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The solution of Cauchy's Problem for linear partial
differential equations, with constant coefficients, by
means of integrals involving complex variables.

By C. A. STEWART.

(Received 5th February 1927. Bead 4th March 1927.)

The object of this paper is to show how the theory of integrals
involving complex variables may be applied to the integration
of linear partial differential equations, possessing real, distinct
characteristics and constant coefficients. The problem considered is
a Cauchy problem (with analytic data)—typical of the equation of
real characteristics and the method taken is that of Riemann.1 For
simplicity of exposition, the second order hyperbolic equation is
considered, but the results are given in such a form as to indicate an
obvious generalisation to equations of higher order.2

The problem is to find that solution (known to be unique by
Cauchy's existence theorem) of

oy/ Ox &y

{where klt Jc2, A, B, C are real constants, (k^ #= &,,)},
which is such that on the boundary specified by x = >p(y), V reduces

dVto a given function E0(y), and -r— to a given function Ex(y).
OX

It is sufficient for our present purpose to assume that <f>, ifi, Eo, Ex

are analytic in a region a>, containing a portion a of the boundary;
and it is necessary that a should not be tangential anywhere to a
characteristic.

1 Darboux : Theorie generate des surfaces, II , pp. 75 et seq.
2 The Rieinannian method of integration has been extended by the writer to equa-

tions of higher order : Proc. Land. Math. Soc, 26 (1927). pp. 81-94.
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Let P (x0, y0) be a point in co near a. Draw through P lines of
gradient klt k2 to meet a in R, Q respectively. (Fig. 1.)

Fig. 1
P can be taken sufficiently near the boundary to ensure that QR

is a part of a; and owing to the conditions we have imposed, no
characteristic can meet a in more than one point. Any point 8 in
the area PQR may be taken as1

xo + u + v, y0 + kill + k2v.
The differential equation becomes

2. Vuv + aVu + bVv + cV = <f>(xo+ u

2 - B
v, k2v)

w h e r e a==

The boundary becomes x0 + u + v = if) (yo+ Ku + Kv)> a n d there are
similar changes in the forms of the boundary conditions.

Riemann's method consists substantially in integrating the
expression

(!l^Zl _ 1 {{A aX) V} - 1 { (A. - bX) V} - X<f>
(>u dv on dv

throughout the area P, Q, R of the u, v plane (Fig. 2), this expression
being zero if A is a solution of the adjoint equation:
3. Xuv — aXu— bXv-\- cX = 0

v
Q

1 If there is no term in Vlx in the original equation, take the second order terras as

fy ( 3a + hl Ty) V' and X = X ° ' + "' V = Vo + *i « + v-
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It is shown that the integration provides the value of F at P,
viz., V(x0, y0), if A can be found to satisfy the supplementary
conditions:

Av= aX, when u = 0; Au= bX, when v = 0.

This solution is usually given in terms of the Bessel Function of zero
order, viz.,

4. A = eav +hu J0{2i^/{uv(ab - c)}},

but here we shall obtain A in the form of a double integral involving
two complex variables. It will be seen later that this not only
simplifies the subsequent integration but it also provides the obvious
generalisation.

Consider the double integral

~~ (2m)2 J J aft - V o " ^ + "c '
where a, /3 are complex variables describing circles in their respective
planes, given by \a\=Ri, |/? = R2. Blt R2 can clearly be taken so
large that the function a/3 — «a — bfi + c does not vanish on the
circles of integration (nor at points outside these circles). It is
sufficient to take Rv R2> Ro, where Ro is the positive root of the
.R-equation:

6. R* = {t a | + | b | }R + I c !.
For then
| aj8 - a a - 6j8 + c | > ( B ^ B 0 ) ( B 0 - \ a \ ) + ( B 2 ~ B o ) ( R o - \ b \ )

+ (R1- Ro) ( i ? 2 - Ro) + {i?0
2 - (| a. | + | b | )R0 - | c ,} .

i.e. > 0.

/ is an example of that class of double integrals, where the integra-
tions with respect to a, /3 are independent of one another. The
integrand is analytic and we can differentiate with regard to u, v
under the integral sign.

This gives

"** + >" da dp
dudv du dv (2m)2,

= 0

since the integrand is everywhere analytic within the circles.
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Similarly 7(0, «) = e™; 7(0, 0) = 1.
I(u, v) is therefore the required solution A; and we may easily deduce
the other form of the result by taking a = b + tr; /3 = a + t2.

Then I(u, v) = — - -L
(2m)2 J J tjt2 — ab -

over

- j - C

j <2+ a | = 7?2 and so enclosing the origins and points
where t1t2= ab — c.

lhis gives
2771 J t1

{ab — c)}).
The application of this result can now be best illustrated by

taking the important case of a linear boundary; for even in the case
of a curved boundary, the solution obtained will give an approxima-
tion in the neighbourhood, (i.e. when the tangent is taken as the
first approximation to the bounding curve).

Take the boundary to be x = h,1 (except when k1 or k2 becomes
infinite), and for definiteness assume x0 < h, (Fig. 3).

y.

- .h->

Pig. 3

The solution is provided by the integration of

7- t*(*j~r_ — ;r-{(As— aX)V} — — {(A*— bX)V} — X<f> \dudv — 0
J J L vu vv du ov '

where A denotes the area PQR.
The integration of the first term can be effected with regard to

either u ov v first, giving two forms of the result
{* ft C C

8. V(x0, w0) = [X(Vu + b V) du + (Xv- aX) Vdv] - XR Vh+ X<f>du dv
JO JJ A

ff X<f>dudv

1 Any linear boundary can be changed to x = h, by a suitable linear transformation
of the independent variables.
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and so we may use them in a convenient combination, determined
by the boundary conditions. Suppose we are given that on

x = h, V = E0(y), Vx=E^{y).

These become:—

On u + v = h — xQ, V = E0{y0+ hu + k2v), k2Vu— k1Vv= {k2— k1)Ev

Taking therefore k2 times the first expression for the solution minus
kx times the second, we find, (putting dv = — du)

9. V(xoyo) = X(f>dudv - XEjdu + ( -^-^ ~ — / ;—)Eodu
JJ A JQ JQ^ kx— k2 '

- j,\-*ih-x°)So{yo+l°i(h - x0)} - -A^c«(*-*°>E0{y0 +k.2(h -x0)}.
1 2 2 1

The substitution of our value for A gives finally

10. V(x0, y0)
i + l3(l>o(xo+ u + v, yo+ Jc1u+ k2v) dudvdadfi

~ (27n)2JJJJ afi-aa-bp + c
1 f f f eav + 3 %(«/ 0 + *i« + k2v)dudadfi

~(277t)2 JJJ aj8 - aa - bfi + c

1 fjT e '̂ + ̂ ^ a -k$ — fa— k2) (a + b)}E0(tj0 + ^M + k2v)dudadp
+ (2m)2JJJ (^ - &2) (aj8 - da - bfi + c)

* ( * x ) E {i ! T h ~ ^o)} - T T ^ ^h-^E0{y0+ k2(h - x0)}.
kx — k2 k2— kx

The scope of the integrals has already been specified, and owing
to the nature of the integrands, the integrations may be performed in
any order. It will usually be simpler to integrate with respect to
the real variables first, these being of the type

e°-<u + w F(u,v)dudv, ea'vG(u).du

and so, easily integrated if, for example, F, G were exponential
functions or polynomials. Take, therefore,

</»(x, y) =<** + '», £ 0 = e « E^ef*.

Then from the solution obtained, we can deduce the corresponding
solutions for polynomials.

We shall require certain results in integration which will be given

a general form.
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11. (i)

f [ . . f g.,U, +.= «=+ •• +a,,u,, rfw rfM . . (?M = J _ f tL^L
JJ J i 2 n 2mJ v ( ( ( -a , ) (<-a 2 ) - - («-a , , )

where on the left hand side, the integration extends to all positive
values of ult u2, - - un, satisfying the relation

0 <̂  % + ut -\ h un <; k (k positive)

and on the right hand side, the contour y is the circle j t \ = R',
(R'> max ar).

12. (ii)

where on the left hand side, the integration extends to all positive
values of uu u%, - - un-\, satisfying the relation

0 <̂  MX+ uz-\ h un_x <; k, and un— k — n1 — u2 ua.u

Denote the first integral on the left by F(l, 2, - - n) and the second
by 8(1, 2, --n).

(a) The substitution ur= ktr (r — 1, - - n) shows that V and its first
(n — 1) differential coefficients with regard to k, vanish for
k = 0.

(b) The change of variables from

«i» «2, . «,i to

Wj, M2, - - - MB _ i, 0 ( = « ! + «2H h « J

gives

F ( l , 2 , - - n ) = ff
o

where

taken over all positive values of u1} u2, - - un-\ satisfying

0 <«!+«„+ - - + « , - !< 0 (O<0<&)
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(c) Integration of F(l, 2, - - n), in the original form, with respect
to un gives

e"'* 1
We note that Fx= and we therefore interpret Sx to

mean eaU, Fo= 1, £„ = 0, and deduce by continued application
of the above result that

( a — X B — ) - - - (a—)7"-2' —»- '•
F(l, 2, - - w) is therefore that solution of equation 13 which satisfies
the initial conditions.

The contour integral
ektdt

gives this solution, for the result of substituting this on the left hand
side of equation 13. Gives

[ e .
Also putting k = 0 in the contour integral above and in those obtained
by differentiating once, twice up to (n — 1) times will give integrands
of the type

(m = 0, 1, - - n — 1)
t (t - a a ) (t - a 2 ) - - - ( t - a n )

These do not possess singularities at infinity and therefore vanish.
By differentiation we get

^ .
V (t — aj)(< — a2) (t — an)

In the solution for V(x0, y0), the part depending on <f> is

(2m)2 JJJJ afi — aa-bp + C
over 0<^M + f < ; ^ — a?0; | a | = 2 ^ ; | / 3 | = i 2 2

= (27n)3JjJ t(t — a — p — akj (t - ft - p - ak2) (a/3 — aa — bfi + c)

for |*| =.R', 0 ! = ^ ! , | /3| = fi2.
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Now take R' so large that 11 — p — akx | > Rv R2

and 11 — p — ok2 j > Rx, R2.

Then, in integrating with respect to a, p, we note that the integrand
possesses a singularity only at one place outside the circles

| a | = Rlt | p | = R2, viz., where a = t — p — ak1; P = t — p — ak2

and so the above integral becomes

2m J t{(t — p — akj) (t — p — ak2) — a(t — p — akx) — b(t — p — ak2) + c}

= 2rn J ^tfCp-tT^T
where/(!>!, D2)T=<f> is the original differential equation 1, X ,̂ Z>2

a a
denoting the operators — , —.

The part of the solution depending on E1 is proved similarly
to be

The part of the solution depending on Eo is

^ + ̂ jk^ - k $ - ( fc t - k2) {a +^
(2m)2 J J J ( ^ - k2) (ajS ^ a a - bfi + c)

k k
7 c 7 7

The part of this involving the integral is

(2m)a J J J (kx— k2) (t — a — #0^1) (t — P — ^0^2) (aP ~~ aa — bp~\-c)

But in this integral, there are 3 places outside | a | = Rlt \P\ = R2

where the integrand has a singularity

(i) a=t — dokly P=t—90k2 (ii) a = 00, p~t—60k2 (iii) a=t — dok1, p~cc
(a = oc, /3 = 00 is not a singularity).

The first gives J f g
2m J f( — t, 60)

The second gives - - - ^ e
()»'-''>-t-(n + ('»I:=»"!

The third gives j - ^ - e^'^ +(b + 9«"'X'! - x°\
kx—k2
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The part, therefore, depending on EQ is simply

— (^+k2)60 - a - b} ee»v° + i<;'-*«1 dt

f(-h0o) "
The solution1 is therefore given by

14. V(xQy0)

=± fr c""+^ _ e"-y° . {<-(ti+^2)g0-^} -I ^
2^Jb/(p-«,*) f(-t,e1y f(-t,e0) J

This solution obviously applies to equations of elliptic or para-
bolic type, although the method of obtaining it is peculiar to the
hyperbolic type.

Examples:

(i) Hyperbolic type:

Find the solution of

Va - 3 Vxy+ 2 Vn+ 2 Vx+ 4 Vy+ V = 1

which is such that Vx= y, V = 0 when a; = 0.
The first part is

-**°dt
= ' + c o e f f i c i e n t of T m

= 1 — xoe~x".

The second part is obtained from

The coefficient of 0, in this is e~x"(xoyo+ zx0
2— ^x0

3).

The third part is zero.

The required solution is 1 + e~*(xy + f x2— I x3— x).

1 Cf. Zeilon : Arkev fiir Matematik, Astronomi och Fysik, 6 (1910).
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(ii) Parabolic type:
d2V cV

Find the solution of —— = -̂ — , satisfying
ox2 cy

V = A, Vx=By on x = 0

1st part is zero:

2nd part is the coefficient of 6J in the expansion of

B (e^-'^dt

that is in ^"'^ S m h X O A / - 1 and therefore is Bxo(yo+ xo
2/6).

3rd part is — = A.
ZTTIJ t2

Solution is A + Bx(y + x2/6).

(iii) Elliptic type:
£)2J7 2)ZV

Find the solution of \- -— = cV satisfying V = A sin py,
ox2 cy2

Vx= 0, when x = 0.

Corresponding to Eo = epy, Et= 0, the solution is

= Ae*v« cosh xo-\/(p
2+ c).

Therefore the solution is

A sinpy cosh xv / ( i ' 2 + c).
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