based control
framework. The DRL training is then executed for 350 episodes – this number will be
explained in § 4.2. For each episode, we keep a record of the absolute reward values for
the action sequence, and take the average of them as the objective function for this episode,
denoted by ra. In this sense, the quantity ra is representative of the average perturbation
amplitude monitored at the downstream location x = 700 for one training episode. In
addition, the upstream noise is random and varies for different training episodes, so we take
the average of ra from the 10 best training episodes, denoted by rb, as a good approximation
to the test control performance. Then rb is used as the objective function (y) in (3.6) in the
PSO algorithm based on the Pyswarm package developed by Miranda (2018). The swarm
size is selected as 50, and all the scaling factors are set by default as 0.5. After a number of
iterations, the algorithm converges and the optimal sensor placement is found. The results
in §§ 4.2–4.4 are based on the optimal sensor placement, and the optimisation process is
presented in § 4.5.
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Sensor placement

Train periodically

for 350 episodes

(x1, x2, …, xn)

rb = f (x1, x2, …, xn)

DRL-based control

PSO

Average absolute reward

rb

Figure 5. Schematic diagram for sensor placement optimisation. Design variables are n sensor positions
x1, x2, . . . , xn. The objective function is the DRL-based control performance quantified by the average absolute
value of reward rb from the 10 best episodes among all the 350 episodes.

4. Results and discussion

4.1. Dynamics of the 1-D linearised KS equation
As introduced in § 2, the 1-D linearised KS equation is an idealised equation for
modelling the perturbation evolving in a Blasius boundary layer flow, with features
such as non-normality, convective instability and a large time delay. Without control,
the spatiotemporal dynamics of the KS equation subjected to upstream Gaussian white
noise is presented in figure 6(a), where the perturbation is amplified significantly while
travelling downstream, and the pattern of parallel slashes demonstrates the presence of
a time delay. Figure 6(b) presents the temporal signal of noise with unit variance, and
figure 6(c) displays the output signal at x = 700.

Due to the existence of linear instability in the flow, the amplitude of perturbation grows
exponentially along the x-direction, which is verified by the black curve in figure 7(b),
where the r.m.s. value of perturbation calculated by

v′(x)|rms =
√(
v′(x)2 − v′(x)2

)
(4.1)

is plotted along the 1-D domain, and here v′(x) represents the time average of the
perturbation velocity at a particular position x. In addition, by comparing figures 6(b)
and 6(c), we find that the perturbation amplitude increases but some frequencies are
filtered by the system. This is because when a white noise is introduced, a broadband
of frequencies are excited. However, only frequencies corresponding to a certain range of
wavelengths are unstable and amplified in the flow. This is the main trait of a convectively
unstable flow, plus the nonlinearity of the flow system, rendering it difficult for flow
control. Such a flow is usually coined as a noise amplifier in the hydrodynamic stability
context (Huerre & Monkewitz 1990).

4.2. DRL-based control of the KS system
In this subsection, we present the performance of DRL-based control on reducing the
downstream perturbation evolving in the KS system. The training process is shown in
figure 7(a), where the average perturbation amplitude at point z (x = 700; see figure 2)
is plotted for all the training episodes. In the initial stage of training, the perturbation
amplitude is large and shows no sign of decreasing, which corresponds to the filling
process of experience memory in the DDPG algorithm. Once the memory is full (denoted
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Figure 6. Dynamics of the 1-D linearised KS equation when subject to Gaussian white noise with unit
variance: (a) spatiotemporal response of the system; (b) temporal signal of noise input d(t) at x = 35; (c)
output signal z(t)measured by sensor at x = 700. The blue arrow represents input, and the red arrow represents
output.
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Figure 7. DRL-based control for reducing the downstream perturbation evolving in the 1-D linearised KS
equation. (a) Average perturbation amplitude at point z recorded during the training process, where the red
dashed line denotes the time when the experience memory is full. (b) The r.m.s. value of perturbation along
the 1-D domain plotted for both cases, with and without control.

by the red dashed line in figure 7a), the learning process begins and the amplitude
decreases significantly to a value near zero, and remains almost unchanged after 350
episodes, indicating that the policy network has converged and the optimal control policy
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has been learnt. Note that this explains the periodical training of 350 episodes when we
implement the PSO algorithm, as mentioned in § 3.4. Then we test the learnt policy by
applying it to the KS environment for 10 000 time steps, with both the external disturbance
input d(t) and control input u(t) turned on.

The spatiotemporal response of the controlled KS system is shown in figure 8(a),
subjected to the noise input as shown in figure 8(b). Compared with that in figure 6(a), the
downstream perturbation is significantly suppressed after the implementation of control
action at x = 400 starting from t = 1450 (denoted by the blue dashed line). By observing
figures 8(c) and 8(d), we find that there is a short time delay between the control starting
time and the time when the downstream perturbation z(t) starts to decline. This is due to
the convective nature that the action needs some time to make an impact downstream. In
addition, we also plot the r.m.s. value of perturbation along the 1-D domain, as shown
by the blue curve in figure 7(b). In contrast to the originally exponential growth, with
the DRL-based control, the perturbation amplitude is largely reduced downstream of the
control position (x = 400). For instance, the amplitude at x = 700 is reduced from about
20 to 0.03, which demonstrates the effectiveness of the DRL-based method in controlling
the perturbation evolving in the 1-D KS system.

4.3. Comparison between DRL and model-based LQR
In order to better evaluate the performance of DRL applied to the 1-D KS equation, we
compare the DRL-controlled results with those of the classical linear quadratic regulator
(LQR) method. The LQR method for controlling the KS equation has been explained in
detail in Fabbiane et al. (2014). For the basics of LQR, the reader may consult Appendix D.

Ideally, if there are no action bounds imposed on LQR, then it will generate the optimal
control performance as shown in the red curves in figure 9(a), and we call it the ideal
LQR control. It is shown that the perturbation amplitude downstream of the actuator
position is reduced dramatically, and the corresponding action happens to be in the range
[−5, 5]. Thus for a consistent comparison of LQR and DRL, we apply the same action
bound [−5, 5] to DRL-based control, and present the resulting control performance as
blue curves. It is found that the DRL-based control is slightly better than the LQR control
in reducing the downstream perturbation, as shown in the right-hand plot of figure 9(a).
Despite the fact that in the near downstream region from x = 400 to x = 470, the amplitude
of DRL-based control is higher than that of LQR control, the reduction of perturbation is
more significant in the DRL control in a further downstream region.

In real control applications, one needs to consider the saturation effect of the actuators,
and this is realised by imposing the action bound (Grundmann & Tropea 2008; Corke,
Enloe & Wilkinson 2010). Here, we adopt the method used by Fabbiane et al. (2014) to
bound the LQR control action as

uLQR =

⎧⎪⎨
⎪⎩

uLQR if ūmin < uLQR < ūmax,

ūmin if ūmin � uLQR,

ūmax if ūmax � uLQR.

(4.2)

We first impose the same action bound [−3, 3] on both LQR and DRL-based control, and
compare their control performance in figure 9(b). When the saturation function is applied
to the LQR control signal, the controller becomes sub-optimal, and its performance to
reduce the perturbation becomes worse. It is observed that at about t = 17 000, the action
is saturated, thus there appears a small spike later in the output signal z(t), as shown in the
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Figure 8. Dynamics of the 1-D linearised KS equation with both the external disturbance and control inputs:
(a) spatiotemporal response of the system; (b) temporal signal of noise input d(t) at x = 35; (c) temporal signal
of control input u(t) at x = 400 provided by the DRL agent; (d) output signal z(t) measured by sensor at
x = 700. The blue arrows represent inputs, and the red arrow represents output; the blue dashed line denotes
the control starting time.

bottom left plot of figure 9(b). On the other hand, the DRL-based control also performs
slightly worse with the smaller action range, but it still outperforms LQR control with
the same action bound. Next, we further narrow down the action range to [−2, 2], and this
time both LQR and DRL-based control deteriorate due to the saturation of action, and their
control performances are at a similar level, as shown in figure 9(c). Finally, we further limit
the action range to [−1, 1] and compare the corresponding control performances of the two
methods in figure 9(d). In this condition, the LQR controller deteriorates severely, and the
reduction of downstream perturbation is rather limited. In contrast, DRL-based control
performs better, with a relatively clear trend of reduction of perturbation downstream
of the actuator position, although the extent of reduction is not significant compared to
the previous cases with larger action bounds, as shown in figures 9(a–c). We would like
to emphasise that compared to the model-based LQR method, the DRL-based method
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Figure 9. Comparison between DRL-based control and LQR control when applied to the 1-D linearised KS
system with different action bounds. In each panel, the top left plot presents the time-variation curve of the
control action u(t), and the bottom left plot presents the corresponding sensor output z(t); the right-hand plot
shows the r.m.s. value of perturbation velocity along the 1-D domain. (a) Control performance of ideal LQR
and of DRL with action bound [−5, 5]. (b) Control performance of LQR and DRL both with action bound
[−3, 3]. (c) Control performance of LQR and DRL both with action bound [−2, 2]. (d) Control performance
of LQR and DRL both with action bound [−1, 1].
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Figure 10. Comparison of LQR control performance with different values of weight wz. (a) The r.m.s. value
of perturbation velocity along the 1-D domain. (b) The time-variation curves of control action u(t), with the
control starting at t = 1450.

is totally model-free, which means that the control law is learnt with no awareness of
the assumed models of the plant, as mentioned in § 3.1. In addition, the control action is
determined based solely on states collected by some sensors from the flow field, instead of
the full knowledge of the plant as required by LQR control.

The current LQR controller is based on a specific selection of weights, i.e. wz = wu = 1
as given in (D2). This selection was adopted by Fabbiane et al. (2014), indicating that
equal weight has been assigned to the two parts, i.e. sensor output z(t) and control input
u(t). These parameters influence the control performance of LQR. For example, the LQR
performance can be improved by increasing the weight wz from 1 to 10 and 100 with
a fixed wu at 1 (which means that we focus more on the output part). The results are
shown in figure 10(a). However, the ensuing problem is that with the increase of wz, the
magnitude of control action will experience a rapid increase at the very initial stage of the
control process, as shown in figure 10(b), which is unavoidable because larger weight is
considered to force the output to the target value as soon as possible, and this is realised
by a larger action in the beginning. In realistic applications, the choice of weights is a
trade-off between the control performance and the available range of control action.

In addition to the control performance, the cost of energy effort is another important
factor in active flow control. The cost of energy effort in our context can be quantified by
the average magnitude of action during the control process. We compare this aspect for
the two methods in table 1, which shows that the average magnitudes of action for the two
methods are in general comparable to each other, except that in the case of the smallest
action bound [−1, 1], the averaged action of DRL is about 20 % less than that of LQR.

4.4. Robustness of the DRL policy in controlling convectively unstable flows
In this section, we test the robustness of the learnt control policy to two types of noise,
i.e. measurement noise and external noise. In realistic conditions, the states collected by
sensors are always subjected to noise, and we call it measurement noise. We consider
this effect by adding Gaussian noise with standard deviations σN = 0.01, 0.05 and 0.1,
respectively, to the original states, and test the robustness of the learnt policy, which
was trained with σN = 0 to the measurement noise of different levels. As shown in
figures 11(a–c), with the increase of noise level, the overall result is still satisfactory except
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Control method Action bound Average magnitude of action

LQR No 0.6843
[−3.0, 3.0] 0.7319
[−2.0, 2.0] 0.7092
[−1.0, 1.0] 0.8139

DRL [−5.0, 5.0] 0.7132
[−3.0, 3.0] 0.7265
[−2.0, 2.0] 0.7176
[−1.0, 1.0] 0.6533

Table 1. Average magnitude of action for different methods with different action bounds.

that the DRL-based control performance deteriorates in the sense that there are some
small oscillations being monitored in the sensor output z(t). We plot the corresponding
r.m.s. value of perturbation along the 1-D domain in figure 11(d), where the control
performance with uncontaminated states, i.e. σN = 0, is also shown by the black curve,
for comparison. With the noise level increasing to 0.1 (accounting for about 10 % of the
originally normalised state signals), the controlled amplitude of z(t) at x = 700 increases
from 0.03 to 1.0. Despite the slight deterioration of the control performance with the
increased noise level, the current policy is still effective in reducing the downstream
perturbation (recall that the uncontrolled amplitude at x = 700 is 20). We have also
attempted to train a DRL agent with σN = 0.1 and test it in the same condition. The
resulting control performance is depicted by the orange dashed curve in figure 11(d),
and it can be seen that the result is close to the orange solid curve, which was obtained
from the agent trained with σN = 0 but tested with σN = 0.1. Therefore, the DRL agent
is robust in the sense that once trained, it can effectively control a new flow situation with
some additional noise. This robustness property benefits from the closed-loop nature of the
control system and the decorrelation of noise among state observations, as explained by
Paris et al. (2021). More specifically, the action error caused by measurement noise does
not accumulate over time since the feedback state is able to rectify the previous erroneous
action and prevent it from deviating too far.

The second type of noise is the external noise. The current policy was trained under
a fixed external noise condition, i.e. white noise input at xd = 35 with a unit standard
deviation σd(t) = 1.0. We want to test whether the current policy is still valid in new
external noise situations. For instance, we can move the noise position from xd = 35 to
xd = 75 with the noise level unchanged, or increase the noise level from σd(t) = 1.0 to
σd(t) = 1.5 with the noise position unchanged, or change both of them. We test the control
policy in such new environments, and plot the obtained control performance in figure 12.
Due to the increase of noise level and/or the shift of noise position, the perturbation fields
upstream of the control position are only trivially different from each other, as shown
in figure 12(d). Once the DRL-based control is applied, the downstream perturbation is
reduced significantly, as demonstrated in figure 12. This robustness property benefits from
the state normalisation process as mentioned in § 3.3, which has also been demonstrated
in Paris et al. (2021). Among the three testing cases, the second one (xd = 35 and
σd(t) = 1.5), depicted by the green curve in figure 12, leads to a relatively large downstream
perturbation. This is due to the fact that the uncontrolled perturbation level increases
(depicted by the green dashed curve in figure 12d) and sometimes is out of the current
action range [−5, 5], which will lead to the small spikes as shown in figure 12(b).
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Figure 11. DRL-based control performance with states contaminated by Gaussian noise of three different
standard deviations σN . (a–c) The sensor output z(t) plotted for the three cases. (d) The r.m.s. value of
perturbation along the 1-D domain plotted for the three cases. Also, the black curve for control with
uncontaminated states, and the orange dashed curve for control with the agent trained with σN = 0.1, are
shown for comparison.
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Figure 12. DRL-based control performance under three different upstream noise conditions: Gaussian noise
input at xd with standard deviation σd(t). (a–c) The sensor output z(t) plotted for the three cases. (d) The r.m.s.
value of perturbation along the 1-D domain plotted for the three cases, and that for control testing with the
same environment as training, i.e. xd = 35 and σd(t) = 1.0, is also given by the black curve, for comparison.

Finally, we would like to mention that in the confined cylinder wake flow as studied
by Rabault et al. (2019), Paris et al. (2021) and Li & Zhang (2022), the nature of flow
instability is locally absolute; cf. Monkewitz & Nguyen (1987) and Giannetti & Luchini
(2007) for the general theory of flow instability in unconfined wake flows, or see the flow
stability and sensitivity analyses in Li & Zhang (2022) for the confined wake flow. In
such a flow, the noise level is only secondary compared to the primary absolute instability
mechanism accounting for the perturbation amplification; cf. Huerre & Monkewitz (1990)
for a classical review of the absolute and convective instabilities. On the other hand, in the

954 A37-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
20

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1020


D. Xu and M. Zhang

0 5 10 15 20
Iteration number

0.1

0.3

0.4
0.5

1.5

2.5

3.5

0.2

B
es

t 
r b o

f 
th

e 
p
ar

ti
cl

e 
sw

ar
m

0 2000 4000 10 0006000 8000

t

–40

–20

0

20

40
DRL control with initial sensors

DRL control with optimised sensors

z(t)

1 sensor

Initial placement
Optimised placement

2 sensors

4 sensors

6 sensors

8 sensors

10 sensors

(a) (b)

Figure 13. Optimal sensor placement in DRL-based flow control. (a) The optimisation process using PSO
presented for cases with different numbers of sensors; the optimal placement is found, which leads to the
lowest perturbation amplitude rb. (b) Control performance comparison between the initial placement and the
optimised one (taking 2 sensors as an example).

case of the KS equation or boundary layer flows, the nature of instability is convective, for
which the perturbation amplification depends more critically on the upstream noise. Our
numerical demonstration of the DRL control in the convectively unstable flow is a stricter
test of its robustness and proves its applicability in such flows.

4.5. Optimisation of the sensor placement
All the above results are obtained based on the optimal sensor placement. In this
subsection, we explain how the optimal sensor placement has been identified. As
mentioned in § 3.4, we adopt the PSO method to find the optimal sensor placement. Before
searching for the optimal sensor positions, we need to specify lower and upper bounds for
the searching space. In the current work, we investigate different cases with 1, 2, 4, 6, 8
and 10 sensors located in x ∈ (370, 430). This range is determined through our preliminary
tests. We have attempted to add more sensors outside the current range, and found that they
had unimportant effects on the final control performance.

The optimisation processes for all the considered cases are presented in figure 13(a),
where the trends of the curves are similar. Here, we take the case with two sensors as an
example to illustrate this process. The initial placement of the sensors is random. After
the first iteration, the algorithm returns an initial sensor placement (denoted by the green
point) that all the particles in the swarm have ever found, which corresponds to the lowest
objective function rb so far, as defined in § 3.4. Then, based on the initial placement, the
particles attempt to find a new placement, which leads to a lower rb in the next iteration.
Finally, after a number of iterations, the searching process converges, and the optimal
placement is identified, denoted by the blue point. To demonstrate the effectiveness of the
optimisation, we compare the control performance given by the initial sensor placement
and the optimised one. As shown in figure 13(b), the optimised placement indeed results
in a better control performance, i.e. a lower perturbation amplitude at the downstream
position xz = 700 than that of the unoptimised one.

The optimised sensor layouts with different numbers of sensors are presented in
figure 14(a), where dots represent the optimised sensor placements (OSPs), named as
OSP plus the number of sensors, and the actuator position is also given as a reference.
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Figure 14. Optimal sensor placement and the effect of the number of sensors. (a) The optimal placement is
presented for cases with different numbers of sensors. In addition, three specific layouts with all sensors placed
upstream are also considered. (b) Comparison of the corresponding control performance with different sensor
placements.

As suggested by one of the reviewers, we will test whether using sensors only upstream
of the actuator is sufficient for control. To do so, we consider three newly added sensor
placements, as shown by crosses in figure 14(a), among which: SP1 is a four-sensor layout
with the downstream sensors removed from OSP8; SP2 is a five-sensor layout with the
downstream sensors removed from OSP10; and SP3 is the uniformly spaced four-sensor
layout upstream of the actuator that is scaled by the parallel slash pattern as shown in
figure 6(a).

The corresponding control performance is presented in figure 14(b), where the r.m.s.
value of perturbation along the 1-D domain is plotted. It is shown that if only one sensor
is used, it is better to place it upstream of the actuator rather than downstream, to help
the agent detect the upcoming disturbance. Nevertheless, due to the implementation of
sticky actions where the control action keeps constant every 30 time steps, a single
upstream sensor can inform the agent of only a single upcoming parallel slash in a
packet of slashes that crosses the actuator over the duration that the action is ‘stuck’.
As the slashes are generated by random noise, it is not possible for the agent to choose
an action that accounts for the packet of slashes based on a single measurement. With
more sensors placed upstream, it is more likely that the agent will be fully informed to
select the best sticky action to suppress the packet. This hypothesis is verified by the fact
that the performance of the three layouts SP1, SP2 and SP3 (crosses in figure 14a) is
better than that of OSP1 and OSP2 (one upstream and one downstream). However, the
four-sensor layout with all sensors placed upstream is inferior to OSP4 (two upstream
and two downstream), which indicates that the downstream sensors are also necessary
for a better control performance. This is determined by the inherent feature of the DRL
framework, where the agent interacts with the environment in a closed loop. After the agent
imposes an action on the environment, the environment needs to return states as feedback
that determines the next action. Overall, with the number of sensors increasing from 1
to 8, the resulting control performance is improved continuously, as expected since more
sensors will provide a more complete measurement of the flow environment. However, in
the current case, as the number of sensors is increased further, from 8 to 10, no further
improvement is observed, which indicates that the information given by the two additional
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sensors is redundant. That is the reason why we adopt eight sensors in § 3.3, and the
placement of them is depicted by the purple points in figure 14(a).

Some discussions on the role of sensors in DRL control are in order. In the model-free
DRL framework, sensors are used to collect states that not only provide a measurement
of the flow environment but also reflect the effect of the action after it is taken. In this
context, a proper number of sensors should be placed both upstream and downstream of
the actuator. In contrast, in traditional model-based control methods such as the linear
quadratic Gaussian regulator, the sensor is used to estimate the full states of the plant
via the Kalman filter, and then the control action is calculated based on the estimated
states. In this situation, one sensor can usually work well since this demonstration does
not implement sticky actions and is able to observe each slash individually that passes
through, and actuate accordingly. For instance, Belson et al. (2013) investigated the
effects of different types and positions of sensor and actuator on the model-based control
of boundary layer flows, and found a specific sensor–actuator pair with good control
performance and robustness.

4.6. DRL-based control performance in 2-D boundary layer flows
We have demonstrated that the DRL-based method is effective in controlling the
convectively unstable perturbation evolving in the 1-D KS system. Since the KS equation
is a reduced model for the dynamics of the streamwise perturbation velocity evolving in
the boundary layer flow at the wall-normal position y = 1, it is reasonable to expect that
the optimised sensor placement that we have derived in the KS system can be translated to
the control of 2-D Blasius boundary layer flows. We note that the nonlinear NS equations
are the governing equations in this case.

Here, we adopt the same sensor placements with different numbers of sensors as shown
in figure 14(a) in the DRL training for controlling boundary layer flows. A typical training
process is shown in figure 15(a), where the red dashed line again denotes the time when the
experience memory is full, and then the absolute value of the average reward per episode,
i.e. the local perturbation energy around point z as defined in (2.12), generally decreases
until convergence after about 50 episodes. Note that the reward is defined as the negative
local perturbation energy; nevertheless, the global perturbation level in the whole flow
field decreases. As shown in figure 15(b), we test the learnt control policy by applying it
to the boundary layer flow for 6000 action steps that are 10 times longer than the training
episode, with both the disturbance input d(t) and control input u(t) activated. It is found
that the global perturbation energy downstream of the actuator is significantly reduced and
maintained at a level close to zero throughout the test process. Here, the global downstream
perturbation energy e(t) is calculated as

e(t) =
M∑

i=1

[(
ui(t)− Ui

)2 +
(
vi(t)− Vi

)2
]
, (4.3)

where M is the number of uniformly distributed, customised grid points in the downstream
domain (410, 800)× (0, 30), and here M = 2052; ui(t) and vi(t) are the instantaneous x-
and y-direction velocity components at point i, and Ui and Vi are the corresponding base
flow velocities.

We then extract the r.m.s. value of the streamwise velocity along y = 1 and plot it in
figure 15(c), where the black curve is for the case without control, and other coloured
curves represent DRL-based control with different numbers of sensors. Similar to that
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Figure 15. DRL-based control for the 2-D Blasius boundary layer flow, subjected to an upstream disturbance
input d(t). (a) Average local perturbation energy around point z recorded during the training process.
(b) Global perturbation energy downstream of the actuator recorded during the test process. (c) The r.m.s.
value of streamwise velocity along y = 1 plotted for DRL-based control with different numbers of sensors. (d)
The r.m.s. value of streamwise velocity along y = 1 plotted for DRL-based control with disturbance input of
different amplitudes σd(t). Curves for cases without control are also shown for reference.

in the KS system (cf. figure 14b), when no control is implemented, the random noise
introduced upstream exhibits exponential growth while convecting downstream. Such
behaviour of linear instability is observed when the external disturbance d(t) is small
enough, with standard deviation 2 × 10−4 used here. With the control activated, the
perturbation amplitude downstream of the actuator is reduced significantly. Also, the effect
of the number of sensors on the control performance is similar to that in the KS system.
With the number of sensors increasing from 1 to 8, the resulting control performance
is continuously improved, while with a further increase to 10, the control performance
slightly degrades, similar to the situation for the KS equation.

Next, the amplitude of the input disturbance d(t) is increased to investigate the effect
of nonlinearity on the DRL-based control performance. Each disturbance level represents
an agent trained in that specific system, which means that the training conditions are the
same as the test conditions. With the standard deviation σd(t) increasing from 2 × 10−4

to 5 × 10−4 and 1 × 10−3, the nonlinear behaviour gradually starts to play a role in the
dynamics, as shown by the solid curves in figure 15(d), where the linear exponential
growth is lost in the downstream region. The nonlinearity in turn slightly degrades the
DRL-based control performance, as shown by the dashed curves in figure 15(d). The
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Figure 16. (a) Contour of streamwise perturbation velocity at y = 1 induced by an upstream disturbance d(t)
with standard deviation δd(t) = 0.0002. (b) Contour of streamwise perturbation velocity with both disturbance
input d(t) and control input u(t). (c) Output signal z(t) comparison between the uncontrolled and controlled
cases, i.e. the localised perturbation energy monitored around (550,1). Blue arrows represent inputs, and the
red arrows represent outputs.

comparison of flow contours of streamwise perturbation velocity at y = 1 with and without
control for the three input disturbance levels is shown in figures 16–18, respectively.
Figures 16(a), 17(a) and 18(a) represent the flow field triggered solely by an upstream
disturbance input d(t), and figures 16(b), 17(b) and 18(b) display that with both d(t) and
DRL-based control u(t) being activated. It is shown that in all three cases, the downstream
perturbation is suppressed to some extent with DRL control, but the degree of effectiveness
differs. With the increase of disturbance amplitude, the required magnitude of control
action u(t) increases (still within the predefined range [−0.01, 0.01]) but the resultant
control performance deteriorates; compare contours in figures 16(b), 17(b) and 18(b), and
also compare the recorded output signal z(t), i.e. the localised perturbation energy around
(550, 1), in figures 16(c), 17(c) and 18(d).

The performance degradation can be understood as follows. First, the optimised sensor
placement applied here is obtained from the linearised KS system, which may be
sub-optimal in the nonlinear conditions. Second, with the increase of disturbance level,
such a control method via a localised volumetric forcing may not be effective due to its
confined region of influence compared to the extended region influenced by the increasing
disturbance input. This argument is verified by performing an additional DRL training for
a spatially enlarged localised forcing and then comparing its control performance with
the original one. The original control forcing is localised around point (400, 1) with 2-D
Gaussian supports with δx = 4 and δy = 1/4, and the new forcing is also localised around
(400, 1) but with a slightly enlarged spatial region of influence with δx = 5 and δy = 1/3.
All the other training parameters are the same as for the original one, and the resultant
control performance is shown in figure 18(c) and the red dotted curves in figure 18(d,e).
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Figure 17. (a) Contour of streamwise perturbation velocity at y = 1 induced by an upstream disturbance d(t)
with standard deviation δd(t) = 0.0005. (b) Contour of streamwise perturbation velocity with both disturbance
input d(t) and control input u(t). (c) Output signal z(t) comparison between the uncontrolled and controlled
cases, i.e. the localised perturbation energy monitored around (550, 1). Blue arrows represent inputs, and the
red arrows represent outputs.

It is demonstrated that the control performance can be improved by slightly enlarging the
spatial region of the localised forcing, which can be seen by comparing the downstream
contour in figures 18(b,c), where the perturbation is better suppressed with the new forcing
distribution, and from the recorded output signal z(t) in figure 18(d), and also from the
r.m.s. value of streamwise velocity along y = 1 plotted in figure 18(e).

All the results shown in figures 15–18 are related to the perturbation reduction along a
single straight line. Next, we plot the time-averaged perturbation energy field downstream
of the actuator with different amplitudes of the disturbance input in figures 19(a–c). For
clarity of comparison, all the raw data of the perturbation energy field are post-processed
by first normalisation using its maximum value and then taking the logarithm. Thus the
right bound of the colour code shown in figure 19 is zero, which corresponds to the
region having the maximum perturbation energy among the considered cases. As shown in
figure 19(a), when no control is implemented, the perturbation velocity keeps increasing
as convected downstream, and develops from the boundary layer region into the outer
region. In contrast, when DRL-based control is activated, the downstream perturbation
is suppressed significantly. The effect of the number of sensors is also illustrated here.
For DRL control with only one sensor, some small perturbations can still be observed
along y = 1, while for DRL control with two sensors, some small perturbations appear
at the outlet. For DRL control with 8 sensors, the downstream perturbations are almost
completely suppressed.

Moreover, the effect of the amplitude of disturbance input is illustrated by the
comparison among the first rows of figures 19(a–c), using the same eight-sensor placement
for consistency. With the increase of disturbance level, the region with high perturbations
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Figure 18. (a) Contour of streamwise perturbation velocity at y = 1 induced by an upstream disturbance d(t)
with standard deviation δd(t) = 0.001. (b) Contour of streamwise perturbation velocity controlled by u(t) with
the original forcing spatial distribution. (c) Contour of streamwise perturbation velocity controlled by u(t) with
the new forcing spatial distribution. (d) Output signal z(t) comparison among the uncontrolled and controlled
cases, i.e. the localised perturbation energy monitored around (550, 1). (e) Control performance comparison in
terms of the r.m.s. value of streamwise velocity at y = 1. The blue arrows represent inputs, and the red arrows
represent outputs.

is obviously enlarged, thus the DRL-based control performance deteriorates as explained
before. A quantitative comparison is summarised in table 2, where the time-averaged
global perturbation energy E, (i.e. E = e(t), where e(t) is defined in (4.3)) downstream
of the actuator is reported and compared. It is found that when the disturbance level is low,
DRL-based control is remarkably efficient, with an over 96 % reduction of the downstream
perturbation energy. With the disturbance level increasing to 0.001, DRL-based control
is not that efficient but still effective, with an 89.68 % reduction of the downstream
perturbation energy.

4.7. Interpretation of the learnt control policy
In this subsection, we make an attempt to understand the DRL-based flow control from a
physical point of view. We stress that the convectively unstable flow system under control
is a selective frequency amplifier, subject to upstream random noise. To make this point
clear, we perform the stability analysis of the 2-D Blasius flow and discuss its relevance to
the control.

We solve numerically the Orr–Sommerfeld equation with the solution form ψ(x, y, t) =
ϕ( y) exp(i(αx − ωt)), where ϕ( y) is the complex amplitude, α is the wavenumber,
ω = ωr + iωi, with ωr being the angular frequency and ωi the exponential growth rate,
and c = ω/α = cr + ici, where cr is the phase velocity of the wave, and the sign of ci
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Figure 19. Contours of the time-averaged perturbation energy field downstream of the actuator with different
amplitudes σd(t) of disturbance input. In each panel, the comparison of perturbation energy field with and
without control is presented. The colour bar displays the logarithm of the normalised perturbation energy. (a)
Disturbance level σd(t) = 0.0002. (b) Disturbance level σd(t) = 0.0005. (c) Disturbance level σd(t) = 0.001.

Disturbance amplitude Sensor number Perturbation energy E Relative reduction

0.0002 No control 0.08886 —
1 0.00353 96.03 %
2 0.00232 97.39 %
4 0.00078 99.12 %
6 0.00066 99.26 %
8 0.00045 99.49 %
10 0.00056 99.37 %

0.0005 No control 0.65188 —
8 0.00452 99.31 %

0.001 No control 1.79398 —
8 0.18512 89.68 %

Table 2. DRL-based control performance quantified by the reduction of perturbation energy.
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Figure 20. Stability curves for Blasius flow by solving the Orr–Sommerfeld equation. (a) Neutral curve: Re
versus ωr . (b) Curve for Rec = 1474: ωr versus ci.

determines whether the wave is stable or unstable. The limiting case ci = 0 yields the
neutral stability curves as shown in figure 20(a) for Re–ωr, non-dimensionalised by the
free-stream velocity U∞ and the local displacement thickness δ∗ of the boundary layer. It
is shown that the critical Re is 519.4, and for Re > 519.4, a narrow range of frequencies
is amplified. For our control case whose inlet has Re = 1000, the local displacement
thickness of the boundary layer at the location of control x = 400 is about δ∗ = 1.474,
thus the local value is Rec = 1474. Moreover, sensors used to collect state are also
positioned around this location. Thus we can extract the corresponding stability curve at
this section, denoted by the black dashed line in figure 20(a), and plot it in an ωr–ci plane
in figure 20(b). It can be seen from figure 20(b) that the unstable frequency range at this
section is about (0.027, 0.079), denoted by two blue points. To make the control effective,
this frequency range should be well resolved by state observations in DRL. In the current
case, we adopt a time step of 0.05 unit times for temporal integration in 2-D simulations.
The action is constant for 30 time steps, and there is only one observation collected by eight
sensors at the end of each of the 30 time steps that is returned as state. Thus the control
frequency is the same as the state sampling frequency, namely, 2π/(30 × 0.05) = 4.189,
which is much larger than the aforementioned amplified frequency, thus satisfying Nyquist
criteria and avoiding the aliasing effect.

Moreover, we make an attempt to understand the learnt control policy through an
analysis of the macroscopic flow features induced by the control action, since it is difficult
to interpret the policy from the weights of neural networks due to the black box feature
of ML algorithms (Schmidhuber 2015; Rabault et al. 2019). We plot the instantaneous
snapshots of streamwise perturbation velocity at three different time instants t1, t2 and t3 in
figures 21(a–c), respectively, corresponding to the three spikes labelled in figure 15(b). In
each panel, the top plot corresponds to the black curve in figure 15(b), which represents the
situation with only the upstream noise input at xd = 35, while the bottom plot corresponds
to the blue curve in figure 15(b), which represents the situation with both upstream noise
input at xd = 35 and DRL-based control implemented at xu = 400. During the control
process, we record the action sequence produced by the agent and then perform a new
simulation with only the recorded control actions input, and obtain the resultant field as
shown by the middle plot. It is observed in all the three panels that the specific wave
induced by the control action (middle plot) is of almost the same magnitude but with
phase opposite to that generated by the disturbance input (top plot), which imposes a
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destructive inference to the incoming TS wave, and thus the downstream perturbations are
well suppressed, as shown in the bottom plot of each panel. This is exactly the opposition
control mechanism as has been discussed in e.g. Choi, Moin & Kim (1994), Grundmann &
Tropea (2008), Brennan, Gajjar & Hewitt (2021), Sonoda et al. (2022) and Güemes et al.
(2022). To summarise, DRL control is effective in controlling the convective instability
evolving in boundary layer flows, using the optimised sensor placement obtained from the
KS system. The learnt control policy based on the ‘sticky action choice’ acts as opposition
control to cancel the incoming perturbation TS wave.

5. Conclusions

In this work, we have studied and evaluated the performance of DRL in controlling the
perturbative dynamics in both the 1-D linearised KS system and the more realistic 2-D
flat-plate boundary layer flows. The former is a particular variant of the original KS
equation and commonly used to model the perturbation in flat-plate boundary layer flows.
It is known that traditional model-based controllers usually struggle with convectively
unstable flows subjected to unknown external disturbance, since it is difficult to assume
an accurate flow model in a real noise environment (Dergham, Sipp & Robinet 2011;
Hervé et al. 2012; Belson et al. 2013). Thus the main objective of this work is to test
if the model-free DRL-based flow control strategy can suppress the randomly perturbed
convective instability in these flows and investigate the optimal sensor placement issue in
the context of DRL flow control.

Due to the convective instability of boundary layer flows, without control, the amplitude
of perturbation grows exponentially along the streamwise direction. After the DRL control
is activated, the perturbation downstream of the actuator can be suppressed significantly
as the perturbation amplitude at the monitoring point reduces significantly. We have
also demonstrated the robustness of the learnt control policy to two types of noises,
i.e. measurement noise and external noise. The former is used to mimic the realistic control
scenarios as the sensors are usually subjected to noise, while the latter is used to test
whether the policy learnt from a certain environment can be generalised to other unseen
noise conditions. The robustness property of DRL results from the state normalisation
operation in the training process and also the closed-loop nature of the control system.

We have also investigated the optimised placement of different numbers of sensors in the
DRL-based flow control using the gradient-free PSO algorithm. We find that one sensor
placed upstream of the actuator is not enough to generate a good control performance
because, this way, the sensor cannot perceive the consequence of the action after it is
taken due to the convective nature of the flow. In addition, due to the implementation of
sticky actions, a single upstream sensor can inform the agent of only a single upcoming
parallel slash in a packet of slashes that crosses the actuator over the duration that the
action is ‘stuck’. As the slashes are generated by random noise, it is not possible for
the agent to choose an action that accounts for the packet of slashes based on a single
measurement. Thus a proper number of sensors placed both upstream and downstream of
the actuator can provide a more complete measurement of the current flow environment in
this model-free method. But more sensors do not necessarily lead to a better performance
since the information provided by the additional sensors may be redundant. In our study, a
specific eight-sensor placement has been found to be the optimal with the best control
of the KS equation. We also investigate the dynamics of the nonlinear KS system in
Appendix A, and find that, due to the nonlinear effect, the perturbation may no longer
grow exponentially along the streamwise direction but saturate. The control policy learnt

954 A37-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
20

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1020


D. Xu and M. Zhang

Velocity

–0.04 –0.03 –0.02 –0.01 0 0.01 0.02 0.03 0.04

30

20

10

0

30

20

10

0

30

20

10

0 100 200 300 400 500 600 700 800

100 200 300 400 500 600 700 800

30

20

10

0

30

20

10

0

30

20

10

0

30

20

10

0

30

20

10

0

30

20

10

0

200100 300 400 500 600 700 800

y

y

y

y

y

y

y

y

y

x

(a)

(b)

(c)

Figure 21. Instantaneous snapshots of streamwise perturbation velocity at three different time instants t1, t2
and t3. In each panel: the top plot represents the velocity field with only the upstream disturbance input; the
middle plot represents the velocity field with only the corresponding control input; the bottom plot represents
the velocity field with both the disturbance input and control input turning on. The position of disturbance input
and control input is denoted by the blue triangle. Plots are for (a) t1 = 1000, (b) t2 = 3100, (c) t3 = 5600.
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from the linear equation can be applied directly to control the weakly nonlinear case with
an effective performance, although the controlled result is not as good as the policy trained
in the real nonlinear condition. Moreover, in Appendix C, we have also embedded the
information on flow stability, i.e. the leading growth rate evaluated by DMD, into the
reward function to penalise the instability, and found that the control performance can be
further improved.

All the above results pertain to the DRL control of the 1-D KS system. As a further
demonstration, we apply the optimised sensor placement from the 1-D KS equation to
the control of 2-D Blasius boundary layer flows of Re = 1000 subjected to a random
upstream disturbance input. When the disturbance level is relatively low, DRL-based
control is remarkably efficient to reduce the downstream perturbation energy, and the
effect of the number of sensors on the control performance is very similar to that in the
1-D KS system. With the disturbance level increasing to 0.001, DRL-based control is less
efficient. This performance degradation may be related to the fact that the adopted sensor
placement is obtained from the linear KS system and also the confined region of influence
of the localised control forcing. In addition, we can explain the learnt DRL policy by
post-processing the flow data, and find that the DRL-based control can be interpreted as
opposition control, an approach that has been studied in boundary layer flow controls.

In the end, we would like to discuss the limitations of this work and future directions
that can be followed to improve the model-free DRL-based flow control. A more consistent
study to determine the optimal sensor placement in the 2-D boundary layer flows would
couple sensor optimisation with DRL training directly in the 2-D flows. This was our initial
attempt; however, we quickly realised that the computational cost, i.e. PSO executed in the
2-D NS equations with a reasonable resolution, is impractically high, and thus resorted
to the 1-D KS model of the perturbed boundary layer flows. With more computational
resources, future work can consider solving for the optimal sensor placement in a more
consistent manner. It should be noted that some researchers have begun to use a data-driven
reduced-order model in place of the real environment in DRL control to mitigate the
problem of high computational cost (Ha & Schmidhuber 2018; Zeng, Linot & Graham
2022), and this may also help to circumvent the computational problem that we are facing
here. Another issue lies in the time delay between the control starting time and the time
when its impact on the downstream flow field can be perceived. This delay is due to the
convective nature of the studied flow. Our experience is that it is important to remove
such delay and match the effect of the action and the corresponding flow state/reward in
the DRL framework. In academic flows, the control delay time may be obtained based
on our knowledge of the flow system, as described in Appendix B. This may, however,
be unobtainable in real-world applications. Thus coming up with a systematic way to
eliminate the delay is important. The final issue is to embed flow physics/symmetry
properties of the dynamical system in the DRL-based control. This will help to steer the
black-box exploration of DRL in a physically correct direction and improve the sample
efficiency. Our attempt deals with it only in a specific case. More systematic studies along
this direction will be necessary and important in furthering our understanding of the DRL
control.
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Figure 22. Dynamics of the nonlinear KS system when subjected to an upstream random noise. (a) The r.m.s.
value of perturbation velocity along the 1-D domain plotted for the KS equation excited by an upstream noise
with σd(t) = 1, with different values of ε. (b) The r.m.s. value of perturbation velocity along the 1-D domain
plotted for the KS equation excited by an upstream noise of different standard deviations σd(t), with ε fixed
at 1.
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Appendix A. Dynamics of nonlinear KS equation and its control

All the previous results are related to the control of the linearised KS equation. However,
when the perturbation amplitude increases above a certain level, the nonlinear effect can
no longer be neglected. In this appendix, we investigate the dynamics of the nonlinear KS
equation as described by (2.3), together with boundary conditions (2.5a–d), and its control
issue.

The intensity of nonlinearity in (2.3) depends on the value of ε. Here, we first select
three different values, ε = 0.001, 0.005 and 0.01, and simulate the dynamics of the weakly
nonlinear KS system subjected to an upstream random noise of unit variance at xd = 35,
using the numerical method described in § 3.1. All the other parameters are identical with
those for the linearised system. The corresponding results are presented in figure 22(a),
where the r.m.s. value of perturbation velocity along the 1-D domain is plotted. It is shown
that with the increase of ε, the nonlinear effect becomes more evident in the sense that the
perturbation is no longer growing exponentially along the x-direction, in contrast to the
linear system, as shown by the black curve. The nonlinear effect can also be demonstrated
by varying the external noise level. As shown in figure 22(b), we fix ε = 1 but increase
the standard deviation of the upstream noise from σd(t) = 0.001 to σd(t) = 0.005, and the
nonlinear effect strengthens.

Then we investigate the DRL-based control of the nonlinear KS system. The control
policy that was learnt from the linear condition is applied directly to the nonlinear case
with ε = 0.005 and σd(t) = 1. It is found that this policy is still effective in suppressing
the downstream perturbation, as shown by the blue curve in figure 23(a), where the
amplitude at xz = 700 is reduced from about 10 to 0.3, although the performance is not as
good as the new policy trained in the nonlinear condition with ε = 0.005 (orange curve).
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Figure 23. DRL-based control of the nonlinear KS system. (a) The r.m.s. value of perturbation velocity plotted
for the uncontrolled case and the controlled cases using both the old policy (trained from the linear condition)
and the new policy (retrained in the nonlinear condition with ε = 0.005 and σd(t) = 1). (b) The r.m.s. value of
perturbation velocity plotted for the uncontrolled and controlled cases of the KS system excited by an external
noise of different levels; all the control policies applied are trained from the nonlinear condition with ε = 1.

Similar results can also be found in Jamal & Morris (2015), where the controller designed
in the linearised KS equation can be used to stabilise the nonlinear KS equation. In
figure 23(b), we compare the DRL-based control performance with the increase of the
external noise level under the nonlinear condition with ε = 1. It is shown that as the noise
level increases, the control performance degrades in terms of the downstream perturbation
reduction. This may be due partly to the fact that the sensor placement applied here
is obtained directly from the linearised KS system, which may be sub-optimal in the
nonlinear condition, and similar results are also found in 2-D boundary layer flows, to
be detailed in § 4.6.

Appendix B. Time delay in DRL-based flow control

In this appendix, we explain the time delay issue as mentioned in § 3.3 and how we
circumvent this issue by correlating the reward with the right state-action tuple.

During DDPG training process, transition data (s, a, r, s′) at each step are first stored
into the experience memory, where s, a, r and s′ are state, action, reward and next
state, respectively, and then mini-batch samples are taken from the memory to update the
parameters of the neural network. In the current DRL framework, reward r is related to the
perturbation amplitude/energy monitored at a downstream location, so its instantaneous
value is not a corresponding response to the current action at an upstream position, until
the impact of action has been convected to the downstream location. To eliminate this
mismatch, the key is to identify the corresponding time delay tD. Given a constant tD,
we first store s, a, s′ in three independent buffers, and after t > tD, we start to extract
(s, a, s′) at t − tD from their respective buffers that correspond to the data tD time ago.
That is, (s, a, s′) at t − tD is combined with reward r at t, and they are stored in the
experience memory together. In this way, we remove the time delay and help the DRL
agent to perceive the dynamics of environment in a time-matched way.

Next, we explain how we choose the time delay tD, which is defined as the time
difference between the control starting time and the time when a downstream monitoring
point responds. Before training, we first run simulations using the current control
framework with both random noise input and random control input from a zero initial
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Figure 24. Time delay removal for DRL-based control of the 1-D KS system. (a) Time delay tD identified at
the turning point when reward turns negative. (b) The r.m.s. value of perturbation along the 1-D domain plotted
for control cases with and without time delay.
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Figure 25. Time delay removal for DRL-based control of 2-D boundary layer flow. (a) Time delay tD identified
at the turning point when reward turns negative. (b) The r.m.s. value of streamwise velocity along y = 1 plotted
for control cases with and without time delay.

condition in the KS equation and from laminar base flow in the boundary layer flow. As
shown in figures 24(a) and 25(a), the reward signal remains zero before the first control
action reaches the downstream location, and then turns negative (since the reward is
defined as the negative value of downstream perturbation amplitude for the KS system,
and the negative value of downstream perturbation energy for the boundary layer case).
Thus the time at this turning point is chosen as the time delay tD, i.e. tD = 25 for the KS,
and tD = 120 for the boundary layer case.

We also present the comparison of DRL control performance with and without this
modification, as shown in figure 24(b) for the KS system and figure 25(b) for the
boundary layer case. For consistency, all the cases adopt the same optimised eight-sensor
placement. It is shown that with time delay removed, DRL control performance is
improved significantly. Especially for boundary layer flow control, with delay removed,
the relative reduction of downstream perturbation energy is 99.49 % (from 0.08886 to
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Figure 26. Contours of the time-averaged perturbation energy field downstream of the actuator, with upstream
noise input σd(t) = 0.0002. (a) Energy field without control. (b) DRL-based control with time delay.
(c) DRL-based control with time delay removed.

0.00045), while if the time delay is not treated, then the perturbation energy reduction is
only 87.74 % (from 0.08886 to 0.01089). The control results are visualised in figure 26.

Finally, we provide a more detailed description of our DRL framework for the
reproducibility of the current work. The environment set-up has been described in § 2,
and the numerical simulations of the two systems are given in §§ 3.1 and 3.2. For the
interaction between the agent and the environment, the control action is updated every 30
time steps, and there is only one state observation collected by the optimised sensors at
the end of each 30 time steps. Thus the control frequency is the same as the state sampling
frequency, which has to be larger than twice the characteristic frequency of the problem
to satisfy Nyquist criteria. For hyperparameters adopted in the training process, we define
a training episode composed of 120 action steps for the 1-D KS system, and 600 action
steps for the 2-D boundary layer flow. The experience memory size is chosen to be 10 000
for the KS system, and 15 000 for the Blasius case, with mini-batch size 32. Moreover,
both actor and critic networks have two hidden layers each with 200 neurons using ReLU
as the activation function. An Adam optimiser is adopted to update network parameters,
and the learning rate is selected as 0.001 for both actor and critic networks. In terms of the
computational time spent, the training in the KS system is quite fast due to the simplicity
of this reduced model, and it takes about 20 min for full convergence, while for training
in the Blasius case, it takes about 12 h to learn the optimal control policy. The sensor
placement optimisation implemented in the KS system is quite time-consuming since the
particle searching process is conducted in serial in the Pyswarm package that we adopted
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Figure 27. Convective instability of the 1-D linearised KS system. (a) Relation between wavenumber α and
growth rate ωi. (b) Relation between group velocity vg and the corresponding growth rate σ .

here, and each search corresponds to a complete DRL training in the KS system. It takes
about two weeks to obtain the final optimised sensor placement in our case, and how to
accelerate the optimisation process is also one of our future research directions. All of the
above computations are performed on 12 cores of Intel Xeon(R) Bronze 3104.

Appendix C. Stability-enhanced reward design

In this appendix, we would like to analyse the convective nature of the 1-D KS equation
and propose to embed flow physical information in the reward design. In the main body,
the reward is defined as the negative r.m.s. value of z(t) that represents the downstream
perturbation level. In this appendix, we discuss how the reward function in DRL-based
control can be improved to incorporate information on the flow instability of the 1-D KS
system to improve the control performance.

We first analyse the stability properties of the 1-D linearised KS system without the
external forcing term, i.e. (2.4) with f (x, t) = 0. We assume travelling-wave-like solutions
in the form

v′ = v̂ exp(i(αx − ωt)), (C1)

where α ∈ R is the wavenumber, and ω = ωr + iωi ∈ C, with ωr representing the
frequency and ωi the exponential growth rate. Inserting (C1) into (2.4) yields the following
dispersion relation between ω and α:

ω = Vα + i
(P
R α2 − 1

R α4
)
. (C2)

The relation between ωi and α is presented in figure 27(a). It is shown that only a certain
range of wavelengths are unstable and will be amplified in the final state; see again figure 6.
For the convectively unstable flows, the spatiotemporal stability analysis is more relevant,
which accounts for the wave development in both space and time.

The spatiotemporal instability of the convective KS system subjected to an impulse
disturbance is conducted, following the post-processing method in Brancher & Chomaz
(1997); our code adapts that used in Feng et al. (2022). To extract unambiguously the
amplitude and phase of a wavepacket, the Hilbert transform is applied to the perturbation
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velocity as

v′(x, t) = v̂(x, t) exp(iψ(x, t)), (C3)

where v̂(x, t) represents the complex-valued amplitude function, and ψ(x, t) is the phase
of the wavepacket. Then we calculate the amplitude function Ê(x, t), which is the norm of
v̂(x, t), at an (asymptotically) large time:

Ê(x, t) ∝ t−1/2 exp(σ (vg) t), with vg = (x − x0) /t = const., t → ∞, (C4)

where x0 is the initial location of the impulse disturbance, and σ(vg) refers to the dominant
growth rate along the ray vg. See Huerre & Monkewitz (1985) for the derivation of the
above equation. Based on two snapshots extracted at instants t1 and t2, the spatiotemporal
growth rate can be calculated as

σ(vg) ≈
ln
[
Ê(vgt2, t2)/Ê(vgt1, t1)

]
t2 − t1

+ σ0(t1, t2), σ0(t1, t2) = ln(t2/t1)
2(t2 − t1)

, (C5a,b)

where σ0(t1, t2) is a finite-time correction for the growth rate due to the t−1/2 term in (C4)
(Delbende & Chomaz 1998).

Following this method, we can calculate the spatiotemporal growth rate σ under various
group velocities vg, and plot it in figure 27(b). It is shown that the maximum growth rate
σ = 2.42 × 10−3 is obtained at vg = 0.4, which is close to the maximum growth rate
ω = 2.5 × 10−3 obtained in figure 27(a) at α = 0.158. In addition, the absolute growth
rate σ(vg = 0) is negative, as shown in figure 27(b), which demonstrates the nature of
convective instability in the 1-D linearised KS system.

Now we discuss the new reward design in the DRL-based control of the linearised KS
system. When the control is turned on and the external forcing term f (x, t) in (2.4) is
varying, it is difficult to apply the conventional linear stability analysis. In this case, we
use the traditional dynamic mode decomposition (DMD; cf. Rowley et al. 2009; Schmid
2010) to extract the leading growth rate and embed it into the reward function design. Here,
two notable points regarding the DMD used in the current work are mentioned. First, the
snapshots are extracted in a moving coordinate system with velocity 0.4, which is the
group velocity leading to the maximum growth rate as calculated above (see figure 27b).
If the snapshots were extracted based on a stationary coordinate, then we are not able to
obtain the correct growth rate to describe the instability of the convective system. Second,
the snapshots are extracted within the range (410, 500), which is near downstream of the
actuator position, since this specific range is affected by the control action most directly
and can reflect the effects of control.

We embed the physical information on flow instability into the reward function in the
following way, similar to that in Li & Zhang (2022):

Reward = −|z(t)|rms × ecg, (C6)

where the first term −|z(t)|rms on the right-hand side represents the initial reward, and
the second term ecg is related to the flow instability, with g being the leading growth rate
evaluated by DMD, and c being a constant equal to 50. (The specific value of c is not
essential; we choose 50 in order to compensate the small value of g.) When the control
has a stabilising effect, i.e. g < 0 and ecg < 1.0, a larger reward is given to encourage
such control attempts. On the contrary, when the control is destabilising, i.e. g > 0 and
ecg > 1.0, the second term acts as a penalty to reduce the probability of the occurrence

954 A37-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
20

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1020


D. Xu and M. Zhang

of such actions. Therefore, the new reward function penalises flow instability. Loosely
speaking, one can also take the logarithm of the reward function to understand that the
growth rate acts as an additional regulation term in the objective function.

Comparisons on the DRL-based control performance between using the initial reward
and the stability-improved reward are presented in figures 28(a–f ) for different numbers
of sensors. It is shown that with 1 or 2 sensors, the control performance enhancement by
using the stability-enhanced reward is limited. This may be due to the fact that too few
sensors cannot provide a complete measurement of the noisy environment, preventing the
new reward from demonstrating its effectiveness. As the number of sensors increases, the
new reward begins to show its advantages in the sense that the perturbation downstream
of the actuator is further reduced, as shown in figures 28(c–f ). The manifestation of the
performance improvement is revealed in figure 29, where the growth rate calculated by
DMD is presented (here we use 8 sensors). When there is no control, the growth rate as
a function of time is always positive, which indicates that the flow itself is convectively
unstable. With the initial reward, the large spikes of positive growth rate decrease, and
there are some instants with a negative growth rate, leading to the reduction of downstream
perturbations. However, the instants with a positive growth rate are still frequent. With the
help of stability-enhanced reward, such instants with a relatively large positive growth rate
are penalised and thus become fewer. The average growth rate during the control process
is decreased, thus a better control performance is achieved.

Appendix D. Linear quadratic regulator control

Linear quadratic regulator (LQR) is a classical-model-based control method that assumes
full knowledge of the field v(t) to calculate the control signal u(t) as

u(t) = K(t) v(t), (D1)

where K(t) is the feedback gain that will be calculated by solving a Riccati equation. The
objective of an LQR controller is to seek a control signal u(t) that minimises the cost
function L in a quadratic form considering both the sensor output z(t) and the control
effort u(t) in some time interval t ∈ [0, T]:

L(v(u), u) = 1
2

∫ T

0

(
vHW vv + uHwuu

)
dt +

∫ T

0
pH (v̇ − Av − Buu) dt, (D2)

where W v = CH
z wzCz, and z(t) = Cz v(t). Both wz and wu are weighting factors, selected

as 1 here except in the cases where we will change them. The second term on the right-hand
side is due to the dynamic constraint, i.e. v̇(t) = A v(t)+ Bu u(t), and p is a Lagrangian
multiplier that is also the adjoint state corresponding to the direct state v.

For a linear time-invariant system, the most straightforward way to compute the optimal
control signal u(t) is to utilise the optimal condition, i.e. ∂L/∂u = 0, which gives

u(t) = −w−1
u BH

u p(t). (D3)

Assuming a linear relation between direct state and adjoint state, i.e. p(t) = X (t) v(t), we
can obtain the feedback gain K(t) given by

K(t) = −w−1
u BH

u X (t), (D4)

where the matrix X (t) is the solution of a differential Riccati equation (Lewis, Vrabie &
Syrmos 2012). When A is stable and time t approaches infinity, we can obtain X (t) by
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Figure 28. DRL-based control performance comparison between using the initial reward and the
stability-enhanced reward with different numbers of sensors. The r.m.s. value of perturbation velocity along
the 1-D domain is plotted: (a) 1 sensor, (b) 2 sensors, (c) 4 sensors, (d) 6 sensors, (e) 8 sensors, ( f ) 10 sensors.

solving the following algebraic Riccati equation:

0 = AHX + XA − XBuw−1
u BH

u X + W v. (D5)

The above equations describe the principle of an LQR controller. Its advantage is that the
feedback gain is constant and thus needs to be computed only once. As a typical example
of model-based control methods, the LQR controller is compared with our model-free
DRL-based controller to control the 1-D linearised KS equation in § 4.3.
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Figure 29. Time-variation curve of the leading growth rate evaluated by DMD during the control process,
using both the initial reward and the stability-improved reward. The curve for the uncontrolled process is also
plotted for comparison.
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