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Elastocapillarity has attracted increasing interest in recent years due to its important roles
in many industrial applications. In this work, we derive a thermodynamically consistent
continuum model for the dynamics of two immiscible fluids on a thin and inextensible
elastic sheet in two dimensions. With the sheet being modelled by a deformable curve
with the Wilmore energy and local inextensibility constraint, we derive a two-phase
hydrodynamics model with the interfacial and boundary conditions consistent with the
second law of thermodynamics. In particular, the boundary conditions on the sheet and at
the moving contact line take the form of force balances involving the fluid stress, surface
tensions, the sheet bending force and sheet tension, as well as friction forces arising from
the slip of fluids on the sheet. The resulting model obeys an energy dissipation law. To
demonstrate its capability of modelling complex elastocapillary interactions, we consider
two applications: (1) the relaxation dynamics of a droplet on an elastic sheet and (2)
the transport of a droplet driven by bendotaxis in a channel bounded by elastic sheets.
Numerical solutions for the coupled fluid–sheet dynamics are obtained using the finite
element method. The detailed information provided by the full hydrodynamics model
allows us to better understand the dynamical processes as compared to other simplified
models that were used in previous work.

Key words: contact lines, membranes, multiphase flow

1. Introduction

Elastocapillarity involving the interplay of capillary and elastic forces has received much
attention in recent years (Style et al. 2017; Bico, Reyssat & Roman 2018; Andreotti &
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Snoeijer 2020). This is due to the fact that elastocapillary phenomena are common in
our everyday life, e.g. the clumping of wet hair or paintbrush bristles, the buckling of
pulmonary airways, etc. Elastocapillarity is also relevant to many industrial applications
at the microscopic scale. For example, in microelectromechanical systems (MEMS), it is
known that elastocapillary interactions are responsible for the collapse of microstructures
in humid environments. This leads to an irreversible system failure and poses major
fabrication difficulties in MEMS.

There has been much work on elastocapillary problems involving elastic slabs. Consider
a liquid drop deposited on an elastic substrate for example. Interesting phenomena occur at
the contact line where the fluid interface meets the solid surface. For example, the substrate
can be deformed by the capillary force of the drop, resulting in a wetting ridge (Shanahan
1987b; Carré, Gastel & Shanahan 1996; Pericet-Cámara et al. 2008; Das et al. 2011;
Jerison et al. 2011; Limat 2012; Style et al. 2013; Hui & Jagota 2014; Pozrikidis & Hill
2014; Bardall, Daniels & Shearer 2018); the contact angle of the fluid interface may violate
the classical Young–Dupré equation (Shanahan 1987b; Style & Dufresne 2012; Style et al.
2013). The deformation of the substrate also affects the contact line dynamics (Shanahan
1988; Carré et al. 1996; Extrand & Kumagai 1996; Kajiya et al. 2013; Karpitschka et al.
2015; Howland et al. 2016).

When the substrate is thin, its deformation is roughly uniform across the thickness thus
it can be effectively modelled by a two-dimensional (2-D) elastic sheet with bending and
stretching energies. The bending of such an elastic sheet by capillary forces occurs on the
length scale lB =

√
Et3/24(1 − ν2)γ , where γ is the fluid surface tension, and E, ν and t

are the Young’s modulus, the Poisson ratio and the thickness of the substrate, respectively
(Bico et al. 2018). Bending of elastic sheets leads to an enhancement of capillary rise
(Kim & Mahadevan 2006). It also enables elastic sheets to spontaneously wrap liquid
droplets, a process called capillary origami in the literature. Py et al. (2007, 2009) derived
a folding criterion in terms of the size of the sheet from the balance of elastic and capillary
effects. They also showed that folded structures can be controlled by tailoring the initial
sheet geometry. Antkowiak et al. (2011) showed the folding process was accelerated using
drop impact, and different three-dimensional (3-D) structures were produced from a given
sheet by varying the impact speed and the location of impact. Folding of an elastic sheet
around a deposited drop was studied by Neukirch, Antkowiak & Marigo (2013) using a
variational approach. Brubaker & Lega (2016) derived equilibrium equations for folded
origami systems with pinned contact lines by minimizing the sum of the interfacial and
elastic energies; the work was later extended to the case of a partial wetting droplet on
inextensible elastic sheets in two dimensions (Brubaker 2019). The folded structure was
also investigated based on governing equations obtained from mechanical equilibrium
(Péraud & Lauga 2014). When the sheet is ultra-thin with negligible bending energy,
the final shape of the folded structure is determined by geometric constraints which
only involve interfacial energies (Paulsen et al. 2015). On an ultra-thin elastic sheet,
the capillary force from a deposited drop can induce wrinkles. The size of the wrinkled
region, the pattern of wrinkling as well as its mechanism have been studied in many work,
e.g. Huang et al. (2007), Vella, Adda-Bedia & Cerda (2010), Schroll et al. (2013) and
Davidovitch & Vella (2018).

In contrast to the large body of work on static problems involving thin sheets, there
have been very few studies concerning the dynamics. Duprat, Aristoff & Stone (2011)
studied the dynamics of the rise of a wetting liquid between flexible sheets. Bradley
et al. (2019); Bradley, Hewitt & Vella (2021) and Zhang & Qian (2022) investigated the
spontaneous movement of a liquid droplet in a thin channel formed by elastic sheets, a
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process called bendotaxis. Taroni & Vella (2012) developed a dynamic model to study
the elastocapillary interaction of a liquid drop with the bounding elastic beams and
investigated equilibrium configurations of the system as the steady limit of the dynamics.
The model took into account the effects of both the Laplace pressure in the bulk of the
droplet and the line force at the contact line on the deflection of the beams. All these
works were based on the lubrication approximation for the fluid dynamics. Antkowiak
et al. (2011) developed a 2-D model for the folding dynamics of elastic sheets induced by
drop impact. There, after the initial spreading of the drop, the fluid dynamics was assumed
to relax sufficiently fast so that the drop was in quasi-static state with the contact lines
pinned and separated by a prescribed distance. Only the dynamics of the elastic sheets was
considered in their model. Nevertheless, good agreements of the dynamics and the final
shape of the sheet with experiments were obtained.

Aside from the above theoretical work, effective numerical methods were also proposed
to simulate the dynamics. For example, Alben et al. (2019) developed semi-implicit
numerical methods to approximate the over-damped dynamics of elastic sheets. The
numerical methods have a better stability property as compared to explicit discretization
methods, thus allow larger time steps. Barrett, Garcke & Nürnberg (2017, 2020) developed
parametric finite element methods to simulate surface evolutions, e.g. the dynamics of
biomembranes with the Willmore energy (Helfrich 1973). Numerical methods were also
developed for systems involving moving contact lines, e.g. Wouters et al. (2019), Pepona
et al. (2021) and Chen & Zhang (2022). These methods use the lattice Bolztmann method
or dissipative particle dynamics to model the fluid dynamics and various discrete models
for the elastic sheet. The coupling of the fluids and the sheet is usually achieved through
interactions between the fluid and solid particles.

In the current work, we focus on the dynamics of elastocapillarity. Specifically, we
derive a thermodynamically consistent model for the dynamics of two immiscible fluids
or two phases of one fluid on a thin and inextensible elastic sheet in two dimensions. The
fluid dynamics is modelled by the Stokes equations. The elastic sheet is characterized by
the Willmore bending energy and a local inextensibility constraint. This type of elastic
sheet is widely used in modelling vesicles (Kusumaatmaja et al. 2009; Kusumaatmaja
& Lipowsky 2011; Zhao, Spann & Shaqfeh 2011; Yazdani & Bagchi 2012; Zhao &
Shaqfeh 2013; Farutin & Misbah 2014; Luo & Bai 2015). The total energy of the system
consists of the interfacial and bending energies. We follow principles of non-equilibrium
thermodynamics to derive the simplest interfacial and boundary conditions. We obtain
these conditions from the consideration of the energy dissipation of the dynamical system.
Specifically, we identify the relevant fluxes and their corresponding forces in the energy
dissipation, then we connect these fluxes and their corresponding forces using constitutive
relations, e.g. linear functions as the simplest one. This energy-based framework is rather
general and standard. It has been used in earlier works, for example, to derive boundary
conditions at the moving contact line on rigid solid substrates (Ren, Hu & Weinan 2010;
Ren & Weinan 2011) and for the moving contact line problem involving soluble surfactants
(Zhao, Ren & Zhang 2021). For the current problem, the derived model consists of the
Stokes equations for the fluid dynamics, the standard conditions on the fluid interface, the
kinematic and inextensibility conditions of the sheet as well as the boundary conditions
on the sheet and at the moving contact line. These boundary conditions can be phrased as
the balance of various forces.

(i) In the tangential direction of the sheet, the fluid shear stress, the friction force and
the gradient of the sheet tension balance each other (see (3.17a) and (3.18)). In the
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normal direction of the sheet, the fluid normal stress is balanced by the forces arising
from the surface and bending energies (see (3.17b)).

(ii) At the moving contact line, the Young stress arising from the deviation of the contact
angle from the equilibrium Young’s angle, the friction force and the jump of the
sheet tension balance each other in the sheet’s tangential direction (see (3.22b) and
(3.23)). The tension of the fluid interface balances the jump of the curvature gradient
of the sheet in the normal direction (see (3.22a)).

In this model, the energy of the system is dissipated through three channels: the viscous
force in the bulk of the fluids, the friction at the fluid–sheet interface and the friction at the
moving contact line.

Using this model, we simulate the relaxation dynamics of a droplet on an elastic sheet
and the droplet transport driven by bendotaxis. Bendotaxis is a mechanism for droplet
self-transport in a thin channel formed by two deformable sheets. The sheets are fixed
at one end of the channel and free to move at the other end. A droplet confined in
the channel moves simultaneously towards the free end as a result of the interaction of
the elastic and capillary forces. Understanding the transport dynamics is important for
industrial applications, e.g. in designing self-cleaning surfaces. In this work, we employ
the derived model to investigate the mechanism of bendotaxis as well as the effects of the
droplet wettability and the sheet stiffness on the dynamics. The numerical method in both
applications is a finite element method based on a weak formulation of the model. The
method is an extension of the parametric finite element method (Barrett et al. 2020) to
problems involving moving contact lines.

The rest of the paper is organized as follows. In § 2, we consider the static problem. We
first introduce the energy then review the governing equations for the equilibrium system.
In § 3, we consider the dynamical problem. We derive the boundary conditions on the
elastic sheet and at the moving contact line from the consideration of thermodynamics.
Sections 4 and 5 are devoted to applications. We use the derived model to simulate the
relaxation dynamics of a droplet on an elastic sheet in § 4 and the droplet motion driven
by bendotaxis in § 5. The paper is concluded in § 6.

2. Energetics

We consider the system of two immiscible fluids (fluid 1 and fluid 2) in contact with an
elastic sheet in the two-dimensional space, as shown in figure 1. The two fluid regions
are denoted by Ω1 and Ω2, respectively. The sheets in contact with fluid 1 and fluid 2
are denoted by Σ1 and Σ2, respectively. The whole sheet Σ1 ∪ Σ2 is denoted by Ξ . The
contact lines are denoted by Λ. Furthermore, we denote the unit tangent vector to Σi (i =
1, 2) by τ . The unit normal vector to Σi (i = 1, 2, 3) is denoted by n, where n points away
from the fluid region on the sheet and from Ω1 to Ω2 on the fluid–fluid interface. The
curvature κ of Σi is defined as

κ =
{∇s · n, on Σ1, Σ2,
−∇s · n, on Σ3,

(2.1)

where ∇s is the surface gradient operator and the negative sign is due to the fact that n
points upwards on Σ3. Furthermore, let mi be the unit conormal vector of Σi (i = 1, 2, 3)

at the contact line, as shown in figure 1(b).
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Figure 1. (a) A droplet on an elastic sheet confined in a box. (b) The three interfaces near the contact line.

The total free energy of the system is given by

E =
3∑

i=1

γi|Σi| + cb

2

∫
Ξ

κ2 ds, (2.2)

where the first term models the interfacial energy and the second term, known as the
Willmore energy, models the bending energy of the sheet. Here, γi (i = 1, 2, 3) are
the interfacial tension coefficients of the fluid–sheet and fluid–fluid interfaces, |Γi| (i =
1, 2, 3) are the arc lengths of the interfaces and cb is the bending modulus of the sheet.

The static profiles of the fluid–fluid interface and the sheet as well as the contact angle
can be obtained by minimizing the above energy under the area conservation constraint.
In a related work (Zhang, Yao & Ren 2020), we studied the equilibrium configuration
of a droplet on an elastic membrane in two and three dimensions. The 2-D membrane
model took the same form as the one considered here in (2.2). In the following, we
briefly review the main results regarding the equilibrium equations in 2-D as well as their
asymptotic solutions in the limits of large and small bending modulus, respectively. We
note that such a variational approach has been used in earlier work and similar equilibrium
equations have been derived (Shanahan 1987a; Neukirch et al. 2013; Brubaker 2019). For
example, under the assumption of radial symmetry, equilibrium equations were derived by
variation of the total energy, where the sheet elastic energy was described by the bending
energy (Shanahan 1985, 1987a) and the FvK model consisting of both stretching and
bending energies (Olives 1993, 1996), respectively. More recently, a variational approach
was employed to study equilibrium configurations of capillary folding in two dimensions
(Neukirch et al. 2013; Brubaker 2019) and in three dimensions using the FvK model with
pinned contact line (Brubaker & Lega 2016).

The governing equations for the static configuration of the system read

γiκ − cb

(

sκ + 1

2
κ3

)
− λi = 0, on Σi (i = 1, 2), (2.3a)

−γ3κ + λ2 − λ1 = 0, on Σ3, (2.3b)

[[κ]]1
2 = 0, γ3m3 − (γ2 − γ1)m1 + cb

(
m1 · [[∇sκ]]1

2

)
n|Ξ = 0, at Λ, (2.3c)

κ = 0, γ2 cos θw + cb (mw · ∇sκ) sin θw = 0, at ∂Ξ, (2.3d)

where λ1 and λ2 are Lagrange multipliers for the conservation of the area of Ω1 and Ω2,
respectively, and n|Ξ is the unit normal vector of the sheet at the contact line. The last
equation is the natural boundary condition at the boundary of the sheet, where θw ∈ [0, π]
is the angle between the downward tangent vector of the wall Σ4 and the unit conormal
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vector mw of the sheet, as depicted in figure 1(a). From the contact line condition (2.3c),
we see that the Young–Dupré equation γ3 cos θY = γ2 − γ1 holds in the tangent direction
of the sheet with θY = cos−1(m3 · m1) being the Young’s angle. In addition, we have
γ3 sin θY = −cb(m1 · [[∇sκ]]1

2) in the normal direction of the sheet, which states that the
surface tension force in the normal direction is balanced by the force resulting from the
jump of ∇sκ across the contact line. We note that a sheet with the inextensibility constraint
(see (3.6)) satisfies the same equilibrium equations in (2.3), where the constant Lagrange
multiplier for the constraint is absorbed into the surface tension.

Asymptotic solutions were obtained for the above system in the limits as cb tends to +∞
and 0+, respectively (Zhang et al. 2020). In the stiff limit as cb → +∞, the leading order
solution is given by the configuration in which a circular droplet sits on a rigid substrate
with the Young’s contact angle. In the soft limit as cb → 0+, the sheet profile exhibits
a transition layer in the vicinity of the contact line, and leading-order solutions in the
inner (transition) and outer regions were obtained using the matched asymptotic technique.
While the real contact angle of the fluid interface still satisfies the Young–Dupré equation,
the apparent contact angles obey Neumann’s law,

sin θ12

γ3
= sin θ23

γ1
= sin θ31

γ2
, (2.4)

where θij is the apparent contact angle between the interfaces Σi and Σj in the outer region.

3. Dynamical theory

Next we turn our attention to the dynamical problem. We parametrize the fluid–fluid
interface as r(ζ, t) and the sheet as q(ξ, t), where ζ = 0 and ξ = ξcl(t) correspond to the
(left) contact line

r(ζ, t)|ζ=0 = q(ξ, t)|ξ=ξcl(t). (3.1)

The velocity of the fluid interface and the sheet are given by ṙ = (∂/∂t)r(ζ, t) and q̇ =
(∂/∂t)q(ξ, t), respectively. Differentiation of (3.1) with respect to time gives the following
kinematic relation at the contact line

ṙ = q̇ + |∂ξ q|ξ̇clτ , (3.2)

where |∂ξ q| is the magnitude of the vector (∂/∂ξ)q(ξ, t) and ξ̇cl = (d/dt)ξcl(t) is the
velocity of the contact line in the reference domain. We assume that the following
continuity conditions hold at the contact line

[[q]]1
2 = 0, [[∂ξ q]]1

2 = 0, (3.3a,b)

where [[·]]1
2 denotes the jump across the contact line from Σ2 to Σ1. These conditions

imply that m2 = −m1 at the contact line. The same equations hold at the right contact
line depicted in figure 1(a).

We assume that the two fluids are simple incompressible fluids, and their dynamics are
governed by the time-independent Stokes equations

−∇p + ∇ · σ i = 0, (3.4a)

∇ · u = 0, (3.4b)

in Ωi (i = 1, 2). Here, u is the fluid velocity, p is the pressure, σ i = ηi(∇u + (∇u)T) is
the viscous stress, and ηi is the viscosity of fluid i.
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Moving contact lines on elastic sheets

As usual, we assume that the fluid velocity is continuous across the fluid–fluid interface
and this interface is advected by the fluid velocity

[[u]]1
2 = 0, on Σ3, (3.5a)

ṙ = u, on Σ3, (3.5b)

where, with a slight abuse of notation, we use [[·]]1
2 to denote the jump across the fluid–fluid

interface from fluid 2 to fluid 1 as well.
The sheet is assumed to be locally inextensible and satisfies the inextensibility condition

∇s · q̇ = 0. (3.6)

Furthermore, the sheet obeys the kinematic condition

q̇ · n = u · n, on Ξ, (3.7)

which is also the non-penetration condition for the fluids.
To close the system, we need additional conditions on the fluid–fluid interface and the

sheet and at the moving contact line. Conditions at the outer (left, right and top) boundaries
are specific to the problem setup and will be discussed later in the applications. The stress
conditions on the fluid–fluid interface are well known, and our main interest here is to
derive boundary conditions on the sheet and at the moving contact line. However, it will
be more convenient for us to treat the conditions on the fluid–fluid interface and those on
the elastic sheet on the same footing.

3.1. Thermodynamics and boundary/interface conditions
We will follow the principles of non-equilibrium thermodynamics to look for the simplest
interface and boundary conditions. These conditions are consistent with the second law of
thermodynamics, which, in the present context, means that the energy dissipation rate of
the system has to be non-positive.

The total energy is given in (2.2). Let us compute the time derivative of each term. Since
our main focus here is the boundary conditions on the sheet and at the contact line, we will
neglect any possible contribution to the energy dissipation from the outer boundaries.

First of all, for the interfacial energy on Σ1(t), we have

d
dt

∫
Σ1

γ1 ds =
∫

Σ1

γ1(∇s · q̇) ds + γ1
(|∂ξ q|ξ̇cl(τ · m1)

) ∣∣∣
Λ
,

=
∫

Σ1

γ1κ q̇ · n ds + γ1
(|∂ξ q|ξ̇cl(τ · m1) + q̇ · m1

) ∣∣∣
Λ

=
∫

Σ1

γ1κ q̇ · n ds + γ1(u · m1)

∣∣∣
Λ
, (3.8)

where (·)|Λ denotes the value at the contact line; in the case of multiple contact lines as
in figure 1, it is the sum of the values at all the contact lines. In the last step of the above
equation, we have used (3.2) and (3.5b). Similarly, for the interfacial energy on Σ2(t), we
have

d
dt

∫
Σ2

γ2 ds =
∫

Σ2

γ2κ q̇ · n ds − γ2(u · m1)

∣∣∣
Λ
, (3.9)
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where we have used the fact that m2 = −m1 at the contact line. For the interfacial energy
on Σ3(t), we have

d
dt

∫
Σ3

γ3 ds = −
∫

Σ3

γ3κu · n ds + (γ3u · m3)

∣∣∣
Λ
, (3.10)

where we have used (3.5b).
For the Willmore energy of the sheet, we have

d
dt

∫
Ξ

cb

2
κ2 ds = cb

2∑
i=1

∫
Σi

(−q̇ · n)

(

sκ + 1

2
κ3

)
ds

+ cb

(
−[[κ]]1

2m1 · ∇s(q̇ · n|Ξ) + (m1 · [[∇sκ]]1
2)(q̇ · n|Ξ) + 1

2
[[κ2]]1

2u · m1

) ∣∣∣
Λ
,

(3.11)

where 
s is the Laplace–Beltrami operator. Details for the derivation of this result are
provided in Appendix A.

Using the Stokes equation (3.4), we have

0 =
2∑

i=1

∫
Ωi

u · (∇ · T i) dx = −
2∑

i=1

∫
Ωi

∇u : T i dx +
2∑

i=1

∫
∂Ωi

n · T i · u ds

= −
2∑

i=1

∫
Ωi

1
2ηi

‖σ i‖2
F dx +

2∑
i=1

∫
Σi

n · T i · u ds +
∫

Σ3

n · [[T ]]1
2 · u ds, (3.12)

where ‖ · ‖F denotes the Frobenius norm, T i = −pI + σ i, and [[T ]]1
2 = T 1 − T 2.

Corresponding to the local inextensibility condition (3.6), we introduce a Lagrange
multiplier ν, named as the tension of the sheet or the sheet tension. Then we have

0 = −
2∑

i=1

∫
Σi

ν∇s · q̇ ds =
2∑

i=1

∫
Σi

[∇sν · q̇ − νκ q̇ · n
]

ds − ([[ν]]1
2q̇ · m1)

∣∣∣
Λ
. (3.13)

Combining (3.8), (3.9), (3.10) and (3.11), and using the identities in (3.12) and (3.13),
we obtain

d
dt
E(t) = −

2∑
i=1

∫
Ωi

1
2ηi

‖σ i‖2
F dx +

∫
Σ3

(
[[T ]]1

2 · n − γ3κn
)

· u ds

+
2∑

i=1

∫
Σi

(
n · T i + ∇sν +

[
−cb(
sκ + 1

2
κ3) + (γi − ν)κ

]
n
)

· q̇ ds

+
2∑

i=1

∫
Σi

(n · T i · τ )(u − q̇) · τ ds
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Moving contact lines on elastic sheets

− cb

(
[[κ]]1

2m1 · ∇s(q̇ · n|Ξ)
) ∣∣∣

Λ

+
((

[[γ − ν + cb

2
κ2]]1

2m1 + γ3m3 + cbm1 · [[∇sκ]]1
2n|Ξ

)
· q̇

) ∣∣∣
Λ

+
((

[[γ + cb

2
κ2]]1

2 + γ3m3 · m1

)
(u − q̇) · m1

) ∣∣∣
Λ
, (3.14)

where [[γ ]]1
2 = γ1 − γ2. From this equation, we see that the energy dissipation of the

system consists of four contributions: the viscous dissipation in the bulk (the first term), the
dissipation on the fluid–fluid interface (the second term), the dissipation on the fluid–sheet
interface (the third and fourth terms) and the dissipation at the contact line (the last three
terms). Each term is in the form of a product of a generalized flux and a generalized force.
Next, we examine the implication of this form of energy dissipation for the interface and
boundary conditions.

The fluid–fluid interface. In the second term of (3.14), the generalized flux is the
fluid velocity u, and the generalized force is the total force (the viscous stress and the
capillary force) acting on the fluid interface. Since the interface is massless, the total force
necessarily vanishes according to Newton’s second law. This gives the usual interface
condition

[[T ]]1
2 · n − γ3κn = 0. (3.15)

The fluid–sheet interface. In the third term of the energy dissipation in (3.14), the
generalized flux is the sheet velocity q̇, the generalized force is the total force acting on
the fluid–sheet interface, including the viscous fluid stress, the bending force, the surface
tension and the sheet tension. Again, the total force is zero since the interface is massless.
This gives

n · T i + ∇sν +
(

−cb

(

sκ + 1

2
κ3

)
+ (γi − ν)κ

)
n = 0. (3.16)

This is a vector equation, which can be decomposed into the tangential and normal
components as

n · T i · τ + τ · ∇sν = 0, (3.17a)

n · T i · n − cb

(

sκ + 1

2
κ3

)
+ (γi − ν)κ = 0. (3.17b)

These two equations state the force balances in the tangential and normal directions,
respectively.

In the fourth term, the generalized flux is the slip velocity of the fluid relative to
the sheet, (u − q̇) · τ , and the generalized force is the viscous shear stress n · T i · τ .
Following the generalized thermodynamics formulism, we relate the generalized force
to the generalized flux. We will assume the simplest form for the constitutive relation,
namely, the generalized force is a linear function of the generalized flux. This gives us the
well-known Navier slip condition

n · T i · τ = −μi(u − q̇) · τ , (3.18)

where the right-hand side is the friction force arising from the slip of the fluid on the
surface of the sheet with μi being the friction coefficient. Equations (3.17a) and (3.18)
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show that the viscous shear stress, the friction force and the gradient of the sheet tension
balance each other. Thus, the slip condition can be alternatively written as

τ · ∇sν = −μi(q̇ − u) · τ . (3.19)

The moving contact line. Next we examine the energy dissipation at the contact line
given by the last three terms in (3.14). First of all, in the third to last term, the generalized
flux is m1 · ∇s(q̇ · n|Ξ), which represents the angular velocity of the sheet rotating around
the contact line, and the generalized force is given by the jump of the sheet curvature across
the contact line. Since the contact line is massless, we set the generalized force to zero.
This gives the continuity condition for the sheet curvature at the contact line

[[κ]]1
2 = 0. (3.20)

Similarly, from the second to last term, we obtain

[[γ − ν]]1
2m1 + γ3m3 + cbm1 · [[∇sκ]]1

2n|Ξ = 0, (3.21)

where we have used (3.20). Let θd be the dynamic contact angle between the fluid–fluid
interface and the sheet, i.e. θd = arccos(m1 · m3). Then the above vector equation can be
decomposed into the following normal and tangential components as

γ3 sin θd + cbm1 · [[∇sκ]]1
2 = 0, (3.22a)

[[γ − ν]]1
2 + γ3 cos θd = 0. (3.22b)

These are the force balances at the contact line in the directions normal and tangential to
the sheet, respectively. The curvature of the sheet is continuous, as shown in (3.20), but its
gradient is discontinuous at the contact line unless θd = 0 or π. Equation (3.22a) shows
that the jump of the gradient of the sheet curvature balances the surface tension of the
fluid–fluid interface in the normal direction, γ3 sin θd. In the tangential direction, as shown
in (3.22b), the surface tension of the fluid interface, γ3 cos θd, is balanced by the jump of
the effective tension of the sheet, [[γ − ν]]1

2.
Finally, in the last term of (3.14), the generalized flux is the slip velocity of the contact

line, (u − q̇) · m1, and the generalized force is the unbalanced Young stress γ1 − γ2 +
γ3 cos θd. We relate these two quantities following the generalized thermodynamics. By
assuming a linear relation, we obtain

γ1 − γ2 + γ3 cos θd = −μΛ(u − q̇) · m1, (3.23)

where μΛ is the friction coefficient at the moving contact line. From (3.22b) and (3.23),
we see that the unbalanced Young stress γ1 − γ2 + γ3 cos θd, the friction force −μΛ(u −
q̇) · m1 and the jump of the sheet tension [[ν]]1

2 balance each other at the contact line. Thus,
(3.23) can be alternatively written as

[[ν]]1
2 = −μΛ(u − q̇) · m1. (3.24)

3.2. Dimensionless model and the dissipation law
The Stokes equation (3.4), the conditions (3.5) and (3.15) on the fluid–fluid interface, the
conditions (3.6), (3.7), (3.16) and (3.18) on the sheet, the conditions (3.21) and (3.23) at
the moving contact line, together with boundary conditions at outer boundaries, form the
complete model for the dynamics of the coupled fluids–sheet system.
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Moving contact lines on elastic sheets

To make the model dimensionless, we follow the standard practice and rescale x, r and
q using the system size L, the fluid velocity u using the characteristic velocity U, the
pressure p using η1U/L, time t using L/U and the total energy E using γ3L. Furthermore,
we rescale the fluid viscosity ηi (i = 1, 2) and the friction coefficient μΛ using η1, the
friction coefficient μi (i = 1, 2) using μ1, the surface tension γi (i = 1, 2, 3) and the sheet
tension ν using γ3, and the bending modulus cb using γ3L2. We define the capillary number
Ca and the slip length ls as

Ca = η1U
γ3

, ls = η1

μ1L
. (3.25a,b)

Then the dimensionless governing equations are given by

∇p − ∇ · (ηi(∇u + (∇u)T)) = 0, (3.26a)

∇ · u = 0, (3.26b)

for the fluids in Ωi(t), i = 1, 2, together with the following conditions on the fluid
interface, on the elastic sheet and at the contact line.

(i) Interface conditions on the fluid interface Σ3(t):

[[u]]1
2 = 0, (3.27a)

Ca[[T ]]1
2 · n − κn = 0, (3.27b)

ṙ = u. (3.27c)

(ii) Conditions on the elastic sheet Σi(t), i = 1, 2:

CaT i · n + ∇sν +
(

−cb

(

sκ + 1

2
κ3

)
+ (γi − ν)κ

)
n = 0, (3.28a)

ls
Ca

∇sν = −μi(q̇ − u), (3.28b)

∇s · q̇ = 0. (3.28c)

(iii) Conditions at the moving contact line Λ(t):

[[q]]1
2 = [[τ ]]1

2 = 0, [[κ]]1
2 = 0, (3.29a)

[[γ − ν]]1
2m1 + m3 + cbm1 · [[∇sκ]]1

2n|Ξ = 0, (3.29b)

1
Ca

[[ν]]1
2 = −μΛ(u − q̇) · m1. (3.29c)

Applying these conditions in (3.14), we obtain the following energy dissipation law,

d
dt
E(t) = −

2∑
i=1

∫
Ωi(t)

Ca
2ηi

‖σ i‖2
F dx

− Ca
ls

2∑
i=1

∫
Σi(t)

μi|u − q̇|2 ds − Ca
(
μΛ|u − q̇|2

) ∣∣∣
Λ(t)

≤ 0, (3.30)

where the three terms on the right-hand side represent the rate of energy dissipation in the
bulk, on the sheet and at the contact line, respectively.
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Equation (3.28b) is the governing equation for the dynamics of the material points of
the sheet. It can be rewritten as

q̇ = u − ls
μiCa

∇sν. (3.31)

Taking the surface divergence on both sides of the above equation and applying the
inextensibility condition (3.28c), we obtain

ls
μi


sν = Ca∇s · u, on Σi(t), i = 1, 2. (3.32)

In (3.31), the continuity of q̇ and u across the contact line implies[[
1
μi

∇sν

]]1

2
= 1

μ1
[∇sν]1 − 1

μ2
[∇sν]2 = 0, (3.33)

where [∇sν]i denotes the surface gradient of ν at the contact line evaluated on the side
of Σi (i = 1, 2). Furthermore, from (3.29c) and (3.31), we obtain the following jump
condition for ν at the contact line

[[ν]]1
2 = −μΛls

μi
[∇sν]i · m1, i = 1, 2. (3.34)

In numerical simulations, it is more convenient to use (3.32) with the jump conditions
(3.34) in place of (3.28c) to determine the sheet tension ν. Once ν is known, the
configuration of the sheet and its parametrization can be updated according to (3.31).
Specifically, the configuration of the sheet can be updated using the normal component
of (3.31),

q̇ · n = u · n. (3.35)

The tangential component of (3.31), i.e.

q̇ · τ = u · τ − ls
μiCa

τ · ∇sν, (3.36)

determines the motion of the sheet in the tangential direction, i.e. redistribution of the
material points along the sheet, but not its geometry.

3.3. Fluid–vacuum–sheet system
Following the same procedure, we can derive the boundary and interface conditions for
a fluid–vacuum–sheet system. Specifically, we consider the situation when fluid 2 in
figure 1 is replaced by a vacuum. The fluid dynamics in Ω1 is still assumed to obey the
Stokes equations in (3.4). The fluid–vacuum interface Σ3 and the fluid–sheet interface
Σ1 obey the kinematic conditions in (3.5b) and (3.7), respectively. The sheet and its
tangent are continuous at the contact line, so (3.3a,b) holds. Then following the generalized
thermodynamics formulism as in § 3.1, we can derive the conditions on the sheet and at
the moving contact line by analysing the rate of energy dissipation of the system. We skip
the details and summarize these (dimensionless) conditions as follows.

(i) On the fluid–vacuum interface Σ3, we have the same conditions as in (3.27), except
that the fluid velocity continuity condition (3.27a) is not required and the stress jump
condition (3.27b) is replaced by

CaT 1 · n − κn = 0. (3.37)
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y = 1

x = 1x = –1

n

n

n

Σ3

Σ1

Σ2,l Σ2,r

ΣL ΣR

Ω1

Ω2nw nw

mwmw θw θw
Λl Λrτ

Figure 2. Setup for the relaxation dynamics of a droplet on an elastic sheet. The computational domain, Ω =
Ω1 ∪ Ω2, is bounded by x = −1 on the left, x = 1 on the right, the sheet on the bottom and y = 1 on the
top.

(ii) The conditions on Σ1, where the sheet is in contact with the fluid, are the same as
those given in (3.28).

(iii) On the sheet Σ2, we have the inextensibility condition (3.28c) and

∇sν +
(

−cb

(

sκ + 1

2
κ3

)
+ (γ2 − ν)κ

)
n = 0. (3.38)

(iv) The conditions at the contact line Λ(t) remain the same as in (3.29).

Equation (3.38) can be decomposed into the normal and tangential components as

−cb

(

sκ + 1

2
κ3

)
+ (γ2 − ν)κ = 0, (3.39a)

τ · ∇sν = 0, (3.39b)

where the second equation implies that the sheet tension ν is constant on Σ2.
Using the above conditions, we obtain the following energy dissipation law for the

fluid–vacuum–sheet system

d
dt
E(t) = −

∫
Ω1(t)

Ca
2η1

‖σ 1‖2
F dx

− Ca
ls

∫
Σ1(t)

μ1|u − q̇|2 ds − Ca
(
μΛ|u − q̇|2

) ∣∣∣
Λ(t)

≤ 0, (3.40)

where the three terms on the right-hand side represent the viscous dissipation in the bulk
fluid, on the sheet due to the slip of the fluid and at the moving contact line, respectively.

4. Application: relaxation dynamics of a droplet on an elastic sheet

As an application of the proposed model, we consider the relaxation dynamics of a
two-dimensional droplet on an elastic sheet. The setup of the system is shown in figure 2.
The fluid forming the droplet and the surrounding fluid are denoted by fluid 1 and fluid 2,
respectively. Initially, the droplet occupies the rectangular domain Ω1(0) = [−0.5, 0.5] ×
[0, 0.5], and the sheet is on the x-axis (y = 0). We simulate the relaxation dynamics of the
system.

The simulation is carried out in the truncated domain where the left, right and upper
boundaries are located at x = −1, x = 1 and y = 1, respectively. On the upper boundary,
we set the fluid velocity to be zero,

u = 0. (4.1)
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(a) (b)
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Figure 3. The interface profiles and the fluid velocity for the wetting case (θY = π/3): (a) t = 0,
maxx∈Ω |u| = 0; (b) t = 0.05, maxx∈Ω |u| = 1.207; (c) t = 0.2, maxx∈Ω |u| = 0.478; (d) t = 1.0,
maxx∈Ω |u| = 0.027.

On the left and right boundaries, we use the stress-free condition,

T 2 · nw = 0, (4.2)

where nw is the unit outward normal of the boundary. For the sheet, we use the natural
boundary conditions at x = ±1,

ν = 0, (4.3a)

κ = 0, (4.3b)

γ2 cos θw + cb(mw · ∇sκ) sin θw = 0. (4.3c)

These conditions allow the material points of the sheet to cross the boundaries at x = ±1.
Equations (3.26)–(3.29), together with the boundary conditions (4.1)–(4.3), form a

complete model for the coupled fluids–sheet system. We simulate the dynamics using
the finite element method based on a weak formulation of the model (see Appendix B).
We consider two cases: one is a wetting case with γ1 = 0.5, γ2 = 1 and the equilibrium
contact angle θY = π/3, the other one is a non-wetting case with γ1 = 1, γ2 = 0.5 and the
equilibrium contact angle θY = 2π/3. Other parameters are chosen as η2 = 0.1, μ2 = 0.1,
μΛ = 0.1, Ca = 0.2, ls = 0.1 and cb = 0.1.

Several snapshots of the system at different times are shown in figure 3 for the wetting
case and figure 4 for the non-wetting case. In both cases, the sheet, which is flat initially, is
deformed. A pair of vortices in the velocity field form along with the evolution of the fluid
interface. In the wetting case, outward velocities are generated at the contact lines driving
the droplet to spread on the sheet. In the non-wetting case, the contact lines retreat with
inward velocities.

In figure 5(a,b), we show the curvature and in figure 5(c,d) the tension of the elastic
sheet at different times. Both the curvature gradient and the tension exhibit a jump across
the contact line. The magnitude of the tension decays to 0 as the system approaches
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Figure 4. The interface profiles and the fluid velocity for the non-wetting case (θY = 2π/3): (a) t = 0,
maxx∈Ω |u| = 0; (b) t = 0.05, maxx∈Ω |u| = 1.203; (c) t = 0.2, maxx∈Ω |u| = 0.130; (d) t = 1.0,
maxx∈Ω |u| = 0.005.

the equilibrium. The insets of panels (c, d) show the gradient of the tension rescaled by
the friction coefficient, (1/μi)|∇sν|, along the sheet. We observe that the rescaled gradient
is continuous, though the tension itself has a jump at the contact line. Also the rescaled
gradient of the tension attains the maximum at the contact line, indicating maximum slip
occurs there according to (3.28b).

In figure 6(a), we plot the total energy and in figure 6(b) the bending energy against
time. The total energy decays in time, as expected from the energy dissipation property of
the dynamical system. The bending energy, however, shows a rapid increase as a result of
the deformation of the sheet at an initial stage.

Following the dynamics, the system eventually relaxes to the equilibrium state (steady
state). In figure 7, we show the steady-state profiles of the interface and the sheet with
large and small bending modulus. In the stiff case (cb = 100), the sheet remains nearly flat
and the droplet has the usual shape of a circular arc with the contact angle satisfying the
Young–Dupré equation (panels a,c). In the soft case (cb = 0.001), the sheet is significantly
deformed (panels b,d). Its curvature undergoes a rapid change near the contact line (the
inner region) but is nearly constant away from the contact line (the outer region). The size
of the inner region is of the order of

√
cb. These results agree with the asymptotic solutions

discussed in § 2, as shown in panels (c,d), where we overlay the asymptotic solutions in
the outer region.

Furthermore, we measured the apparent contact angles formed by the three interfaces
in the outer region (see figure 7b). Specifically, we fit the fluid interface using a
constant-curvature (circular) arc. The arc goes through the apex of the interface and also
fits the curvature of the interface there. Similarly, we fit the sheet under the droplet using
a circular arc through the middle point of the sheet. The two arcs intersect at an apparent
contact line. The sheet outside the droplet is fitted using a horizontal line through the
apparent contact line. The apparent contact angles are then measured between these fitting
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Figure 5. (a,b) Curvature and (c,d) tension of the sheet at different times: (a) curvature, θY = π/3;
(b) curvature, θY = 2π/3; (c) tension, θY = π/3; (d) tension, θY = 2π/3. The insets in panels (c,d) are plots
of (1/μi)|∇sν|.
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Figure 6. (a) Rescaled energy E(t)/E(0) versus time; (b) bending energy, Ew(t) = (cb/2)
∫
Ξ(t) κ2 ds, versus

time.

curves at the apparent contact line. The results are reported in table 1 for various small
bending modulus. We see that, though the real contact angle satisfies the Young–Dupré
equation, the apparent angles converge to the values predicted by Neumann’s law (2.4) as
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Figure 7. The steady-state profiles of the fluid interface and the sheet: (a) θY = π/3, cb = 100; (b) θY = π/3,
cb = 0.001; (c) θY = 2π/3, cb = 100; (d) θY = 2π/3, cb = 0.001. The insets in panels (b,d) are plots of the
sheet curvature κ . The overlayed black dashed curves in panels (c,d) are plots of the asymptotic solutions in the
stiff (panel c) and soft (panel d) limits.

cb θ12 θ23 θ31 cb θ12 θ23 θ31

0.004 2.0025 2.5733 1.7073 0.004 2.0365 1.7062 2.5405
0.002 1.9493 2.5911 1.7427 0.002 1.9562 1.7578 2.5692
0.001 1.8967 2.6038 1.7827 0.001 1.8826 1.8106 2.5900
0 1.8235 2.6362 1.8235 0 1.8235 1.8235 2.6362

Table 1. The apparent contact angles formed by the three interfaces at the steady state (see figure 7b) for the
wetting case (first four columns) and non-wetting case (second four columns). The last row (cb = 0) shows the
theoretical values predicted by Neumann’s law (2.4).

the bending modules decrease towards 0. This agrees with the asymptotic results in Zhang
et al. (2020).

5. Application: bendotaxis

In this application, we consider the dynamics of a droplet driven by bendotaxis. The setup
of the system is shown in figure 8. A droplet is confined between two semi-infinite elastic
sheets in two dimensions. The left ends of the sheets are fixed at (0, ±By). An interesting
phenomenon observed in experiments is that the droplet migrates spontaneously along the
channel from the fixed end to the free end (left to right), regardless of the wetting property
of the droplet (Bradley et al. 2019). Here, we use the model derived in § 3 to simulate the
coupled dynamics of the sheets and the droplet.

The droplet is formed by a Newtonian fluid and outside of the droplet is a vacuum. The
dynamics is governed by the equations in § 3.3. At the left end x = 0 where the sheets are
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Figure 8. Setup of bendotaxis. A liquid droplet is placed in a channel bounded by two semi-infinite elastic
sheets. The left ends of the sheets are fixed at (0, ±By).

fixed, we impose the clamped boundary conditions

q̇ = 0,
∂y
∂ξ

= 0, (5.1a,b)

where q(ξ, t) = (x, y). For convenience of the simulation, we use x to parametrize the
sheets, q = (x, y(x, t)). We truncate the system on the right at x = Bx and impose the
natural boundary conditions for the sheets as given in (4.3). These conditions allow
material points of the sheets to cross the boundary at x = Bx, thus, although the sheets
are inextensible, their lengths over the domain [0, Bx] are not fixed. Furthermore, since the
system is symmetric about the centreline of the channel at y = 0, we only carry out the
computation in the lower half of the channel and impose the symmetry conditions along
y = 0,

∂u1

∂y
= 0, u2 = 0, (5.2a)

θl = θr = π

2
, (5.2b)

where u = (u1, u2) is the fluid velocity, and θl and θr are the angles between the
fluid–vacuum interfaces and the centreline y = 0.

Given an initial configuration of the system, we compute the dynamics by solving the
governing equations in § 3.3 together with the boundary conditions (5.1a,b) and (5.2) using
the finite element method. Specifically, we compute the fluid velocity, the fluid pressure,
the profile of the sheet and its tension, as well as the fluid–vacuum interfaces. Below,
we present the numerical results and investigate the mechanism of bendotaxis. We also
study the effects of the wettability and bending modulus of the sheets on the dynamics.
In all simulations, the initial configuration of the system is prepared by holding the sheets
straight while letting the droplet relax until reaching equilibrium with the sheets. Then
we release the sheets (except their fixed left ends) and let the system evolve. The contact
lines of the initial relaxed droplet are located at xl = 2 and xr = 6, respectively. Other
parameters are chosen as Bx = 10, By = 0.5, μΛ = 0.1, ls = 0.1, Ca = 0.1.

We first report numerical results for a wetting case with γ1 = 0.3, γ2 = 1, cos θY = 0.7
and a non-wetting case with γ1 = 1, γ2 = 0.3, cos θY = −0.7. The bending modulus
cb is 5 × 103 in both cases. To examine the deflection of the sheets, we plot the time
history of the width w(t) of the channel measured at its free end in figure 9. The sheets
deflect inwards leading to a narrower opening at the free end in the wetting case, while
the opposite is observed in the non-wetting case. The deflection is more significant in the
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cos θY = 0.7

cos θY = –0.7

Figure 9. The channel width w(t) at the free end versus time. The two curves correspond to the wetting case
(lower) and non-wetting case (upper), respectively.
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(d )

Figure 10. Snapshots of the wetting case (cos θY = 0.7). The fluid velocity and pressure are shown using
arrows and colour code, respectively: (a) t = 0.05; (b) t = 0.3; (c) t = 1.0; (d) t = 15.0.

wetting case. Furthermore, a rapid deflection of the sheets occurs at the beginning of the
process (t � 0.3) in both cases. As shown in figures 10 and 11, the droplet remains nearly
still in this stage. Droplet motion only occurs in the later stage (t � 0.3) as a result of the
sheet deflection.

The sheet deflection is mainly caused by the Laplace pressure of the droplet. In the
wetting case, the pressure inside the droplet is negative (assuming zero pressure for the
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Figure 11. Snapshots of the non-wetting case (cos θY = −0.7). The fluid velocity and pressure are shown
using arrows and colour code, respectively: (a) t = 0.05; (b) t = 0.3; (c) t = 1.0; (d) t = 15.0; (e) t = 90.0.

vacuum), which causes the sheets to deflect inwards. In contrast, in the non-wetting case,
the pressure of the droplet is positive, resulting in an outward sheet deflection. In addition,
the capillary force at the contact line also contributes to the sheet deflection. The capillary
force pulls the sheets inwards, which facilitates the inward deflection in the wetting case,
but impedes the outward deflection in the non-wetting case. This explains the larger
deflection in the wetting case as observed in figure 9.

The deflection of the sheets results in a net force that drives the droplet towards
the free end of the channel. Specifically, three forces mainly contribute to the droplet
motion: (1) the bending force f b = (cb/Ca)(
sκ + 1

2κ3)n; (2) the sheet curvature force
f t = (1/Ca)(ν − γ1)κn; and (3) the forces at the left and right contact lines FΛl,Λr =
(γ3/Ca)m3. For parameters used in the current simulation, we found that the force f t due
to the sheet tension is negligible compared to the other two forces. In figure 12, we show
the horizontal component of the bending force at t = 0.3, f b · e1, where e1 = (1, 0). In
both the wetting and non-wetting cases, the force has a rightward component, driving the
droplet towards the free ends. The larger sheet deflection in the wetting case results in a
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 � 
e 1

Figure 12. The horizontal component of the bending force, f b · e1, along the sheet at t = 0.3. The two
curves correspond to the wetting case (upper) and non-wetting case (lower), respectively.

larger bending force and consequently a faster droplet motion. The horizontal component
of the contact line force, (FΛ1 + FΛ2) · e1, equals 0.147 in the wetting case and −0.0763
in the non-wetting case at t = 0.3. The opposite sign is due to the opposite direction of
the sheet deflection in the two cases. As a result, the rightward droplet motion is further
enhanced by the contact line force in the wetting case but impeded in the non-wetting case.

To further examine the effects of wettability and stiffness of the sheets on the droplet
dynamics, we carried out simulations with various contact angle θY and bending modulus
cb. The numerical results are summarized in figure 13(a), where we plot the dynamics of
the right (advancing) contact point xr. After rescaling the time by

t → A(cos θY , cb) · t, (5.3)

where A depends on cos θY and cb, the data points for (1/xr(0) − 1/xr(t)) collapse into a
master line with slope one. This shows that

xr(t) = 1
1

xr(0)
− At

. (5.4)

The deviation of data points from this master line is mainly due to the large deflection of
the sheets; in fact, in the case of cos θY = 0.9 and cb = 5000, the free end of the channel
is nearly closed when the droplet is close to that end, as shown in figure 13(d). Reducing
the droplet size leads to smaller sheet deflection, in which case, a better agreement with
the master line is observed (see the data points marked by ‘✩’).

The asymptotic relation (5.4) has been derived for small droplets under the lubrication
approximation (Bradley et al. 2019). There, the fluid interface was assumed to have a
circular profile, and the contact angle was equal to the equilibrium Young’s angle. It was
shown that A ∝ | cos θY |2/cb. The dependence of A on θY and cb obtained from the current
numerical results is shown in figure 13(b,c). While the inverse proportionality relation
of A with the bending modulus cb agrees with the asymptotic result, discrepancies are
observed for the relation with cos θY . First of all, we find that A is asymmetric about cos θY .
With the same value of | cos θY |, A is larger in the wetting case than in the non-wetting
case. A larger value of A corresponds to a faster droplet motion. Second, we observe that
A ∝ | cos θY |α , where α is slightly less than 2 in the wetting case but larger than 2 in the
non-wetting case. We believe that these discrepancies are mainly due to the contribution
of the capillary force at the contact line, which was not fully taken into account in the
previous asymptotic results. The capillary force of wetting droplets induces larger sheet
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Figure 13. (a) The dynamics of a droplet driven by bendotaxis with different contact angle θY and different
bending modulus cb. The data points marked by ‘✩’ are for a smaller droplet, whose size is one half that of
the droplet in all other simulations. The dashed line has slope 1. (b) Doubly logarithmic plot of the coefficient
A versus | cos θY |, where cb = 5000. (c) Doubly logarithmic plot of coefficient A versus cb. (d) Configurations
of the two systems with cos θY = 0.9 and cb = 5000 (marked by ‘�’ and ‘✩’ in panel a) at At = 0.024. The
droplet in blue is half the size of that one in red.

deflections and consequently faster droplet motions. In addition, the finite droplet size also
contributes to the discrepancies.

6. Conclusion

In this work, we considered the dynamics of a moving contact line on an elastic sheet.
Based on generalized thermodynamics, we derived a hydrodynamic model, in particular,
the necessary boundary conditions on the sheet and at the moving contact line. These
boundary conditions can be interpreted as the balance of various forces. They were
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obtained by analysing the different energy dissipation mechanisms, in which the relevant
fluxes and their corresponding forces were identified. The resulting model obeys an energy
law, where the total energy of the dynamical system dissipates via the viscous force in the
bulk fluids and the friction forces on the fluid–sheet interface and at the moving contact
line.

The boundary conditions are summarized as follows. In the tangential direction of the
sheet, the boundary conditions are given by the balance of the fluid shear stress with the
friction force and the gradient of the sheet tension, respectively. The friction force is due to
the slip between the fluids and the sheet. In the normal direction of the sheet, the boundary
condition is given by the balance of the fluid normal stress with the bending force and the
curvature force of the sheet. At the moving contact line, in the tangential direction to
the sheet, the Young stress of the fluid interface is balanced by the friction force and the
jump of the sheet tension, respectively. Here the Young stress refers to the capillary force
arising from the deviation of the dynamic contact angle from the equilibrium angle, and
the friction force is due to the motion of the contact line relative to the sheet. In the normal
direction to the sheet, the capillary force of the fluid interface balances with the jump
of the gradient of the sheet curvature. These force balances, together with the kinematic
and inextensibility conditions, form the complete boundary conditions on the sheet for the
hydrodynamic model.

Using this model, we numerically studied the relaxation dynamic of droplets on elastic
sheets and the droplet motion driven by bendotaxis in a channel bounded by elastic sheets.
In both applications, the full hydrodynamic model provided detailed information on the
respective physical process. In addition to the usual hydrodynamic quantities such as the
fluid velocity field and pressure, the interface and sheet profiles, we also obtained the
dynamic contact angle, the slip velocity, the tension of the sheet, etc. This allowed us to
better understand the dynamical processes as compared to simplified models (e.g. thin-film
models).

For the relaxation dynamics of droplets on elastic sheets, we simulated two types of
systems, one in the wetting case and the other in the non-wetting case. The numerical
results verified the energy decay property of the model. The profiles of the fluid interface
and the sheet at the steady state agreed well with the asymptotic solutions derived in an
earlier work (Zhang et al. 2020).

For the motion of a droplet driven by bendotaxis, we simulated the dynamical process
and investigated the mechanism of the droplet motion. We identified two stages in the
dynamical process, one being an initial period in which the sheets were deflected, and
the other being the subsequent period in which droplet transport occurred. We found
that the sheet deflection was caused by the Laplace pressure of the droplet and the
capillary force of the fluid interface. The latter always pulled the sheets inwards, thus
it enhanced the inward deflection in the wetting case but hindered the outward deflection
in the non-wetting case. A larger sheet deflection resulted in larger bending forces and
consequently a faster droplet motion. Our numerical results also showed that the motion of
a wetting (respectively non-wetting) droplet was further enhanced (respectively hindered)
by the combined contact line forces. Furthermore, we examined the effect of the droplet
wettability and sheet stiffness on the dynamics. After a proper rescaling of time, the
dynamics of the various systems collapsed into a universal line.

The two applications demonstrate that our model is able to model complex fluid–sheet
interactions in the presence of moving contact lines. With this model, we are in a position
to systematically study many interesting elastocapillary problems, such as capillary rise
in elastic tubes, spontaneous wrapping of liquid drops by elastic sheets, bubble dynamics
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on porous polymer films, etc. The model can be generalized to three dimensions in a
straightforward manner, where the boundary and contact line conditions will take similar
forms as in two dimensions. Simulations for 3-D problems become more challenging in
view of the requirements for quality mesh generation and efficient solvers. We will leave
these problems to the future work.
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Appendix A. Variation of the Willmore energy

We provide some results from differential geometry that were used to compute the
variation of the energies in § 3. Let q(ξ, t) = (x(ξ, t), y(ξ, t)) denote a curve Γ

parametrized by ξ ∈ Dξ . The tangent, normal and curvature of the curve are respectively
given by

τ = 1
|∂ξ q|

(
∂x
∂ξ

,
∂y
∂ξ

)
,

n = 1
|∂ξ q|

(
∂y
∂ξ

, − ∂x
∂ξ

)
,

κ = ∇s · n = 1
|∂ξ q|3

(
∂x
∂ξ

∂2y
∂ξ2 − ∂y

∂ξ

∂2x
∂ξ2

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A1)

In addition, we have ∂ξτ = −|∂ξ q|κn and ∂ξ n = |∂ξ q|κτ .
Let D be a differential operator. We have

D|∂ξ q| = 1
|∂ξ q|

∂q
∂ξ

· ∂Dq
∂ξ

= (∇s · Dq)|∂ξ q|, (A2)

where ∇s = (1/|∂ξ q|2)(∂q/∂ξ)(∂/∂ξ) is the surface gradient. For a given function f
defined on the curve Γ , we have

d
dt

∫
Γ

f (q, t) ds =
∫

Γ

(
∂f
∂t

+ q̇ · ∇f + (∇s · q̇)f
)

ds, (A3)

where we have used (A2) with D = ∂/∂t.
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The surface divergence theorem for a vector function F (ξ) defined on Γ reads
∫

Γ

∇s · F ds =
∫

Dξ

τ · ∂ξ F dξ

= (F · m)

∣∣∣
∂Γ

−
∫

Dξ

F · ∂ξτ dξ

= (F · m)

∣∣∣
∂Γ

+
∫

Γ

κF · n ds, (A4)

where m is the outward conormal of Γ .
Applying the differential operator D on the curvature κ , we obtain

Dκ = D(∇s · n) = D
(

τ

|∂ξ q| · ∂ξ n
)

= Dτ
|∂ξ q| · ∂ξ n + D

(
1

|∂ξ q|
)
τ · ∂ξ n + τ

|∂ξ q| · ∂

∂ξ
(Dn)

=
[
−(∇s · (Dq))(∇s · n) + 1

|∂ξ q|2
∂

∂ξ
(Dq) · ∂ξ n

]
− ∇s · (Dq)

τ

|∂ξ q| · ∂ξ n

+ ∇s ·
[
−∇s(Dq · n) + τ

|∂ξ q|(Dq · ∂ξ n)

]

= −
s(Dq · n) − κ(∇s · (Dq)) + ∇s · [τ (κτ · (Dq))]

= −
s(Dq · n) − (Dq · n)κ2 + ∇sκ · (Dq), (A5)

where we have used ∂ξτ = −|∂ξ q|κn in the last step.
Finally, the time derivative of the Willmore energy of Γ is given by

d
dt

∫
Γ

κ2 ds =
∫

Γ

(2κ
∂

∂t
κ + κ2(∇s · q̇)) ds

=
∫

Γ

−2κ
s(q̇ · n) − 2(q̇ · n)κ3 + ∇s · (κ2q̇) ds

= 2
∫

Γ

(−q̇ · n)(
sκ + 1
2
κ3) ds

+ 2
(

−κm · ∇s(q̇ · n) + (m · ∇sκ)(q̇ · n) + 1
2
κ2q̇ · m

) ∣∣∣
∂Γ

, (A6)

where we have used (A3) with f = κ2 in the first step, (A5) with D = ∂/∂t in the second
step, and the divergence theorem (A4) as well as integration by parts in the last step.

Appendix B. Weak formulation of the model

In this appendix, we give the weak formulation of the model that was used to simulate
the drop relaxation dynamics in § 4. We parametrize the fluid interface as r(ζ ) where
ζ ∈ [0, 1] and the sheet as q(x) = (x, y(x)) where x ∈ [−1, 1]. The two contact lines of
the droplet are located at r(0) = (xl, y(xl)) and r(1) = (xr, y(xr)).
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We define the following respective function spaces for the fluid velocity, the fluid
pressure and the sheet tension,

U = {ω ∈ [H1(Ω)]2, ω = 0 on Σ5}, (B1)

P =
{
ϕ ∈ L2(Ω),

∫
Ω

ϕ dx = 0
}

, (B2)

V1 = H1([xl, xr]), V2 = {g ∈ H1([−1, xl] ∪ [xr, 1]), g(−1) = g(1) = 0}. (B3)

We take the inner product of (3.26a) with ω ∈ U, (3.26b) with ϕ ∈ P, (3.35) with
f ∈ H1([−1, 1]), (3.32) with g1 ∈ V1 and g2 ∈ V2, and (3.27c) with ψ ∈ H1([0, 1]) ×
H1

0([0, 1]). Furthermore, we take the inner product of κ/|∂xq| = 
sy with β ∈
H1

0([−1, 1]). Using the interface and boundary conditions, we obtain the following
equations:

− ( p, ∇ · ω)Ω + (
η(∇u + (∇u)T), ∇ω)

Ω
+ 1

Ca
(∂sr, ∂sω)Σ3 (B4a)

− 1
Ca

(ν, ∇s · ω)Ξ + 1
Ca

(
cb∂s

(
κ

|∂xq|
)

+ 3cb

2
κ2∂sy − γ ∂sy, ∂s(|∂xq|ω · n)

)
Ξ

+ γ1 − γ2

Ca

(
(|∂xq|ω1)|Λr − (|∂xq|ω1) |Λl

) = 0, ∀ω = (ω1, ω2) ∈ U,

(∇ · u, ϕ)Ω = 0, ∀ϕ ∈ P, (B4b)(
∂y
∂t

, f
)

Ξ

+ (|∂xq|u · n, f )Ξ = 0, ∀f ∈ H1([−1, 1]), (B4c)

ls
μ1

(∂sν, ∂sg1)Σ1
+ Ca (∇s · u, g1)Σ1

+ 1
μΛ

(
[[ν]]1

2g1

) ∣∣∣
Λ

= 0, ∀g1 ∈ V1, (B4d)

ls
μ2

(∂sν, ∂sg2)Σ2
+ Ca (∇s · u, g2)Σ2

− 1
μΛ

(
[[ν]]1

2g2

) ∣∣∣
Λ

= 0, ∀g2 ∈ V2, (B4e)

(ṙ, ψ)Σ3
− (u,ψ)Σ3

= 0, ∀ψ ∈ H1([0, 1]) × H1
0([0, 1]), (B4f )(

κ

|∂xq| , β

)
Ξ

+ (∂sy, ∂sβ)Ξ = 0, ∀β ∈ H1
0([−1, 1]), (B4g)

where w|Λl and w|Λr denote the value of w at the left and right contact lines, respectively;
η takes the value η1 in Ω1 and η2 in Ω2; and γ takes the value γ1 on Σ1 and γ2 on Σ2. The
operator ∂s represents (1/|∂xq|)(∂/∂x) on the sheet and (1/|∂ζ r|)(∂/∂ζ ) on the fluid–fluid
interface. The inner products in the above equations are defined as

(u, v)Ω =
2∑

i=1

∫
Ωi(t)

u · v dx, (B5a)

(u, v)Σ1 =
∫ xr

xl

u(x)v(x)|∂xq| dx, (B5b)

(u, v)Σ2 =
∫ xl

−1
u(x)v(x)|∂xq| dx +

∫ 1

xr

u(x)v(x)|∂xq| dx, (B5c)
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(u, v)Ξ = (u, v)Σ1 + (u, v)Σ2 , (B5d)

(u, v)Σ3 =
∫ 1

0
u(ζ ) · v(ζ )|∂ζ r| dζ. (B5e)
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