
Acta Genet Med Gemellol 39:173-180 (1990) 
©1990 by The Mendel Institute, Rome 

Sixth International Congress 
on Twin Studies 

Incorporation of Twins in the Regressive Logistic Model 
for Pedigree Disease Data 

J.L. Hopper1 . J .B . Carlin2, G.T . Macaskill1 , P.L. Derrick1, L.B. Flander3, 
G.G. Giles4 

1 Faculty of Medicine Epidemiology Unit, and2 Department of Community Medicine, The Uni­
versity of Melbourne; 3Department of Social and Preventive Medicine, Monash University; 
4Anti-Cancer Council of Victoria, Australia 

Abstract. Segregation and twin disease concordance analyses have assumed a theo­
retical underlying liability following a multivariate normal distribution. For reasons 
of computation, of incorporation of measured explanatory variables, and of testing 
of fit and assumptions, newer analytical methods are being developed. The regres­
sive logistic model (RLM) relies on expressing the pedigree likelihood as a product 
of conditional probabilities, one for each individual. In addition to logistic regres­
sion modelling of measured epidemiological variables on disease prevalence, there is 
modelling of vertical transmission, of transmission of unmeasured genotypes and of 
sibship environment. This paper discusses methods for the analysis of binary traits 
in twins and in pedigrees. Some extensions to the RLM for pedigrees which include 
twins are proposed. These enable exploration of twin concordance in the context of 
the twins' common parenthood, the sibship similarities within the family, and the 
twins' similarity in age, sex, genes and environment. 
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INTRODUCTION 

Segregation has been denned [6] as "the statistical methodology used to determine 
from family data the mode of inheritance of a particular phenotype, especially with 
a view to elucidating single gene effects". Following the seminal paper by Elston 
and Stewart [5], analysis of binary disease status data (affected, non-affected) on 
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individuals in pedigrees with the aim of detecting Mendelian ratios has been based 
on a specific assumption. This proposes that there exists a normally distributed 
random variable called liability, and that an individual is affected if and only if 
his or her liability is greater than some parameter called the threshold. Statisti­
cal inference is based on maximum likelihood theory, and requires calculation of 
the likelihood of a set of observed pedigree data under an assumed model. This 
likelihood is expressed in terms of the multivariate distribution of the theoretical 
liability, and of parameters representing various modes of inheritance and factors 
relevant to expression of the disease, such as age, sex, and age of onset. 

Statistical analyses of disease concordance in twin pairs, and in twin families, 
have also relied on a theoretical underlying liability, usually assumed to have a 
multivariate normal distribution [21]. Kramer and Corey [16] proposed a model for 
the analysis of twin kinship affection data based on a logistic function of liability. 

It has been found that the computation time of these multivariate liability 
models increases rapidly as the size of pedigree increases, with severe practical 
limitations. These models are also limited in their ability to incorporate measured 
explanatory variables realistically and efficiently, and in their ability to test the 
fit of models and the adequacy of underlying assumptions. Consequently other 
approaches have been developed for the analysis of human pedigree data [eg, 9], 
and more generally of correlated binary data when each binary observation may 
have its own covariates, using generalised estimating equations [eg, 19,20]. The 
latter is a partially non-parametric approach, designed to deal with large "blocks". 
It focusses on modelling the marginal expectation (or probability of affection), 
treating correlations within blocks/pedigrees as nuisance parameters. It is therefore 
not appropriate when the correlations themselves are of scientific interest, as in 
pedigree analysis, because inference between different correlational representations 
is not possible. 

The regressive logistic model (RLM) [4] relies on expressing the pedigree like­
lihood as a product of conditional probabilities, one for each individual. It applies 
logistic regression modelling to measured epidemiological variables on disease preva­
lence, while concurrrently allowing modelling of vertical transmission, of transmis­
sion of unmeasured genotypes and of sibship environment. 

In this paper, the analysis of binary pedigree data by models which do not 
make the liability assumption will be examined. In particular, the RLM will be 
described, and some ideas applicable to families which include twins will be pre­
sented. Development of these approaches has been motivated in part by a 1968 
population-based study of asthma symptoms in over 8,000 children born in 1961 
attending school in Tasmania, and in their parents and siblings. 

STATISTICAL MODELS 

Consider a group of n related individuals. Let Zi be the disease status (1 = affected, 
else 0) of individual i , i = 1 , . . . , n. Suppose there is a set of m measured covariates 
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Xi = (Xn,... ,Xim)', with the matrix X = ( T j , . . . , X „ ) . For convenience, the 
dependence of 

(l) m = P(zi = i\x'i) 

on these, and on other explanatory variables, is modelled by a linear logistic func­
tion, ie, for any probability n, logitT = log[7r/(l — TT)] is a linear function of the 
variables. Thus in general 

(2) logit P(Zi = 1|T.) = 7 o + 7 l* i l + • • • + ImXim • 

Following [8] let pij denote the correlation between Z,- and Zj for any i and j 

(assumed to be independent of ~j?i and Ttj); ie 

E(ZiZj) — Ti'Tj 
(3) Pij = 

T.Tj(l - f i X 1 -*j) 

For a pair of individuals, each of the 2 x 2 = 4 probabilities covering all possible 
combinations of outcomes can now be written as 

P(Z1,Z2\X) = 

(4) 

= {1 + P12M1 - T l M l " T2)]-1/2(Z! - 7n)(Z2 - » 2 ) } n * f ' ( l " 7 r . ) 1 " Z ' • 
i = l 

The requirement that the expression in (4) be non-negative places severe restrictions 
on the range of possible values for the p;;-, for given TTJ and Kj [see 11,20]. 

For groups of size n = 3, one can similarly write 

p(zuz2,z3\x)=n»f<(1 - ^y~z'-
•=i 

(5) • { l + ^ ^ [ , , . ( 1 - »,-)*i(l - T ; ) ] - 1 / 2 ( ^ " *i)(Zj ~ »i) 

+ Pl23[Tl(l ~ Tl)T2(l - T2)T3(1 ~ *3J\~1/2(Zl - TT1)(Z2 ~ TT2)(Z3 - 7T3)} , 

where 

Pl23 = E[{Zi - *i)(Z2 - w2){Z3 - *a)][*i(l ~ *i)*a(l - *2)*s(l - T 3 ) ] " 1 / 2 • 

Although certain choices of pi23 require only specification of the ?rs and ps and 
avoid restrictions [eg, 20], generalization of this approach to higher values of n is 
cumbersome and computationally demanding [2]. 
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A Log-Linear Model 

A log-linear model (LLM) for binary pedigree data [10,11] allows specification of 
the 7rs in terms of measured explanatory variables, for example as a linear logistic 
function as in (1), and estimates the correlations pij under certain restrictions 
borrowed from log-linear modelling [7]. In the special case of pedigrees of regular 
size and structure, it is equivalent to fitting a log-linear model with no second or 
higher order interactions, and in theory this assumption can be tested by modelling 
higher order interactions. It has been applied to data sets consisting of pedigrees of 
varying sizes of up to ten individuals [10,12]. Like the multivariate normal model for 
continuous pedigree traits [9,17], the LLM makes assumptions about the structure 
of data within pedigrees which allow information to be pooled across pedigrees 
of arbitrary size and structure. Both are defined in terms of 'mean' components 
and of 'associations' between pairs of individuals, and can incorporate measured 
environmental and genetic variables. 

The LLM has been used to analyse a pair of binary traits (having ever had 
asthma/hayfever) measured in almost 3,000 Australian twin pairs [15]. A higher 
cross-correlation among identical (MZ) pairs, compared to fraternal (DZ) pairs, 
between having asthma in one twin and having hayfever in the other twin, was 
shown to be explained by higher MZ correlations both in asthma and in hayfever. 
That is, there was putative evidence of genetic factors both for asthma and hayfever, 
and that a component of these factors was common to both allergies. 

The LLM is in essence a descriptive model, and can make only indirect in­
ference on genetic and environmental effects by reference to estimated correlations 
between different categories of relatives (eg, MZ vs same-sex DZ twins), as in [15]. 
This is in contrast to classic biometric modelling based on partitioning of the vari­
ance according to genetic and environmental sources of error. 

The Regressive Logistic Model 

The regressive logistic model (RLM) extends simple Markovian structures for de­
pendence, introduced in regressive models for continuous traits [3], to binary traits 
through use of the logistic function [4]. The RLM allows flexible modelling of verti­
cal transmission, and can incorporate explanatory variables and major gene effects 
for segregation and linkage analyses. 

A limited modelling of horizontal transmission has been proposed by specifying 
an appropriate sequence among the siblings, and thereby invoking some kind of 
order in the pedigree. This has been achieved by assuming that shared sibling 
environment is determined statistically either by parents and older siblings, or by 
siblings closer in birth order. However, if there are twins in the sibship (ie, siblings 
of exactly the same age) this approach will break down. 

For illustrative purposes, consider a nuclear family of size n consisting of at 
least one parent and s siblings. We shall allow for the possibility that some of these 
siblings may be twinned. Let Zi,... ,Z, correspond to the siblings, and ZM and 
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ZF to the mother and father respectively. The RLM breaks down the likelihood 
of the family, in the first instance by generation, separating parents from offspring. 
That is, 

(6) P(z'\X) = P{ZM,ZF\X)P{Zu...,Zs\ZM,ZF,X). 

The Class A RLM assumes that the affection status of an individual depends 
only on that of its parents and its own measured covariates, and that the parents 
are independent. That is, 

3 

(7) P(2\X) = P(ZF\?tM)P(ZF\JtF)YlP(Zi\ZM,ZF,?ti), 
1 = 1 

where i goes from 1 to s. The dependence of Zi on ZM , ZF, and -X", is expressed 
in terms of logistic modelling by writing, for example, 

(8) logitP(Z>\ZM,ZF ll t i) = a + yMZM + yFZF + 7 lJfn + • • • + jmXim . 

For the parents, j = M, F, we may write 

(9) logitP(Zj[Xj) = 0 + 7lXjl + -.- + 7mXjm . 

This model is expressed in terms of the following parameters: a, the baseline 
for siblings and ft, the baseline for parents, the regression coefficients JM , yF, and 7,-
representing the effects on log odds of risk due to an affected mother, to an affected 
father and to each of the measured covariates, respectively. RLMs can incorporate 
a major unmeasured gene [4], a common sibling environment [13,14], and several 
ascertainment corrections can be easily invoked [14]. 

Incorporation of Twins in the RLM 

A method for accommodating a twin pair among the siblings (for simplicity denoted 
by the first two siblings) is to write the joint distribution of the twin pair, condi­
tional on their parents, expressing any similarity after taking into consideration the 
parental status (which is identical for the twins) by a correlation parameter. That 
is, 

(10) P(2\X) = 

» 
= P(ZM\XM)P(ZF\XF)P(ZuZ2\ZMlZF,lt1,lt2)]lP(Zi\ZM,ZF,lti), 

t=3 

where the joint distribution of Z\ and Z2 is given by (4) with TT expressed by (8). 
Information on the vertical transmission effects are derived from consideration of 
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the observed affection status of parents and all their siblings (twins included), and 
this is used to derive the estimated affection probability ir of each individual. The 
correlation between twin pairs is then concurrently estimated, taking any parental 
effects into consideration. Therefore this model allows testing of the hypotheses 
that some or all of any observed concordance in affection status of siblings and of 
twins can be explained by common parentage, and that (categories of) twins are 
more highly correlated than siblings. Note that equation (10) can be extended by: 
(a) modelling the pair of parents in the same way as a pair of twins, and estimating a 
spouse concordance, and (b) proposing a LLM for the joint distribution of siblings, 
and estimating a common sibling concordance. 

Incorporation of Random Effects in the RLM 

An alternative approach, in the spirit of classical biometric modelling, is to intro­
duce random effects to model associations between relatives due to common familial 
factors. Thus, for a sibship which includes a twin pair, we may rewrite (8) as 

(11) \o&l P(Zi\ZM,ZF,It it6,rj) = a + -(MZM+lFZF + y ^ + nTj + 6 , 

where 7} = 1 if sibling i is one of a twin pair, and 0 otherwise, and r) and 6 are 
independent normally distributed random effects with mean 0 and variances a\ and 
aE respectively. That is, associated with each sibship there is a random contribution 
6 to the logit which induces a correlation between siblings and increases the variance 
of the distribution of the number of cases in sibships. Similarly associated with the 
twin pair there is a further random contribution rj to the logit which induces an extra 
correlation between twins. The likelihood of a family is now obtained by modifying 
(7) to include an integration of the conditional probabilities of affection given the 
value(s) of the random effect(s) over a univariate, or in the case of twins a bivariate, 
normal distribution. In the simpler case of no twin effects, the contribution to this 
marginal likelihood from a sibship is 

(12) P(Z*\X) = P(ZM\JtM)P(ZF\JtF) [f[P(Zi\ZM,ZF,??,,6)4(6,<T2
E)d6, 

where <f>(6,crE) is the probability density function of a normal distribution with 
mean 0 and variance aE. When a twin effect is incorporated, the integral in (12) 
becomes a double integral over two independent normal distributions: 

P(2\X) = P(ZM\~%M)P(ZF\TF)-

(13) 
/ / f[P(Zi\ZM,ZF,lti,6,r1)<j>(6,<r2

E)<l>(r1,4)d6dr1. 

— OO —OO 
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The integration can be handled efficiently and accurately by Gauss-Hermite nu­
merical quadrature methods, although computation time increases substantially 
for the double integral. Similar methods for likelihood computations in random 
effects logistic regression models have been used by Anderson and Aitkin [1]. 

For all these models, parameter estimation and statistical inference can be 
performed by maximum likelihood methods using an iterative numerical procedure, 
such as SEARCH [18]. The use of approximate confidence intervals based on the 
profile likelihood is recommended because of the difficulties in applying classical 
tests of hypotheses at the boundary of the parameter space [1]. 
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