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Abstract

We consider a system with Poisson arrivals and independent and identically distributed
service times, where requests in the system are served according to the state-dependent
(Cohen’s generalized) processor-sharing discipline, where each request receives a service
capacity that depends on the actual number of requests in the system. For this system,
we derive expressions as well as tight insensitive upper bounds for the moments
of the conditional sojourn time of a request with given required service time. The
bounds generalize and extend corresponding results, recently given for the single-server
processor-sharing system in Cheung et al. (2006) and for the state-dependent processor-
sharing system with exponential service times by the authors (2008). Analogous results
hold for the waiting times. Numerical examples for the M/M/m-PS and M/D/m-PS
systems illustrate the given bounds.
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1. Introduction

Processor-sharing (PS) systems have been widely used in the last decades for modeling and
analyzing computer and communication systems; see, e.g. [3], [4], [6], [10], [12], [13], [14],
[16], [22], [25], and the references therein. In this paper we deal with insensitive bounds for
the moments of sojourn times of the following PS service system, denoted by M/GI/SDPS.
At a node requests arrive according to a Poisson process of intensity λ with independent and
identically distributed service times, which are independent of the arrival process and have the
distribution function (DF) B(x) := P(S ≤ x), where S denotes a generic service time with finite
positive mean mS := E S. Note that B(0) > 0 is allowed, i.e. that zero service times may occur.
The requests are served according to the following state-dependent processor-sharing (SDPS)
discipline (Cohen’s generalized processor-sharing discipline); see [3] and [11]. (The SDPS
discipline seems to go back to Cohen (cf. [11]), who referred to it as the generalized processor-
sharing discipline. But nowadays this term is used for other classes of models, such as weighted
fair queueing systems. Therefore, it is now called the SDPS discipline; cf., e.g. [3].) If there are
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Insensitive bounds under state-dependent processor sharing 247

n ∈ N := {1, 2, . . . } requests in the node then each of them receives a positive service capacity
ϕ(n), i.e. during an interval of length �τ each of the n requests receives a ϕ(n)�τ amount of
service. In the case in which ϕ1(n) = 1/n, n ∈ N, we obtain the well known M/GI/1-PS system
(single-server system with egalitarian processor-sharing discipline); see [10], [21], and [23]. In
the case in which ϕ1,k(n) = 1/(n + k), n ∈ N, we have a single-server PS system with k ∈ N

permanent requests in the system; see [18]. In the case in which ϕm(n) = min(m/n, 1), n ∈ N,
we have an M/GI/m-PS system; i.e. an m-server PS system, where all requests are served in
a PS mode, but each request receives at most the capacity of one processor; see [11, p. 283],
[5], and [12]. In the case in which ϕm,k(n) = min(m/(n + k), 1), n ∈ N, we have an m-server
PS system with k ∈ N permanent requests. In the case in which ϕ(n) = 1, n ∈ N, the system
corresponds to an M/GI/∞ system.

Networks with nodes working under the SDPS discipline were investigated in [2], [6], [7],
[8], [11], and [24]. In particular, for the M/GI/SDPS system, some basic results are known
(see [11]), which we will use and shortly review in the following. Let N(t) be the number
of requests in the system at time t , and let R∗(t) := (R∗

1(t), . . . , R∗
N(t)(t)) be the vector of

the residual service times of the N(t) requests in the system at time t , ordered randomly. The
vector process (N(t); R∗(t)), t ∈ R, is a Markov process. The M/GI/SDPS system is stable,
i.e. there exists a unique stationary process (N(t); R∗(t)), t ∈ R, if and only if

∞∑
n=0

n∏
�=1

�χ(�)

�
< ∞, (1.1)

where χ(n) := 1/ϕ(n), n ∈ N, and � := λmS denotes the offered load; cf. [11, Equa-
tion (7.18)]. We assume in the following that the system is stable and in a steady state, i.e. that
(1.1) is fulfilled and that (N(t); R∗(t)), t ∈ R, is a stationary Markov process. Then the
stationary occupancy distribution p(n) := P(N(t) = n), n ∈ Z+, and P(N(t) = n; R∗

1(t) ≤
r1, . . . , R

∗
n(t) ≤ rn), n ∈ Z+, r1, . . . , rn ∈ R+, i.e. the stationary distribution of (N(t); R∗(t))

on {N(t) = n}, are given by

p(n) =
( ∞∑

m=0

m∏
�=1

�χ(�)

�

)−1 n∏
�=1

�χ(�)

�
, (1.2)

P(N(t) = n; R∗
1(t) ≤ r1, . . . , R

∗
n(t) ≤ rn) = p(n)

n∏
�=1

BR(r�), (1.3)

where

BR(x) := 1

mS

∫ x

0
(1 − B(t)) dt, x ∈ R+, (1.4)

denotes the stationary residual service time distribution having the density bR(x) = (1 −
B(x))/mS , x ∈ R+; see [11, Equation (7.19)] for the case of phase-type distributed service
times and [24] for the general case. For the sojourn time V of an arbitrary arriving request with
required service time S, from Little’s law and (1.2), we find that

E V = 1

λ

∞∑
n=1

np(n) = mS

∞∑
n=0

χ(n + 1)p(n). (1.5)

For τ ∈ R+, let V (n, τ) be the sojourn time of a tagged arriving request with required service
time τ (abbreviated to τ -request) finding n requests at its arrival in the system, and let V (τ) be
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the sojourn time of a tagged arriving τ -request. For V (τ), it is stated that

E V (τ) = τ

mS

E V ; (1.6)

cf. [11, Equation (7.27)]. It seems that in the case of the general M/GI/SDPS system, for V

and V (τ), besides (1.5) and (1.6), asymptotic results are known only for heavy-tailed service
times; cf. [12]. However, for special cases, several analytical results and numerical algorithms
are known. We mention only a few references. For the M/GI/1-PS system and special cases,
see, e.g. [10], [13], [18], [21], [22], and [23]. The M/M/2-PS system is treated in [17] and the
M/M/m-PS system is treated in [5]. For the general M/M/SDPS system, see [6].

The aim of this paper is to derive for the M/GI/SDPS system tight insensitive upper bounds
for the moments of V (τ), which generalize corresponding results, recently given for the M/GI/1-
PS system by [9] and for the M/M/SDPS system by the authors [6], as well as expressions for
the Laplace–Stieltjes transforms (LSTs) and moments of V (τ) and V , respectively, which are
useful for deriving explicit and numerically treatable representations in some special cases; see
Example 2.1, below, and, in particular, [8]. The tight insensitive upper bounds for the moments
of V (τ) are summarized in the following theorem, which will be proved in Section 3.

Theorem 1.1. Let the stability condition (1.1) for the M/GI/SDPS system be satisfied. Then,
for k ∈ Z+, the kth moment of V (τ), τ ∈ R+, is finite if

∞∑
n=0

χ(n + 1)kp(n) < ∞. (1.7)

For k ∈ Z+, it holds that

τ k

( ∞∑
n=0

χ(n + 1)p(n)

)k

≤ E[V k(τ)] ≤ τ k
∞∑

n=0

χ(n + 1)kp(n), τ ∈ R+, (1.8)

lim
τ↓0

E[V k(τ)]
τ k

=
∞∑

n=0

χ(n + 1)kp(n). (1.9)

There exists a family of service time distributions Bq(x), q ∈ (0, 1], with the given mean mS

such that, for the sojourn times Vq(τ) of a tagged arriving τ -request in the M/GI/SDPS system
with service time distribution Bq(x), it holds that

lim
q↓0

E[V k
q (τ )] = τ k

∞∑
n=0

χ(n + 1)kp(n), τ ∈ R+, k ∈ Z+. (1.10)

If, in addition, (1.7) is satisfied then it holds that

lim
τ↓0

E[V k(n, τ )]
τ k

= χ(n + 1)k, n ∈ Z+. (1.11)

Remark 1.1. The results of Theorem 1.1 are insensitivity results with respect to the service
time distribution for given mS . Note that in the case in which k = 1, from Cohen’s result
(1.6), we know that (1.8) holds; cf. also the discussion after the proof of Theorem 3.1, below.
In the case in which k > 1 the right-hand side of (1.8) provides an insensitive upper bound
for E[V k(τ)], which is best possible due to (1.10), and, for small positive values of τ , a good
approximation for E[V k(τ)] because of (1.9).
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For the M/M/SDPS system and waiting times, Theorem 1.1 was recently proved in [6]; see
Theorem 2.1 therein. For the M/GI/1-PS system, i.e. for ϕ1(n) = 1/n, n ∈ N, Theorem 1.1 was
proved in [9] (see their Theorems 4.1 and 5.11) using stochastic ordering theory and particular
results known for M/GI/1-PS systems. Analogously to [9] for the M/GI/1-PS system, the
right-hand side of (1.8) can be interpreted as follows. Consider a tagged τ -request finding at its
arrival n requests in the system. If during the service of the τ -request no arrival and no departure
occurs, then V̂ (τ ) = τχ(n + 1) is the sojourn time of the τ -request, and its kth moment is
V̂ k(τ ) = τ kχ(n + 1)k . Thus, if τ is small then V̂ (τ ) = τχ(N(t) + 1) is approximately the
sojourn time of a τ -request, and, therefore, V̂ (τ ) is called in [9] the instantaneous sojourn time as
τ ↓ 0. Note that the right-hand side of (1.8) is just the kth moment of the instantaneous sojourn
time V̂ (τ ), i.e. E[V̂ k(τ )] is for all τ ∈ R+ an upper bound for E[V k(τ)], and, thus, Theorem 1.1
generalizes the result of [9] to the general M/GI/SDPS system. In the case of a stable M/GI/1-PS
system, assumption (1.7) is satisfied for all k ∈ N, in view of p(n) = (1 − �)�n, n ∈ Z+, and
� < 1, and, hence, all moments of V (τ) are finite. However, for a stable M/GI/SDPS system,
(1.7) is not fulfilled in general, e.g. in the case of ϕ(n) := (n + k + 1)/n2, n ∈ N, and � := 1
for k ∈ N.

The paper is organized as follows. In Section 2 we first derive a linear system of partial
differential equations (PDEs) for the LSTs of the sojourn time of a request under the condition
that the residual service times of the other requests in the system are also given. Then we derive
preliminary results (Lemma 2.1), needed later. Although an explicit solution of the PDEs can
be given only for special cases, the LSTs for the sojourn time V (n, τ) of a τ -request, finding n

requests at its arrival in the system, as well as for V (τ) and for V , can be given in terms of the
solution of the PDEs (Theorem 2.1 and Corollary 2.1). In Section 3 we first prove Theorem 1.1
using Hölder’s inequality and the results of Section 2. Furthermore, relations are given for
the moments of sojourn times (Theorem 3.1, Theorem 3.2, and Remark 3.1), which reduce the
numerical complexity of computing sojourn time characteristics in some special cases; see [6]
and [8]. All results proved in the paper have a correspondence to results for waiting times. In
Section 4 we summarize a few of them. Finally, in Section 5 we provide numerical examples
for M/M/m-PS and M/D/m-PS systems illustrating the bounds for the second moment of V (τ)

given in Theorem 1.1.

2. Sojourn times and preliminary results

As mentioned above, we assume in the following that the system is stable, i.e. that (1.1) is
fulfilled, and in the steady state. In particular, mS is finite. Moreover, for technical reasons,
unless stated otherwise, we make the following assumption:

(A1) B(x) has a continuous density and B(x) < 1 for x ∈ R+.

For notational convenience, let b(x) := dB(x)/dx be the density of B(x), and let B̄(x) :=
1 − B(x), B̄R(x) := 1 − BR(x) (cf. (1.4)) and β(x) := b(x)/B̄(x), βR(x) := bR(x)/B̄R(x)

be the complementary distributions and hazard rates of the service time DF and the stationary
residual service time DF, respectively. Furthermore, we will use some vector notation. Unless
stated otherwise, let r := (r1, . . . , r�) ∈ R

�+, where � = m or � = n, respectively, and

	� := {r ∈ R
�+ : 0 < r1 < · · · < r�}. (2.1)

For x, y ∈ R
�, let x ≤ y if and only if xi ≤ yi for i = 1, . . . , �.

Besides the randomly ordered residual service times R∗
1(t), . . . , R∗

N(t)(t), we need to order
the residual service times increasingly. Let 0 ≤ R1(t) ≤ · · · ≤ RN(t)(t) be the residual service
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times of the N(t) requests at time t , ordered increasingly, and let R(t) := (R1(t), . . . , RN(t)(t))

be the corresponding vector. In view of the SDPS discipline, this implies that the requests are
also ordered according to their departure times. For n ∈ N and r ∈ 	n, let

p(n; r) := ∂n

∂r1 · · · ∂rn
P(N(t) = n; R(t) ≤ r)

be the density of R(t) on {N(t) = n}, and on the boundary of 	n let p(n; r) be defined by
continuous continuation. The support of p(n; r) is the closure 	̄n of 	n. Denoting by Sn the
set of all permutations of the set {1, . . . , n}, from (1.3) and (1.4) for n ∈ N and r ∈ 	n, we
obtain

p(n; r) =
∑
π∈Sn

∂n

∂r1 · · · ∂rn
P(N(t) = n; R∗

1(t) ≤ rπ(1), . . . , R
∗
n(t) ≤ rπ(n))

= n! p(n)

n∏
�=1

bR(r�). (2.2)

By continuous continuation, it follows that (2.2) also holds for n ∈ N and r ∈ 	̄n.

2.1. Partial differential equations for LSTs of sojourn times

Let V�(t), � = 1, . . . , N(t), be the sojourn time of the request with residual service time
R�(t) from time t to its departure (finish of service), i.e. its prospective sojourn time from time
t onwards. Since the R�(t) are ordered increasingly, the SDPS discipline implies that the V�(t)

are also ordered increasingly, i.e. 0 ≤ V1(t) ≤ · · · ≤ VN(t)(t). Furthermore, V1(t) = 0 if and
only if R1(t) = 0. In view of (A1) and the distributional and independence assumptions, for
0 < m ≤ n and r ∈ 	̄n, the LSTs

hn,m(s; r) := E[e−sVm(t) | N(t) = n, R(t) = r] (2.3)

of Vm(t) conditioned such that at time t there are n requests in the system with residual service
times R�(t) = r�, � = 1, . . . , n, are well defined for s ∈ R+. Note that, for 0 < m ≤ n and
r ∈ 	̄n, it holds that hn,m(0; r) = 1. In the following let s ∈ R+ be fixed. As the prospective
sojourn time of a request with residual service time zero is zero, from (2.3) we conclude, for
0 < n and r ∈ 	̄n, where r1 = 0, that

hn,1(s; 0, r2, . . . , rn) = 1. (2.4)

Since a request with residual service time zero leaves the system immediately, for 1 < m ≤ n

and r ∈ 	̄n, where r1 = 0, it follows that

hn,m(s; 0, r2, . . . , rn) = hn−1,m−1(s; r2, . . . , rn). (2.5)

Now let 0 < m ≤ n and r ∈ 	n, and consider the time interval [0, h]. In view of r1 > 0,
for sufficiently small h, there will be no departure of any of the n requests which are in the
system at t = 0. If there is a request arrival during [0, h] then there may occur two cases for the
sampled service time τ > 0, which is just its residual service time: τ ∈ (0, rm) or τ ∈ [rm, ∞).
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Taking into account the dynamics of the M/GI/SDPS system during [0, h], we obtain

hn,m(s; r) = (1 − λh) E[e−s(Vm(h)+h) | N(h) = n, R(h) = r − ϕ(n)h 1n]

+ λh

m∑
�=1

∫ r�

r�−1

b(τ) E[e−s(Vm+1(h)+h) | N(h) = n + 1,

R(h) = r(�)(r, τ ) − ϕ(n + 1)h 1n+1] dτ

+ λh

n+1∑
�=m+1

∫ r�

r�−1

b(τ) E[e−s(Vm(h)+h) | N(h) = n + 1,

R(h) = r(�)(r, τ ) − ϕ(n + 1)h 1n+1] dτ + o(h),

where r0 := 0, rn+1 := ∞, 1n := (1, . . . , 1) ∈ R
n, and

r(�)(r, τ ) := (r1, . . . , r�−1, τ, r�, . . . , rn), � = 1, . . . , n + 1,

for r ∈ R
n and τ ∈ R. Subtracting hn,m(s; r − ϕ(n)h 1n) on both sides, dividing by h, and

taking the limit h ↓ 0 provides the following linear system of PDEs for 0 < m ≤ n and r ∈ 	n:

ϕ(n)
∂

∂ξ
hn,m(s; r + ξ 1n)

∣∣∣∣
ξ=0

= −(λ + s)hn,m(s; r) + λ

m∑
�=1

∫ r�

r�−1

b(τ)hn+1,m+1(s; r(�)(r, τ )) dτ

+ λ

n+1∑
�=m+1

∫ r�

r�−1

b(τ)hn+1,m(s; r(�)(r, τ )) dτ. (2.6)

The following observation will be crucial and considerably simplifies the analysis of the model.
In view of the SDPS discipline, for 0 < m ≤ n and r ∈ 	̄n, the conditional sojourn time
Vm(t) given that N(t) = n and R(t) = r depends only on r1, . . . , rm and the total number,
n, of requests in the system, since the requests with residual service times rm+1, . . . , rn have
residual service times of an amount greater than or equal to rm and are thus in the system at
least as long as the request with service time rm. Therefore,

fn,m(s; r1, . . . , rm) := hn,m(s; r1, . . . , rn), 0 < m ≤ n, r ∈ 	̄n, (2.7)

is well defined. From (2.4)–(2.7) we obtain the following linear system of PDEs for 0 < m ≤ n

and r ∈ 	m:

ϕ(n)
∂

∂ξ
fn,m(s; r + ξ 1m)|ξ=0

= −(λ + s)fn,m(s; r) + λ

m∑
�=1

∫ r�

r�−1

b(τ)fn+1,m+1(s; r(�)(r, τ )) dτ

+ λB̄(rm)fn+1,m(s; r) (2.8)

with the initial conditions
fn,1(s; 0) = 1, (2.9)

fn,m(s; 0, r2, . . . , rm) = fn−1,m−1(s; r2, . . . , rm), 1 < m ≤ n, (2.10)
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for 0 ≤ r2 ≤ · · · ≤ rm. In view of hn,m(0; r) = 1 for r ∈ 	̄n, from (2.7) we find that
fn,m(0; r) = 1 for 0 < m ≤ n and r ∈ 	̄m.

It seems that, for general ϕ(n), n ∈ N, there is no explicit solution to (2.8)–(2.10). However,
for ϕ1,k(n) = 1/(n + k), n ∈ N, k ∈ (−1, ∞), a solution can be given by adopting results of
[13] and [22], leading to the well-known results for M/GI/1-PS systems. Note that, for k ∈ Z+,
we have a single-server PS system with k permanent requests.

Example 2.1. Let ϕ1,k(n) = 1/(n + k), n ∈ N, k ∈ (−1, ∞), and s ∈ R+. We try (see [13]
and [20]) the substitution

fn,m(s; r1, . . . , rm) = δ(s, rm)n+k
m−1∏
i=1

1

δ(s, rm − ri)

for 0 < m ≤ n and 0 ≤ r1 ≤ · · · ≤ rm, where δ(s, τ ) is a continuously differentiable function in
τ ∈ R+ with initial condition δ(s, 0) = 1. The substitution satisfies (2.9) and (2.10). Inserting
the substitution into (2.8) and using the fact that ϕ1,k(n) = 1/(n + k), n ∈ N, we find after
some algebra that the linear system of PDEs (2.8) is fulfilled if δ(s, τ ) satisfies the following
differential equation:

0 = ∂δ(s, τ )

∂τ
+

(
s + λ − λ

∫ τ

0

δ(s, τ )

δ(s, τ − y)
b(y) dy − λδ(s, τ )B̄(τ )

)
δ(s, τ )

with initial condition δ(s, 0) = 1, which has a uniquely determined solution; see [20]. The
product form solution for the fn,m(s; r1, . . . , rm), given above, has been proved for M/GI/1-PS
systems for the first time by a decomposition of the sojourn time in [13] and [20], and for the
single-server PS model with permanent requests in [19]. The differential equation for δ(s, τ ),
given above, can be solved explicitly for particular cases. In the general case, the Laplace
transform for e−(s+λ)τ /δ(s, τ ) can be given explicitly; see [13] and [20].

For notational convenience, in the following we suppress the time parameter t for steady
state random variables, i.e. we use Vm, N , and R = (R1, . . . , RN) instead of Vm(t), N(t), and
R(t) = (R1(t), . . . , RN(t)(t)).

In view of (2.2) and (2.3), for 0 < m ≤ n and r ∈ 	n, the LSTs

vn,m(s; r) := ∂n

∂r1 · · · ∂rn
E[e−sVm1{N = n, R ≤ r}] (2.11)

of Vm on {N = n, R1 ∈ dr1, . . . , Rn ∈ drn} are well defined for s ∈ R+, where 1{·} denotes
the indicator function, and in view of (2.2) and (2.7) are given by

vn,m(s; r) = un,m(s; r1, . . . , rm)

n∏
�=m+1

bR(r�), (2.12)

where

un,m(s; r1, . . . , rm) := n! p(n)

( m∏
�=1

bR(r�)

)
fn,m(s; r1, . . . , rm). (2.13)

For 0 < m ≤ n, let un,m(s; r) and, hence, vn,m(s; r) be defined on the boundary of 	n by
continuous continuation. Note that, for 0 < m ≤ n and r ∈ 	n, from (2.11)–(2.13), it follows
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that

un,m(s; r1, . . . , rm)

= ∂m

∂r1 · · · ∂rm
E[e−sVm1{N = n, R1 ≤ r1, . . . , Rm ≤ rm} | Rm+1 = rm+1, . . . , Rn = rn],

(2.14)

and, thus, the conditional LST on the right-hand side of (2.14) is independent of rm+1, . . . , rn.
From fn,m(0; r) = 1 and (2.13), we obtain the boundary condition

un,m(0; r) = n! p(n)

m∏
�=1

bR(r�), 0 < m ≤ n, r ∈ 	̄m. (2.15)

In the following let s ∈ R+ be fixed. Taking the derivative of un,m(s; r + ξ 1m) with respect
to ξ and taking into account (2.13), (1.2) and (1.4), we find after some algebra that (2.8) is
equivalent to the following linear system of PDEs for 0 < m ≤ n and r ∈ 	m:

ϕ(n)
∂

∂ξ
un,m(s; r + ξ 1m)

∣∣∣∣
ξ=0

= −(λ + s + ϕ(n)β(r))un,m(s; r)

+ ϕ(n + 1)

m∑
�=1

∫ r�

r�−1

β(τ)un+1,m+1(s; r(�)(r, τ )) dτ

+ ϕ(n + 1)bR(rm)un+1,m(s; r), (2.16)

where β(r) := ∑m
�=1 β(r�). In view of (2.13), (1.2), and bR(0) = 1/mS , the initial conditions

(2.9) and (2.10) yield the initial conditions

un,1(s; 0) = n! p(n)m−1
S , (2.17)

un,m(s; 0, r2, . . . , rm) = λ

ϕ(n)
un−1,m−1(s; r2, . . . , rm) (2.18)

for 1 < m ≤ n and 0 ≤ r2 ≤ · · · ≤ rm.

2.2. Preliminary results

For deriving later expressions for the LSTs of V (n, τ) and V (τ), we consider the LSTs

gn,m(s, x) := ∂

∂x
E[e−sVm1{N = n, Rm ≤ x}] (2.19)

for x, s ∈ R+ and 0 < m ≤ n. From (2.12) and bR(x) = B̄(x)/mS , by integrating vn,m(s; r)

over 0 ≤ r1 ≤ · · · ≤ rm−1 ≤ x ≤ rm+1 ≤ · · · ≤ rn with respect to dr1 · · · drm−1drm+1 · · · drn
we obtain

gn,m(s, x) = ḡn,m(s, x)dn−m(x), (2.20)

where

ḡn,m(s, x) :=
∫

0≤r1≤···≤rm−1≤x

un,m(s; r1, . . . , rm−1, x)dr1 · · · drm−1, (2.21)

d�(x) := 1

�!
(∫ ∞

x

bR(η) dη

)�

= 1

�! B̄R(x)�. (2.22)
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Note that in the case in which n = m = 1 the right-hand side of (2.19) is just v1,1(s; x), and
in the case in which 1 = m ≤ n the right-hand side of (2.21) is just un,1(s; x). From (2.21),
(2.15), (2.17), we find for 0 < m ≤ n that

ḡn,m(0, x) = n! p(n)bR(x)
1

(m − 1)!BR(x)m−1, x ∈ R+, (2.23)

ḡn,m(s, 0) = 1{m = 1}n! p(n)m−1
S , s ∈ R+, (2.24)

and, thus, from (2.20) and (2.22), we find, for 0 < m ≤ n, the boundary condition

gn,m(s, 0) = 1{m = 1}np(n)m−1
S , s ∈ R+.

Because of (2.20), (2.22), and (2.23), we obtain, for 0 < m ≤ n and x ∈ R+,

g(0)
n,m(x) := gn,m(0, x) (2.25)

= np(n)bR(x)

(
n − 1

m − 1

)
BR(x)m−1B̄R(x)n−m, (2.26)

and, thus, taking into account (1.2) and (1.4), it follows that

n∑
m=1

g(0)
n,m(x) = np(n)bR(x) = λB̄(x)

ϕ(n)
p(n − 1). (2.27)

For deriving later expressions and estimates for the moments of V (n, τ) and V (τ), we need
some preliminary results for gn,m(s, x) and its derivatives with respect to s. For s ∈ (0, ∞),
0 < m ≤ n, x ∈ R+, and k ∈ Z+, let

g(k)
n,m(s, x) := (−1)k

∂k

∂sk
gn,m(s, x) (2.28)

= ∂

∂x
E[V k

me−sVm1{N = n, Rm ≤ x}], (2.29)

where the last equality follows in view of (2.19). Note that

g(k)
n,m(s, x) = lim

h↓0
E[V k

me−sVm1{N = n, x < Rm ≤ x + h}]/h ≥ 0.

From (2.20) and (2.24), we find that

g(k)
n,m(s, 0) = 0, k ∈ N.

Taking into account vke−sv ≤ k! s−k for v ∈ R+, from (2.29) and (2.25), we obtain, for
s ∈ (0, ∞) and x ∈ R+,

g(k)
n,m(s, x) ≤ k! s−kg(0)

n,m(x), 0 < m ≤ n, k ∈ Z+. (2.30)

Lemma 2.1. Let E N < ∞. For s ∈ (0, ∞) and k ∈ Z+, it holds that

∑
0<m≤n

ϕ(n)
∂

∂x
g(k)

n,m(s, x) = −
∑

0<m≤n

(ϕ(n)β(x)+s)g(k)
n,m(s, x)+k

∑
0<m≤n

g(k−1)
n,m (s, x). (2.31)
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Proof. First we will prove (2.31) for k = 0. Let s ∈ [0, ∞) be fixed. Replacing the
variables ri in (2.16) by ri +η for i = 1, . . . , m in the arguments, integrating over [−r1, 0] with
respect to η, and applying (2.17) and (2.18), we find that the system of PDEs (2.16) with initial
conditions (2.17) and (2.18) is equivalent to the following linear system of integral equations
for 0 < m ≤ n and r ∈ 	̄m:

ϕ(n)un,m(s; r) = 1{m = 1}ϕ(n)n! p(n)m−1
S + 1{m > 1}λun−1,m−1(s; r2 − r1, . . . , rm − r1)

−
∫ 0

−r1

(λ + s + ϕ(n)β(r + η 1m))un,m(s; r + η 1m) dη

+ ϕ(n + 1)

×
m∑

�=1

∫ 0

−r1

∫ r�

r�−1

β(τ + η)un+1,m+1(s; r(�)(r + η 1m, τ + η)) dτ dη

+ ϕ(n + 1)

∫ 0

−r1

bR(rm + η)un+1,m(s; r + η 1m) dη. (2.32)

Integrating both sides of (2.32) over 0 ≤ r1 ≤ · · · ≤ rm−1 ≤ x with respect to dr1 · · · drm−1
for fixed x = rm, using Fubini’s theorem, and taking into account (2.21), we obtain after some
algebra, for 0 < m ≤ n and x ∈ R+,

ϕ(n)ḡn,m(s, x) = 1{m = 1}ϕ(n)n! p(n)m−1
S

+ 1{m > 1}λ
∫ x

0
ḡn−1,m−1(s, η) dη − (λ + s)

∫ x

0
ḡn,m(s, η) dη

− ϕ(n)

m−1∑
�=1

∫ x

0
Jn,m,�(s, η) dη − ϕ(n)

∫ x

0
β(η)ḡn,m(s, η) dη

+ ϕ(n + 1)

m∑
�=1

∫ x

0
Jn+1,m+1,�(s, η) dη

+ ϕ(n + 1)

∫ x

0
bR(η)ḡn+1,m(s, η) dη, (2.33)

where

Jn,m,�(s, x) :=
∫

0≤r1≤···≤rm−1≤x

β(r�)un,m(s; r1, . . . , rm−1, x) dr1 · · · drm−1 (2.34)

for 0 < � < m ≤ n and x ∈ R+. In view of dd�(x)/dx = −bR(x)d�−1(x) for � ∈ N (see
(2.22) and (1.4)), from (2.33) and (2.20), after some algebra, we find the following system of
differential equations for the gn,m(s, x), 0 < m ≤ n and x ∈ R+:

ϕ(n)
∂

∂x
gn,m(s, x)

= 1{m > 1}λgn−1,m−1(s, x) − (λ + s + ϕ(n)β(x) + ϕ(n)(n − m)βR(x))gn,m(s, x)

− ϕ(n)

m−1∑
�=1

Jn,m,�(s, x)dn−m(x) + ϕ(n + 1)

m∑
�=1

Jn+1,m+1,�(s, x)dn−m(x)

+ ϕ(n + 1)(n + 1 − m)βR(x)gn+1,m(s, x). (2.35)
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Now let x∗ ∈ R+ be arbitrary but fixed, and let

β∗ := sup{β(x) : 0 ≤ x ≤ x∗},
which is finite in view of (A1). Then, from (2.34) and (2.20), we find that, for 0 < � < m ≤ n

and 0 ≤ x ≤ x∗, it holds

Jn,m,�(s, x)dn−m(x) ≤ β∗gn,m(s, x). (2.36)

Because of (2.30) for k = 0, (2.27), (2.36), and E N < ∞, summing (2.35) over 0 < m ≤
n ≤ n′, taking the limit n′ → ∞, we find after some algebra that most of the summands cancel
each other, and we obtain (2.31) for x ∈ [0, x∗]. Since x∗ was chosen arbitrarily, (2.31) is valid
for x ∈ R+, completing the proof for k = 0.

To prove (2.31) for k ∈ N, we start with (2.31) for k = 0. In view of |gn,m(s, x)| ≤ gn,m(0, x)

for Re(s) ≥ 0, we may take the kth derivative on both sides of (2.31) with respect to s for
Re(s) > 0 item by item due to Weierstrass’s theorem (see [1]), which provides (2.31) for
s ∈ (0, ∞) and k ∈ N.

2.3. LSTs of sojourn times

Consider the M/GI/SDPS system in steady state.

Theorem 2.1. For the M/GI/SDPS system, let the stability condition (1.1) and (A1) be satisfied.
Then, for s ∈ R+ and τ ∈ R+, the LSTs of V (n, τ), n ∈ Z+, and V (τ) are given by

E[e−sV (n,τ )] = ϕ(n + 1)

λ(τ )p(n)

n+1∑
m=1

gn+1,m(s, τ ), (2.37)

E[e−sV (τ)] = 1

λ(τ)

∞∑
n=1

ϕ(n)

n∑
m=1

gn,m(s, τ ), (2.38)

respectively, where
λ(x) := λB̄(x), x ∈ R+, (2.39)

and the gn,m(s, x), 0 < m ≤ n, x ∈ R+, are given by (2.20)–(2.22).

Proof. Consider a tagged arriving τ -request finding n requests at its arrival. From the PASTA
property and conditioning with respect to the vector R = r ∈ 	̄n of residual service times, we
obtain, from (2.2), (2.3), (2.7), and (2.13),

E[e−sV (n,τ )]

= 1

p(n)

n+1∑
m=1

∫
0≤r1≤···≤rm−1≤τ≤rm≤···≤rn

p(n; r)hn+1,m(s; r(m)(r, τ )) dr1 · · · drn

= 1

(n + 1)p(n + 1)bR(τ)

n+1∑
m=1

∫
0≤r1≤···≤rm−1≤τ

un+1,m(s; r1, . . . , rm−1, τ ) dr1 · · · drm−1

×
∫

τ≤rm≤···≤rn

n∏
�=m

bR(r�) drm · · · drn. (2.40)
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From (2.40), assertion (2.37) follows easily in view of bR(τ) = B̄(τ )/mS , (1.2), (2.39),
integration with respect to drm · · · drn, and (2.20)–(2.22). Assertion (2.38) follows directly
from (2.37) and

E[e−sV (τ)] =
∞∑

n=0

p(n) E[e−sV (n,τ )].

From (2.38), (2.39), β(τ) = b(τ)/B̄(τ ), and

E[e−sV ] =
∫

R+
E[e−sV (τ)]b(τ) dτ,

we immediately obtain the following representation for the LST of V .

Corollary 2.1. Let the stability condition (1.1) for the M/GI/SDPS system with (A1) be satisfied.
Then, for s ∈ R+, the LST of V is given by

E[e−sV ] = 1

λ

∞∑
n=1

ϕ(n)

n∑
m=1

∫
R+

β(τ)gn,m(s, τ ) dτ.

Remark 2.1. Note that Theorem 2.1 and Example 2.1 provide an approach to the LSTs of
V (n, τ), n ∈ Z+, and V (τ) for the M/GI/1-PS system with k ∈ (−1, ∞) permanent requests;
see [15] for an analogous approach for the M/GI/1-PS system.

3. On the moments of V (τ)

First we prove Theorem 1.1. Then we will derive useful expressions; see Remark 3.1, below,
for the moments of V (τ) and V , respectively.

Proof of Theorem 1.1. The lower bound in (1.8) follows directly from (1.6), (1.5), and
Hölder’s inequality. To prove the other assertions, we first assume in steps (i)–(v) of the
proof below that B(x) satisfies (A1), i.e. B(x) has a continuous density and B(x) < 1 for
x ∈ R+.

(i) For s ∈ (0, ∞) and k ∈ Z+, from Theorem 2.1 and (2.28), we obtain

λ(x) E[V k(x)e−sV (x)] =
∑

0<m≤n

ϕ(n)g(k)
n,m(s, x), x ∈ R+. (3.1)

In view of (2.29), for k ∈ N, applying Hölder’s inequality to the difference quotient

E[V k
me−sVm1{N = n, x < Rm ≤ x + h}]/h

and taking the limit h ↓ 0 we find that

g(k)
n,m(s, x) ≤

(
∂

∂x
E[e−sVm1{N = n, Rm ≤ x}]

)1/(k+1)

×
(

∂

∂x
E[V k+1

m e−sVm1{N = n, Rm ≤ x}]
)k/(k+1)

≤ (g(0)
n,m(x))1/(k+1)(g(k+1)

n,m (s, x))k/(k+1),
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where the last inequality follows from (2.29) and (2.30) for k = 0. Using the above inequality,
applying Hölder’s inequality to the series and taking into account (2.27), (3.1) provides

1

λ(x)

∑
0<m≤n

g(k)
n,m(s, x)

≤
∑

0<m≤n

(
χ(n)k+1 ϕ(n)

λ(x)
g(0)

n,m(x)

)1/(k+1)(
ϕ(n)

λ(x)
g(k+1)

n,m (s, x)

)k/(k+1)

≤
( ∑

0<m≤n

χ(n)k+1 ϕ(n)

λ(x)
g(0)

n,m(x)

)1/(k+1)( ∑
0<m≤n

ϕ(n)

λ(x)
g(k+1)

n,m (s, x)

)k/(k+1)

=
( ∞∑

n=0

χ(n + 1)k+1p(n)

)1/(k+1)

(E[V k+1(x)e−sV (x)])k/(k+1). (3.2)

Taking the derivative on both sides of (3.1) with respect to x, taking into account λ(x) = λB̄(x),
applying Lemma 2.1, β(x) = b(x)/B̄(x), and again (3.1), we obtain, for s ∈ (0, ∞) and
k ∈ N,

λ(x)
∂

∂x
E[V k(x)e−sV (x)] =

∑
0<m≤n

(kg(k−1)
n,m (s, x) − sg(k)

n,m(s, x)), x ∈ R+. (3.3)

In view of g
(k)
n,m(s, x) ≥ 0, in the case in which k > 1, (3.3) and (3.2), where k is replaced by

k − 1 in (3.2), imply that

∂

∂x
E[V k(x)e−sV (x)] ≤ k

( ∞∑
n=0

χ(n + 1)kp(n)

)1/k

(E[V k(x)e−sV (x)])(k−1)/k, (3.4)

which is equivalent to

∂

∂x
(E[V k(x)e−sV (x)])1/k ≤

( ∞∑
n=0

χ(n + 1)kp(n)

)1/k

. (3.5)

Note that (3.5) is also valid for k = 1, in view of (3.3), (2.30), (2.27), and (2.39). For k ∈ N,
because of E[V k(0)e−sV (0)] = 0, integrating (3.5) over [0, τ ] and taking the kth power yields

E[V k(τ)e−sV (τ)] ≤ τ k
∞∑

n=0

χ(n + 1)kp(n), τ ∈ R+. (3.6)

The limit s ↓ 0 provides the upper bound in (1.8). Thus, (1.7) implies that E[V k(τ)] is finite
for τ ∈ R+.

(ii) To prove (1.9), we derive a lower bound for E[V k(n, τ )]. Let

u(k)
n,m(s; r) := (−1)k

∂k

∂sk
un,m(s; r) (3.7)

for s ∈ (0, ∞), 0 < m ≤ n, r ∈ 	̄m, and k ∈ Z+. Since 0 ≤ vke−sv ≤ k! s−k for v ∈ R+,
from (2.14) and (2.15), we obtain

0 ≤ u(k)
n,m(s; r) ≤ k! s−kun,m(0; r) = k! s−kn! p(n)

m∏
�=1

bR(r�). (3.8)
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Furthermore, from (2.17) and (2.18), we find that

u
(k)
n,1(s; 0) = 1{k = 0}n! p(n)m−1

S ,

u(k)
n,m(s; 0, r2, . . . , rm) = λ

ϕ(n)
u

(k)
n−1,m−1(s; r2, . . . , rm) (3.9)

for 1 < m ≤ n and 0 ≤ r2 ≤ · · · ≤ rm. Taking the kth derivative on both sides of (2.16)
with respect to s, multiplying the resulting equation by (−1)k , replacing the ri variables by
ri + η, i = 1, . . . , m, multiplying both sides by

Cn(r; η) := exp

(∫ η

0
cn(r + ξ 1m) dξ

)
,

where

cn(r) := λ + s

ϕ(n)
+ β(r), r ∈ 	̄m,

integrating over [−r1, 0] with respect to η, applying partial integration to the resulting left-
hand side, and applying (3.9), we obtain the following linear system of integral equations for
0 < m ≤ n, r ∈ 	̄m, s ∈ (0, ∞), and k ∈ N:

ϕ(n)u(k)
n,m(s; r)

= 1{m > 1}λu
(k)
n−1,m−1(s; r2 − r1, . . . , rm − r1)Cn(r; −r1)

+
∫ 0

−r1

(
ϕ(n + 1)

( m∑
�=1

∫ r�

r�−1

β(τ + η)u
(k)
n+1,m+1(s; r(�)(r + η 1m, τ + η)) dτ

+ bR(rm + η)u
(k)
n+1,m(s; r + η 1m)

)
+ ku(k−1)

n,m (s; r + η 1m)

)

× Cn(r; η) dη. (3.10)

For s ↓ 0, from (3.10) and (3.8), we find that, for

u(k)
n,m(r) := lim

s↓0
u(k)

n,m(s; r), 0 < m ≤ n, r ∈ 	̄m, k ∈ N, (3.11)

it holds that

ϕ(n)u(k)
n,m(r) ≥ k

∫ 0

−r1

u(k−1)
n,m (r + η 1m)Cn(r; η) dη. (3.12)

For 0 < m ≤ n and k ∈ N, let

ḡ(k)
n,m(x) :=

∫
0≤r1≤···≤rm−1≤x

u(k)
n,m(r1, . . . , rm−1, x) dr1 · · · drm−1

= (−1)k lim
s↓0

∂k

∂sk
ḡn,m(s, x); (3.13)

cf. (2.21), (3.7), and (3.11). Now let x∗ ∈ R+ be arbitrary but fixed, let

β∗ := sup{β(x) : 0 ≤ x ≤ x∗},
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and let

an(x) := exp

(
−

(
λ

ϕ(n)
+ nβ∗

)
x

)
, x ∈ R+. (3.14)

Integrating (3.12) over 0 ≤ r1 ≤ · · · ≤ rm−1 ≤ x with respect to dr1 · · · drm−1, taking into
account

Cn(r; −η) ≥ an(x), 0 ≤ η ≤ r1 ≤ · · · ≤ rm−1 ≤ rm = x ≤ x∗,

and using Fubini’s theorem, for 0 < m ≤ n and k ∈ N, we obtain

ϕ(n)ḡ(k)
n,m(x) ≥ kan(x)

∫ x

0
ḡ(k−1)

n,m (η) dη, 0 ≤ x ≤ x∗. (3.15)

(iii) For 0 < m ≤ n, k ∈ Z+, and x ∈ R+, let

g(k)
n,m(x) := lim

s↓0
g(k)

n,m(s, x) = ∂

∂x
E[V k

m1{N = n, Rm ≤ x}]; (3.16)

cf. (2.25), (2.28), and (2.29). Note that, from (2.20), (2.28), (3.13), and (3.16), it follows that

g(k)
n,m(x) = ḡ(k)

n,m(x)dn−m(x). (3.17)

(iv) Now we will show by induction that, for k ∈ Z+, n ∈ N, and x ∈ [0, x∗], it holds that

ϕ(n)

n∑
m=1

g(k)
n,m(x) ≥ λ(x)xkp(n − 1)

(
an(x)B̄R(x)n−1

ϕ(n)

)k

. (3.18)

For k = 0, assertion (3.18) follows directly from (2.27) and (2.39). Assume that (3.18) is true
for k ∈ Z+. For k + 1, by using (3.17), (3.15), and (2.22), the induction assumption for k, and
by taking into account the facts that B̄R(η), an(η), and λ(η) are decreasing in η, B̄R(η) ≤ 1,
and B̄R(0) = 1, we find that

ϕ(n)

n∑
m=1

g(k+1)
n,m (x)

≥ (k + 1)an(x)

n∑
m=1

∫ x

0
ḡ(k)

n,m(η)dn−m(x) dη

≥ (k + 1)an(x)

∫ x

0

n∑
m=1

ḡ(k)
n,m(η)dn−m(η)B̄R(x)n−m dη

≥ (k + 1)an(x)B̄R(x)n−1
∫ x

0

1

ϕ(n)
λ(η)ηkp(n − 1)

(
an(η)B̄R(η)n−1

ϕ(n)

)k

dη

≥ λ(x)xk+1p(n − 1)

(
an(x)B̄R(x)n−1

ϕ(n)

)k+1

,

completing the induction step, i.e. (3.18) is proved.
(v) From Theorem 2.1, (2.28), (3.16), and (3.18), we obtain, for k ∈ N,

E[V k(n, τ )] ≥ τ k

(
an+1(τ )B̄R(τ )n

ϕ(n + 1)

)k

, τ ∈ R+, n ∈ Z+. (3.19)
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In view of limτ↓0 an+1(τ ) = limτ↓0 B̄R(τ ) = 1, cf. (3.14), we find that

lim inf
τ↓0

E[V k(n, τ )]
τ k

≥ χ(n + 1)k, n ∈ Z+. (3.20)

Multiplying both sides of (3.19) by p(n), summing up over n ∈ Z+, and taking into account
(1.8), we obtain (1.9). For fixed n ∈ Z+, from (3.20) and (1.9), it follows that

lim sup
τ↓0

E[V k(n, τ )]
τ k

p(n) +
∑

j∈Z+\{n}
χ(j + 1)kp(j)

≤ lim sup
τ↓0

E[V k(n, τ )]
τ k

p(n) +
∑

j∈Z+\{n}
lim inf

τ↓0

E[V k(j, τ )]
τ k

p(j)

≤ lim sup
τ↓0

∑
j∈Z+

E[V k(j, τ )]
τ k

p(j)

= lim sup
τ↓0

E[V k(τ)]
τ k

=
∑
j∈Z+

χ(j + 1)kp(j),

which provides (1.11) in view of (3.20) if (1.7) is fulfilled.
(vi) The case of a general DF B(x) with finite mean mS is obtained by taking the limit in

distribution of a sequence of service time distributions Bν(x), ν = 1, 2, . . . , where the Bν(x)

have the given mean mS , fulfill (A1), and converge weakly to B(x). Since the assertions hold
for the Bν(x), by arguments of continuity we obtain the assertions for B(x) in view of (1.1)
and (1.2).

(vii) For fixed q ∈ (0, 1], let the service time DF be given by

Bq(x) := (1 − q)1{x ≥ 0} + q1

{
x ≥ mS

q

}
, x ∈ R+. (3.21)

Obviously, the mean service time is mS . Note that, under the SDPS discipline, the sojourn
times of the zero service time requests are zero and they do not have any impact on the system
dynamics. Thus, the dynamics of this M/GI/SDPS system correspond to those of an M/D/SDPS
system with arrival rate λq := qλ and deterministic service times mS/q. Therefore, the
sojourn time Vq(τ) of an arriving tagged τ -request in this M/GI/SDPS system equals the
sojourn time of an arriving tagged τ -request in the M/D/SDPS system with arrival rate λq

and deterministic service times mS/q in distribution. Time scaling shows that Vq(τ) equals
V (qτ)/q in distribution, where V (τ) denotes the sojourn time of an arriving tagged τ -request
in the M/D/SDPS system with given arrival rate λ and deterministic service times mS . Thus,
from (1.9), for any k ∈ Z+ and any τ ∈ (0, ∞), it follows that

lim
q↓0

E[V k
q (τ )]
τ k

= lim
qτ↓0

E[V k(qτ)]
(qτ)k

=
∞∑

n=0

χ(n + 1)kp(n),

which provides (1.10).
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Next we will derive expressions for the moments of V (τ) and V , respectively, which are
useful in some applications; see Remark 3.1, below.

Theorem 3.1. For the M/GI/SDPS system, let the stability condition (1.1) and (A1) be satisfied,
and let k ∈ N such that (1.7) is fulfilled. Then the kth moment of V (τ) is finite, and it holds
that

E[V k(τ)] = k

∞∑
n=1

n∑
m=1

∫ τ

0

g
(k−1)
n,m (x)

λ(x)
dx, τ ∈ R+, (3.22)

where the g
(k−1)
n,m (x) are given by (2.26), (2.28), and (3.16).

Proof. In the case in which k > 1, (3.2), with k replaced by k −1, (3.6), and taking the limit
s ↓ 0 yield

1

λ(x)

∑
0<m≤n

g(k−1)
n,m (x) ≤ xk−1

∞∑
n=0

χ(n + 1)kp(n), x > 0. (3.23)

Note that (3.23) also holds for k = 1, in view of (2.27). Taking into account xe−x ≤ 1 for
x ∈ R+, from (2.29) we find that

sg(k)
n,m(s, x) = lim

h↓0
E[V k−1

m (sVme−sVm)1{N = n, x < Rm ≤ x + h}]/h

≤ g(k−1)
n,m (x).

Moreover, from (2.38) and (1.8) we obtain

ϕ(n)g(k)
n,m(s, x) ≤ λ(x) E[V k(x)] ≤ λ(x)xk

∞∑
n=0

χ(n + 1)kp(n),

which implies that lims↓0 sg
(k)
n,m(s, x) = 0. Due to (3.23) and Lebesgue’s theorem, it follows

that

lim
s↓0

1

λ(x)

∑
0<m≤n

sg(k)
n,m(s, x) = 0, x > 0. (3.24)

Because of (3.23) and (3.24), taking the limit s ↓ 0 in (3.3) provides

d

dx
E[V k(x)] = k

λ(x)

∞∑
n=1

n∑
m=1

g(k−1)
n,m (x), x > 0.

In view of E[V k(0)] = 0, integrating over [0, τ ] yields (3.22).

Note that, because of (2.27), for k = 1, from (3.22), it follows that

E[V (τ)] = τ

∞∑
n=0

χ(n + 1)p(n), τ ∈ R+,

which corresponds to Cohen’s general result (1.6); cf. (1.5). From (3.22) and

E[V k] =
∫ ∞

0
E[V k(τ)]b(τ) dτ,

via Fubini’s theorem and Theorem 1.1 we obtain the following results for the unconditional
sojourn time V .
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Theorem 3.2. For the M/GI/SDPS system, let the stability condition (1.1) and (A1) be satisfied,
and let k ∈ N such that (1.7) is fulfilled and E[Sk] < ∞. Then the kth moment of V is finite,
and it holds that

E[V k] = k

λ

∞∑
n=1

n∑
m=1

∫ ∞

0
g(k−1)

n,m (x) dx, (3.25)

where the g
(k−1)
n,m (x) are given by (2.26), (2.28), and (3.16).

Remark 3.1. Equations (3.22) and (3.25) are useful for a numerical computation of sojourn
time characteristics for particular M/GI/SDPS systems, because they allow for a reduction in
the numerical complexity (from k to k − 1); see [6] for the M/M/SDPS system and [8] for the
M/D/SDPS system.

4. Waiting times

The waiting time in an M/GI/SDPS system is defined as the difference between the sojourn
and required service times of a request; see [22, p. 107]. Let

W := V − S and W(τ) := V (τ) − τ

be the waiting time of an arbitrary arriving request and an arriving τ -request, respectively.
In order to ensure that the waiting times are nonnegative, we assume in the following that
0 < ϕ(n) ≤ 1, n ∈ N, and that there exists an n ∈ N such that ϕ(n) < 1. (In the case in
which ϕ(n) = 1, n ∈ N, the system corresponds to an M/GI/∞ system, where no waiting
occurs.) We immediately have E W = E V − E S, var(W(τ)) = var(V (τ)), and, from (1.6),
E W(τ) = (τ/ E S) E W . For the variances var(V ) and var(W) or, equivalently, for the squared
coefficients of variation

c2
V := var(V )

(E V )2 and c2
W := var(W)

(E W)2 ,

it holds that

(E V )2(c2
V − c2

S) = (E W)2(c2
W − c2

S) =
∫

R+
var(W(τ)) dB(τ) ≥ 0 (4.1)

(cf. [6, Equation (4.4)]), which implies that

var(V ) = var(W) + var(S) + 2c2
S E W E S. (4.2)

(For a random variable X, c2
X := var(X)/(E X)2 denotes the squared coefficient of variation.)

Note that, owing to the SDPS discipline, waiting and service times are not independent, in
contrast to the FCFS discipline; see (4.2). Moreover, from (4.1), it follows that c2

S ≤ c2
V ≤ c2

W .
Note that in (4.1) the sojourn and waiting times occur symmetrically, reflecting the fact that
results for sojourn times have a correspondence to results for waiting times, and vice versa.
Below we shortly summarize some corresponding results for waiting times in an M/GI/SDPS
system. The proofs are analogous to the arguments given in Sections 2 and 3, where we only
have to take into account the fact that the waiting time increases by (1 − ϕ(n))h during an
interval [0, h] if n requests are in the system and if there is no arrival and no departure. Thus,
in the corresponding equation leading to (2.6), the term e−s(Vm(h)+h) has to be replaced by
e−s(Wm(h)+(1−ϕ(n))h), and in (2.6) the term λ + s has to be replaced by λ + s(1 − ϕ(n)).

By paralleling the proof of Theorem 1.1, we obtain the following theorem.
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Theorem 4.1. Let the stability condition (1.1) for the M/GI/SDPS system be satisfied. Then,
for k ∈ Z+, the kth moment of W(τ), τ ∈ R+, is finite if

∞∑
n=0

(χ(n + 1) − 1)kp(n) < ∞. (4.3)

For k ∈ Z+, it holds that

τ k

( ∞∑
n=0

(χ(n + 1) − 1)p(n)

)k

≤ E[Wk(τ)] ≤ τ k
∞∑

n=0

(χ(n + 1) − 1)kp(n), τ ∈ R+,

lim
τ↓0

E[Wk(τ)]
τ k

=
∞∑

n=0

(χ(n + 1) − 1)kp(n).

There exists a family of service time distributions Bq(x), q ∈ (0, 1], with given mean mS such
that, for the waiting times Wq(τ) of a tagged arriving τ -request in the M/GI/SDPS system with
service time distribution Bq(x), it holds that

lim
q↓0

E[Wk
q (τ)] = τ k

∞∑
n=0

(χ(n + 1) − 1)kp(n), τ ∈ R+, k ∈ Z+.

If, in addition, (4.3) is satisfied then it holds that

lim
τ↓0

E[Wk(n, τ)]
τ k

= (χ(n + 1) − 1)k, n ∈ Z+.

5. Numerical examples

In terms of the squared coefficient of variation, the lower and upper bounds for E[V 2(τ )]
given in (1.8) are equivalent to

0 ≤ c2
V (τ) ≤ c2

χ(N+1), τ ∈ (0, ∞), (5.1)

as we have equality in (1.8) for k = 1. Furthermore, for k = 2, (1.9) is equivalent to

lim
τ↓0

c2
V (τ) = c2

χ(N+1). (5.2)

In Tables 1 and 2 an m-server system under processor sharing is considered, i.e. ϕ(n) =
min(m/n, 1), n ∈ N, where the service times are exponential in Table 1 and deterministic
in Table 2. In Table 1, c2

V (τ) and the upper bound c2
χ(N+1) in the M/M/m-PS system for

m = 1, 2, 4, 8 are given. Note that E[V 2(τ )] has been computed for m 	= 1 by means of
the algorithm given in [6, Equations (2.24), (2.26)–(2.28)] for M/M/SDPS systems, based on
numerically solving an infinite linear system of ordinary differential equations with constant
coefficients. In Table 2, c2

V (τ) and the insensitive upper bound c2
χ(N+1) in the M/D/m-PS system

for m = 1, 2 are given, where c2
V (τ) has been computed for the M/D/1-PS system via

c2
V (τ) = 1 − 2(1 − �)

eξ − 1 − ξ

ξ2

∣∣∣∣
ξ=λτ

, τ ∈ (0, mS], (5.3)
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Table 1: The squared coefficient of variation of V (τ) in the M/M/m-PS system and its insensitive upper
bound for m = 1, 2, 4, 8.

c2
V (τ)

�/m m c2
χ(N+1)

τ/mS = 0.01 τ/mS = 0.1 τ/mS = 1 τ/mS = 10

0.20 1 0.199 468 0.194 772 0.155 831 0.043 752 0.200 000
0.50 1 0.499 168 0.491 770 0.426 123 0.160 270 0.500 000
0.80 1 0.799 467 0.794 693 0.749 230 0.454 134 0.800 000
0.95 1 0.949 842 0.948 419 0.934 363 0.809 633 0.950 000
0.20 2 0.027 085 0.026 090 0.018 864 0.004 401 0.027 200
0.50 2 0.218 282 0.214 157 0.179 580 0.060 706 0.218 750
0.80 2 0.626 740 0.622 622 0.583 827 0.341 777 0.627 200
0.95 2 0.901 218 0.899 834 0.886 176 0.765 378 0.901 372
0.20 4 0.001 099 0.001 029 0.000 621 0.000 113 0.001 107
0.50 4 0.048 647 0.047 327 0.037 349 0.010 697 0.048 800
0.80 4 0.367 796 0.364 898 0.338 256 0.184 834 0.368 122
0.95 4 0.792 035 0.790 747 0.778 059 0.666 827 0.792 178
0.20 8 0.000 008 0.000 007 0.000 003 0.000 000 0.000 008
0.50 8 0.005 137 0.004 915 0.003 479 0.000 795 0.005 164
0.80 8 0.144 923 0.143 407 0.130 066 0.063 173 0.145 096
0.95 8 0.602 936 0.601 836 0.591 056 0.498 428 0.603 059

Table 2: The squared coefficient of variation of V (τ) in the M/D/m-PS system and its insensitive upper
bound for m = 1, 2.

c2
V (τ)

�/m m c2
χ(N+1)

τ/mS = 0.01 τ/mS = 0.1 τ/mS = 1

0.20 1 0.199 466 0.194 640 0.143 890 0.200 000
0.50 1 0.499 166 0.491 561 0.405 115 0.500 000
0.80 1 0.799 466 0.794 558 0.734 037 0.800 000
0.95 1 0.949 841 0.948 378 0.929 561 0.950 000
0.20 2 0.027 085 0.026 063 0.017 136 0.027 200
0.50 2 0.218 281 0.214 042 0.169 378 0.218 750
0.80 2 0.626 738 0.622 506 0.571 023 0.627 200
0.95 2 0.901 218 0.899 795 0.881 514 0.901 372

which can be obtained from [15, Section 5], and, for the M/D/2-PS system via

c2
V (τ) = �

2
−

(
1 + �

2

)(
1 − �

2

)
eξ − 1 − ξ

ξ2

+ 1

18

(
1 + �

2

)(
1 − �

2

)3
(12ξ − 10)eξ + 9 + e−2ξ

ξ2

∣∣∣∣
ξ=λτ/2

, τ ∈ (0, mS];
(5.4)

cf. [8, Corollary 4.1].
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Table 1 and Table 2 illustrate (5.1). The right-hand side of (5.1) is a good approximation for
c2
V (τ) if τ/mS is small, corresponding to (5.2), or if �/m is close to the stability bound 1; cf.

(1.1). The lower bound 0 for c2
V (τ), cf. (5.1), seems to be the limit of c2

V (τ) for τ → ∞. Note
that the upper bound c2

χ(N+1) is close to the lower bound 0 for small � due to continuity and
since N = 0 almost surely in the limit � ↓ 0. In particular, for the single-server system, i.e. for
m = 1, it holds that c2

χ(N+1) = �, and, for the two-server system, i.e. for m = 2, it holds that

c2
χ(N+1) = 1

2

(
�

2

)2

+
(

�

2

)3

− 1

2

(
�

2

)4

.

Note that these expressions for c2
χ(N+1) can easily be derived by taking the limit in (5.3) and

(5.4) for τ ↓ 0, respectively, due to (5.2).
Better but more complex approximations for c2

V (τ) in M/GI/SDPS systems are given in [7].
The tables also illustrate the fact that c2

V (τ) is sensitive with respect to the service time DF; see
also [18]. Note that in case of the DF in (3.21) used for proving (1.10), the squared coefficient
of variation of the service time equals (1 − q)/q, which tends to ∞ for q ↓ 0.
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