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Abstract

A category V is called universal (or binding) if every category of algebras is isomorphic to a full
subcategory of V. The main result states that a semigroup variety V is universal if and only if it
contains all commutative semigroups and fails the identity x"y" = (xy)n for every « > 1. Further-
more, the universality of a semigroup \ riety V is equivalent to the existence in V of a nontrivial
semigroup whose endomorphism monoid is trivial, and also to the representability of every monoid as
the monoid of all endomorphisms of some semigroup in V. Every universal semigroup variety contains
a minimal one with this property while there is no smallest universal semigroup variety.

1980 Mathematics subject classification (Amer. Math. Soc): primary 18 B 15, 20 M 07; secondary 20
M 15, 08 A 35.

1. Introduction

Every monoid (that is, a semigroup with an identity element) is isomorphic to the
monoid of all endomorphisms of some semigroup and there exist arbitrarily large
semigroups with a given endomorphism monoid. This is just one consequence of
the universality of the category of all semigroup homomorphisms established in a
pioneering article [3] of Z. Hedrlin and J. Lambek; for a somewhat stronger
result, see V. Trnkova [11], or [10]. From this result and from [12] it also follows
that there are rigid semigroups of every infinite cardinality.

These claims obviously fail in small varieties (equational classes) of semigroups:
for instance, every element of a semilattice constitutes a one-element subalgebra
and hence each constant self-map of a semilattice is one of its endomorphisms.
The present note aims to characterize varieties of semigroups that are universal
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144 V. Koubek and J. Sichler [2 ]

when considered as categories. It is somewhat surprising that this characterization
also singles out semigroup varieties representing all monoids as endomorphism
monoids of their members.

Recall that a category A is universal (or binding) if every category of algebras is
isomorphic to a full subcategory of A. An object R of A is rigid if it has only the
identity as its endomorphism. Every universal category contains a proper class of
nonisomorphic objects with a given endomorphism monoid [5] and hence also a
proper class of nonisomorphic rigid objects. For other consequences of universal-
ity and a comprehensive presentation of various universality results, the reader is
referred to A. Pultr and V. Trnkova [7].

To formulate the main result, call a semigroup identity/>(.x,...,/) = q(x,. ..,t)
balanced if the total degree of each variable x in p equals its total degree in q. A
semigroup variety V is balanced if it is definable by balanced identities alone.
Thus, for instance, the variety C of commutative semigroups is balanced and, in
fact, a semigroup variety is balanced if and only if it contains C. Commutative
semigroups do not form a binding category since the «th power law x"y" = (xy)n

valid in C for all positive n implies that the mapping assigning x" to every element
x of any such semigroup is one of its endomorphisms.

THEOREM 1.1. A semigroup variety V is binding if and only if it is balanced and
fails the nth power law for every n > 1.

From a point of view of universal algebra Theorem 1.1 appears to be one of the
few structural characterizations of binding subvarieties of a given variety; an
early example of a result of this type concerning unary varieties can be found in
[6]. The only complete characterization of binding unary varieties [8] uses
categorical terms.

Since the non-universality of a semigroup variety manifests itself already on its
one-object subcategories, the following characterization is also obtained.

THEOREM 1.2. For any semigroup variety V the following are equivalent:
(1) V contains a nontrivial rigid semigroup,
(2) V has arbitrarily large rigid objects,
(3) for any monoid M the variety V contains arbitrarily large semigroups with

endomorphisms monoids isomorphic to M.
(4) V is universal.

A variety is group-universal if every group is isomorphic to the full automor-
phism group of an algebra from V. Every universal variety is also group-universal.
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\^\ Universal varieties of semigroups 145

It may be of some interest to point out that [2] describes all group-universal
varieties of semigroups (for example, semilattices form such a variety), and that
group-universal unary varieties are characterized by [9].

2. Equationally definable semigroup homomorphisms

This section establishes a necessary condition for universality and characterizes
varieties satisfying an nth power law.

LEMMA 2.1. Any semigroup variety which is not balanced contains only trivial
rigid semigroups.

PROOF. If the total degree of p differs from that of q, then an identity

xm+n _ xm ^ j j OT) M > o is obtained if all variables ofp = q are identified. If the
total degrees oip and q both equal t and x occurs r times inp, substitute x2 for all
variables of p = q distinct from x to arrive at an identity x2'~r = x2'~s in which 5
is the total degree of x in q. We see that an identity of the form xm+n — xm with
m, n > 0 follows from any non-balanced semigroup identity. Now x

m+mn — xm,
and the identity x2mn = xmn is obtained; the constant mapping whose value is
xmn is an endomorphism of any semigroup satisfying/? = q. Such a semigroup is
rigid only if it is trivial.

LEMMA 2.2. No nontrivial semigroups satisfying an nth power law for some n > 1
are rigid. Moreover, there are monoids not representable as endomorphism monoids
of such semigroups.

PROOF. If x"y" = (xy)" in a semigroup S, then the mapping f{x) = x" is an
endomorphism of S commuting with all other endomorphisms of S. Whenever the
center of the monoid to be represented by endomorphisms of S is trivial, the
nonbalanced identity x" = x must be satisfied in S and hence S has a constant
endomorphism with the value x"~x for each element x of S. Therefore no monoid
without left zeros whose center is trivial can be represented and, in particular,
each rigid semigroup S satisfying the nth power law for some n > 1 is trivial.

Since every binding category contains a proper class of nonisomorphic rigid
objects the claim below follows immediately.

COROLLARY 2.3. / / a semigroup variety V does not contain C or if it satisfies the
nth power law for some n>\, then there exist monoids not occurring as endomor-
phism monoids of semigroups from V; thus such a variety is not universal.
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From the properties of categorical universality mentioned earlier it is now
possible to conclude the validity of the implications (4) -»(3) -»(2) -»(1). It is
therefore enough to show that every balanced semigroup variety V failing the nth
power law for every n > 1 is universal. First we characterize these varieties.

Let V({a, b, c, d, e}) denote the semigroup freely generated by {a, b, c, d, e] =
A in a balanced variety V. Assume that for the least congruence 6(abc, de)
containing the pair {abc, de}

(5) {anb"cn, d"e"} e 0(abc, de) for some n > 1;

note that (5) holds if V satisfies the nth power law. If / is a homomorphism of
V(A) into V({x, y, z}) such that/(a) = f(d) = x,f(b) = y,f(c) = z, and/(e) =
yz, then the kernel of/identifies abc with de. By (5) we obtain xny"z" = x"(yz)n,
so that

(6) xn(yz)" = x"y"z" = (xy)"z" are identities of V,
where the second identity follows similarly. Furthermore,

(7) for N = n2, both xnyNzN = xn(yz)N and xNyNzn = (xy)Nzn are identities
ofV.

To prove the first identity set v—y", t — z"; then

"-1 = xn{yz)"ynzn(vt)n-2 = x"(yz)2"ynzn(vt)"-3

= ... = X"{yz)(n-^nynzn = x"(yz)N

follows by repeated applications of (6). In addition to (5), suppose
(8) {arbr, drer} G 6(ab, de) for some r > 1.

The congruence 6{ab, de) is the transitive closure of the set of pairs of the form
{BabC, BdeC} with (possibly empty) words B, C in a, b, c, d, e. Since V(A) is a
free algebra in a balanced variety, the total degree of U equals that of W
whenever {U, T], {T, W) are two such pairs. Thus if (8) holds, then all elements
occuring in pairs {BabC, BdeC} of any string connecting arbr to dTer have total
degree 2r > 2; in particular, at least one of B, C is a nonempty word. Consider a
homomorphism g of V(A) into V({x, y}) defined by g(a) = xN, g(b) = yN,
g(c) = g(d) = (xy)n, g(e)-(xy)"<-"~i). Using (7) it is easily verified that
g(t)g(ab) = g(t)g(de) and g(ab)g(t) = g(de)g(t) for all t G A; since at least
one of the words B, C is nonempty, it follows that g(BabC) = g(BdeC) for each
pair {BabC, BdeC} contained in any string connecting arbr to drer. Therefore

xNryNr = g(a'-/,'-) = g(drer) = (xy)Nr with Nr>\. This proves the characteriza-
tion below, for the converse implication is trivial.

PROPOSITION 2.4. A balanced semigroup variety V satisfies the kth power law for
some k> \ if and only if (5) and (8) hold in the five-generated \-free semigroup.

https://doi.org/10.1017/S1446788700024617 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024617


I s 1 Universal varieties of semigroups 1 4 7

The failure of (5) or of (8) will be used to construct two full embeddings of a

category of graphs into V in the last section. In addition, extensions of semi-

groups by elements of infinite prime height will be employed in a manner

analogous to that used by L. Fuchs to build large indecomposable abelian groups

in [1].

3. Elements of infinite p-height

Throughout this section, let V be an arbitrary balanced semigroup variety. For

an arbitrary nonempty set Y, let V(Y) denote the semigroup freely generated by

Y in V, and let R denote the additive semigroup of all non-negative rational

numbers. Note that R lies in the variety V by virtue of its commutativity. Let N

denote the set of all positive integers.

An element s of a semigroup S is said to have an infinite p-height in S if there

are elements s = s0, st,... ,st,... such that (si+l)
p = s, for all non-negative

integers i.

For an arbitrary subset W of V(Y) let Z be the union of Y with W X N. Let P

be an arbitrary mapping of W into the set of all prime numbers, and let S denote

the quotient of V(Z) modulo the least congruence 6 satisfying

(9) (w, i + \)P(w)6(w, i) for all (w, i) E W X N,

(10) (w, l)pW6w for all w E W.

There exists a homomorphism h of V(Z) into Rv such that, for x, y E Y,
[h(y)](x) = Q\fy¥= x, [h(y)](y) = 1, and h(w, i) = />(w)-'/i(w) for (w, i) E W
X N. It is easy to verify that the kernel of h satisfies (9) and (10); from the
definition of S it now follows that there exists a homomorphism t: S -> RY such
that h = t o /where/is the canonical homomorphism with Ker(/) = 6. Clearly,
all but finitely many components [t(s)](y) of t(s) vanish, and for every prime
number p the sequence t(s) is of infinite /^-height whenever s is.

Let Wp be the set of all w £ W with P(w) = p\ we aim to show that all
elements of S with infinite /̂ -height lie in a subsemigroup Sp of S generated by
f(Wp X N).

To this end, let s E S have infinites-height. If a is an upper bound of [t(s)](y)
foiy E Y, choose an integer k large enough to satisfypk > a. Since t(s) = pkt(sk)
for the/>*th root sk of s, all values of t(sk) are positive rationals smaller than one,
and thus we may assume that

(U)[t(s)](y)< 1 for ally E Y.
Note that every s satisfying (11) belongs to the subsemigroup [f(WX N)] of S
generated by f(WX N).
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Assume that s = f(u(w, j)v) for some u, v G V(Z) and let P(w) = q ¥^p.
Choose y e Y occurring in w. Then [t(s)](y) = aq'J + b with a nonzero integer a
and a ^-integer b. If ŝ  is a/»*th root of s, then t(s) - pkt(sk), and [r(jt)](><) =
akq~' + bk for an integer ak and a ^-integer bk. Hence aq'j + b = pkakq~' + pkbk;
since this rational and all the additive terms of the latter equality are between 0
and 1, aq'j = pkakq~' follows. Thus a is divisible by arbitrarily high powers of/?;
this contradiction shows that every element of 5 whose /^-height is infinite must
belong to Sp.

LEMMA 3.1. Any element of S of infinite p-height belongs to Sp= f[WpX N].

For every v G V(Z) set v(v) = {y G Y; [h(v)](y) > 0}; note that c(y) - {y}
for all;' G Y, c(w) = c(w,/) for all (w, i) G WX JV and c(o,o2) = c(u,) U c(»2)
if t>, G V(Z). It is easily seen that c maps V(Z) onto the semilattice S(Y) freely
generated by Yand that c has /i (and hence/) as its left factor.

Let A <ZY and assume that both r, s G [/I] are products of at least two distinct
elements of A. Furthermore, let

(12) c(r) n c(s)= 0,
(13) c(w) C A for no w G fF,
(14) c be one-to-one on W,
(15) c(r), C(J) C c(Wp) for no prime/?,

where c(Wp) = U (c(w): w G W ,̂). From (13) we immediately obtain
(16) c(v) C A only if u G [^].
Set S(r, s) = V(Z)/(0(r, s)V6) = S/6(f(r), f(s)) and let g denote the cor-

responding homomorphism of V(Z) onto S(r, s).

LEMMA 3.2. / / r, s are products of at least two distinct elements ofACY and if
(12)-(15) hold, then

(a) g is one-to-one on Z = Y U (WX N),
(b) g[A] is isomorphic to V{A)/6(r, s),
(c) g(v) G g[Wp X N] only ifc(v) C c(Wp),
(d) euery element of S(r, s) with infinite p-height is contained in g[ Wp X N],
(e) g(w, /) is the only P(w)'th root ofwGW that has infinite P(w)-height.

PROOF. Every nontrivial generating pair of the congruence 0 contains an
element v such that c(w) C c(u) for some w E W; since c is constant on the
classes of 6, we see that

(*) if uOv are distinct, then there is a w G W such that c(w) C c(u) = c(v).
Similarly,
(**) if u is an element of a nontrivial class of 6(r, s) then c(r) c c(w) or

C(J) C c(u).
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I71 Universal varieties of semigroups 149

In view of (*) and (13) only trivial classes of 0 intersect [A]. If {BrC, BsC} is a

generating pair of 0(r, s), then BrC G [A] yields c(B) U c(C) C A, so that

BsC G [J4] by (16); thus each class of Ker (g) intersecting [A] is, in fact, a class of

the least congruence 6(r, s) on V(A) identifying r with s. This proves (b).

Similarly, (**) and (15) show that all classes of 0(r, s) intersecting any

[Wp X N] are trivial. For a nontrivial pair {u, v) G 6 with u E[WpX N] we

obtain c(v) C c(W^) by (*); if, in addition, {v, t} G 0(r, s), then a contradiction

with (15) would follow from (*) if v ¥= t. This proves (c). If y G Y, {y, v] G 6 and

{t>, /} G 6{r, s) is a nontrivial pair, then c(r) C c(v) = c ( j ) = {_y} or c(s) C {y}

follow from (*) and (**), contradicting the choice of r, s. Altogether, the kernels

o f / a n d that of g coincide on Y U U ([Wp X N\. p); from (14) and the definition

of h we conclude that h, and therefore also / are one-to-one on Y U (W X N).

This concludes the proof of (a); note also that g[Wp X N] is isomorphic to Sp.

Let E: S -» S(r , 5) be the homomorphism whose kernel is 0(f(r), f(s)). If

a0 G S(r, s) has infinite ^-height, then there are bt G S with E(bi+])
p = £(Z>,),

£ ( 6 0 ) = a0 . To prove (*/), define an auxiliary function M: S -> /? by

M(6) = max{[/(*)](^):y G c(r)} + max{[r(6)](z): 2 G C(J)}.

If {df(r)e, df(s)e} is a generating pair of 0(f(r), f(s)), then M(df(r)e) = M(de)
+ 1 = M(df(s)e) by (12) and the choice of r, s; hence M is constant on each
nontrivial class of 0(f(r), f(s)) and its value is at least one on such a class. Note
also that M(bk) = kM(b) for every positive integer k. Hence M(b) = p'M(bt) > p'
whenever bt lies in a nontrivial class of 0(f(r), f(sj), and this is possible only if
there is an integery such that all bi with / >j lie in trivial classes of 0(f(r), f(s)).
Therefore bt is the pth power of bi+x for all i>j and Lemma 3.1 gives
b, £f[Wp X N]. Hence E(b,) G g[Wp X N] and (d) follows since a0 G [£(6,.)]
for all /.

If g(v) is a />'th root with infinite /?-height of g(tv) for w G W, then g(t>) G
g[Wp X Â ] by (d). Since this subsemigroup is isomorphic to Sp, c(t>) = c(w) and
(14) implies that v — (w, j)k since each [{w} X N] is commutative. Now h{w) =
p'h(v) = p'~jkh(w), so that /c = pJ~' and (e) is proved.

Thus we may assume that, under the hypothesis of Lemma 3.2, S(r, s) is
generated by Y U (W X N) and that ^ C 7 generates F(,4)/0(r, 5) in S(r, 5).

4. The construction

An undirected graph is pair (X, /?) in which /? is a set of two-element subsets of
the set X. The category G of all connected undirected graphs and their compatible
maps (that is, maps /: X -* X' with {/(*), /(>0} G /?' for each {x, y) G /?) is
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binding [4]. To prove that a semigroup variety V is binding it is enough to
construct a full and faithful functor F: G -» V; recall that F is full if every
morphism v: F(G) -» F(G') is of the form v = F(g) for some morphism g:
G -> G' of G, and faithful if it is one-to-one on each Hom(G, G').

From now on, let V be a balanced semigroup variety failing the A:th power law
for every/r > 1.

Let 5 = {a,b,c,d,e,u,v},A = B\{u, v), and let (X, R) G G. Set Y(X) = Y
to be the disjoint union of X with B. For / = 1, . . . , 10 let Wt = {kl}, where kl is
the product of k G A with / G {«, v) in V{Y) and the singleton sets Wi are
pairwise disjoint. Furthermore, let Wn consist of all products ux with x G X, and
set Wn - {vxy: {x, y) G R). Let W= U(Wi: / = 1, . . . , 12), select distinct
prime numbers/?, and define a mapping P o n Why P(w) — pt for w G Wt. Next,
let r0 = ab, rl — abc, s = de and note that these elements satisfy the hypotheses of
Lemma 3.2. Denote 0, = 0(rj, s) for/ = 0,1 and define Fj(X, R) as the quotient
of V(Y U (W X N)) modulo the least congruence 9j(X, R) containing both 0, and
6 defined by (9) and (10).

For a compatible mapping/: (X, R) -»(A", /?') define/4" a s / o n Z, / ^ (r) = r
for t G 2?; if F(/H") is the free extension of/^ to the semigroup V(Y), define/*:
V(Z) - V(Z') by f*(w, i) = (V(r )(w), i), A») = nf)(v) on K(7). Only a
routine computation is needed to verify that /* maps each class of #,( X, R) into a
class of 9j{X', R'); hence there is a semigroup homomorphism / * ( / ) : Fj(X, R) ->
Fj(X', R'). It is also easily seen that Fj is a functor; since (12)—(15) are satisfied,
Lemma 3.2(a) applies and hence Fj is a faithful functor fory — 0,1.

Next we shall consider a semigroup homomorphism H: Fj(X, R) -» /^(A", /?').
Let A: G yl; there are distinct primes p, q such that (ku, 1), ( to , 1) are of infinite
/>-height, ^-height respectively. Hence H(ku, 1) has infinite ^-height; from the
definition of Fj(X', R') and from Lemma 3.2(d) we conclude that H(ku, 1) is a
power of some (ku, m). Similarly, H(kv, 1) is a power of some (kv, n). From
ku — (ku, \)p it follows that H(k) is a factor of some power of (ku, m) and,
analogously, a factor of a power of (kv, n). Hence c(r) C c(Wp) n c(Jf^) = {&}
for any r with g(r) = H(k) by Lemma 3.2(c); in other words, H(k) is a power of
A:. A similar argument applies to u and t>; thus / / (£) is a power of fc for all k G 5.
If, say, / / (a ) = a" and H(u) = ur then a"«r = H(au) has infinite/;-height only if
it equals to a power of some (au, i): see (d) of Lemma 3.2 and note that
Wp — {au}; this is possible only if n = r. Since this argument applies to all pairs
from A X {u,v} we conclude the existence of a positive n such that H(k) = k"
for all k G B. In particular, a"6" = d"e" must hold if y = 0 and a"bnc" = d"e"
fory = 1. In view of Proposition 2.4 and (b) of Lemma 3.2 there is ay such that
n = 1 is the only possibility, that is, the homomorphism H: Fj(X, R) -> Fj(X', R')
fixes all elements of [B].
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[9 ] Universal varieties of semigroups 151

Every x G l i s contained in some {x, y) E R and hence ux G Wn, vxy G Wn\
there are distinct primes p , q such that ux has infinite /^-height and vxy has
infinite ^-height. From Lemma 3.2(d) it follows that uH(x) = H(ux) G g[Wp X
N] and vH{x)H(y) G g[Wq X N). Now H(x) is a factor of both of these
elements, so that c(t) C c(Wn) n c(Wu) = X' for every t satisfying H(x) — g(t)
follows from Lemma 3.2(c). Therefore H(x) = xtx2 • • • xk\ on the other hand,
uxxx2 • • • xk G g[Wu X N] only if k = 1. We conclude that H(x) G X', so that
the restriction/of H to the subset X of Z = X U B U (WX N) maps X into X'.
Finally, an element vf(x)f(y) = H(vxy) is of infinite ^-height only if
{/(*)> /(.y)} G ^ ' , thus / is a compatible mapping of (A', R) into (X\ R'). In
fact, / / coincides with/^" on Y = X U B. Since / / preserves Wk C [7 ] for every k,
it easily follows from Lemma 3.2(e) that H = Fj(f); this shows that the functor Fj
is full and thus finishes proofs of both theorems.

5. Concluding remarks

There is no smallest universal semigroup variety: the intersection of varieties
given by xyzt = yxzt, xyzt = xytz respectively satisfies the third lower law, while
any (xy)n can only be equal to a polynomial of the form Axy, xyA respectively,
with A of total degree 2(« — 1), so that every nontrivial wth power law fails in
these balanced varieties. Each semigroup variety Vn given by the single identity
x"y" — (xy)" for n > 1 is a nonextremal dually compact element in the dually
algebraic lattice of all semigroup varieties. The intersection of a chain of varieties
not contained in any Vn cannot be contained in any Vn either. In view of the
presented characterization, Zorn's Lemma shows that every universal semigroup
variety contains a minimal universal one. This partially solves the semigroup case
of Problem 7 posed by A. Pultr and V. Trnkova [7]; a complete solution should
characterize minimal binding varieties structurally.
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