
ON THE LATTICE OF TOPOLOGIES 

JURIS HARTMANIS 

In many cases Lattice Theory has proven itself to be useful in the study of 
the totality of mathematical systems of a given type. In this paper we shall 
continue one of such studies by investigating further the lattice of all topologies 
on a given set 5. A considerable amount of research has been done in this 
field (1; 2; 3; 5; 6). This research, besides satisfying the intrinsic interest in 
the lattice theoretic properties of this lattice, has aided the study of inter­
connections of different properties of point set topologies. 

We shall show that the lattice of all topologies on a set consisting of more 
than two elements has only trivial homomorphisms. On the other hand it 
will be shown that this is not true for the lattice consisting of all JYtopologies 
on S and the lattice of complete homomorphisms will be constructed in this 
case. We shall also show that the lattice of all topologies is complemented if 
5 is finite. Finally we shall construct the group of automorphisms for the 
lattice of all topologies and for the lattice of all TVtopologies on S. We shall 
conclude with a definition of a lattice theoretic property which clarifies the 
change of properties of the lattice of topologies as we go from the finite to the 
infinite case. 

We shall represent a topology R on the set 5 by the collection of its closed 
sets, R — \Sa}. Il Ri and R2 are topologies on S then Ri < R2 if and only 
if every set closed under Ri is also closed under R2. It can be seen that under 
this ordering the set of all topologies on S forms a complete point lattice. 
The intersection of two topologies Ri and R2 in the lattice is the topology 
whose closed sets are the sets closed under Ri and R2. The union of two topo­
logies Ri and R2 is the topology whose closed sets are intersections of finite 
unions of the closed sets of Ri and R2. Let us denote the lattice of all topologies 
on 5 by LT(S) and similarly let LTi(S) denote the lattice of all 7Vtopologies 
on S. 

We shall now investigate the homomorphisms of LT(S). 

LEMMA 1. If 6 is a nontrivial homomorphism on a point lattice L, then there 
exists a point p of L such that p = 0(6). 

Proof. Let 0 be a non trivial homomorphism on L. Then there exist two 
elements a and b in L, a > b, such that a = b(6). Since L is a point lattice 
there exists a point p such that a Pi p = p and b P\ p = 0. But then p = a 

np = br\p = o. 
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LEMMA 2. If 6 is a homomorphism on LT(S) which identifies at least two distinct 
elements, then a topology of the form {</>, p, S}, p Ç 5, is identified with the zero 
element. 

Proof. The lattice of topologies on the set 5 is a point lattice. The points 
are topologies of the form {0, D, S}, <£ ̂  D (Z S. Thus by Lemma 1 a topology 
of this form is congruent to the zero element, say {<£, D, S} = {(f), S}(6). 
If D = {p}, some p in S, then the lemma holds. Otherwise let p be in D. 
Then the quotients {0, {S - D) V p, D, p, S\ : {</>, (S - D) V p, S} and 
{((>, D, S) : {(/>, S} are perspective. We also observe that the quotient {#, p, S} : 
{<j>, 5} is perspective into the first quotient. But then all these quotients are 
collapsed by the homomorphism 6 since it collapses {0, D, S) : \<j>, S). 

THEOREM 1. There are only trivial homomorphisms on the lattice of topologies 
on a set consisting of more than two elements. 

Proof. Let 6 be a homomorphism which identifies two distinct elements of 
LT(S). Then by Lemma 1 a topology of the form {0, D, S) is congruent to 
the zero element. Assume that D contains at least two distinct elements, say 
p and q. Then by Lemma 2 we have that {</>, p, S} = {$, q, S} = {$, S\. Let 
us denote by R( — p) the topology on 5 whose closed sets are the set S and the 
subsets of 5 which do not contain the element p. Let R{p) denote the topology 
whose closed sets are the void set and all the subsets of S which contain the 
element p. Then we observe that R{—p) C\ R(p) = {<£, 5} and R{—p) W {</>, 
p,S] = I. This implies that R(~p) = 1(6). Thus R(-p) H R(p) = I H 
R(p) = R(p) = {</>,£}. Similarly, it follows that R(q) = {0,5}. Since R(p) 
KJ R(q) — I we conclude that / = {<£, S} which shows that 6 is a trivial homo­
morphism. In the case D consists of a single element, D = {p}, we obtain 
similarly that R(p) = {(/>, S}. From this it follows, if we recall that the set 
5 contains more than two elements, that there exists an element q in S, q ^ p, 
so that {0,5} < {0, q V p, S} < R(p). This implies that {0, q V p, S] = 
{(j>, S). Now we can complete the proof as in the previous case if we set D = 
PV q. 

We shall now show that the result previously derived does not hold if we 
consider only 7\ — topologies on a set S. 

The set of all TVtopologies on S forms a complete sublattice of the lattice 
of all topologies on S. We shall assume that S is infinite since otherwise the 
lattice of TV topologies consists of a single element. It can be seen that LTi(S) 
is not a point lattice and that the join irreducible elements are topologies of 
the form [Fa, D V Fa, S}, where {Fa} is the set of finite subsets of 5 and D 
is a proper infinite subset of S. From this we conclude that if / is a join ir­
reducible element and R is any element of LTi(S) then J P\ R is a join ir­
reducible element, provided that / P\ R ^ 0. We also observe that two join 
irreducible elements are comparable if and only if there exists a finite set A 
such that they induce the same topology on S — A. From this it follows that 
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the only join irreducible elements which contain a point of the lattice are 
topologies of the form {Fa, (S — A) V Fa}, where A is a finite subset of S. 
Note that the points of this lattice are topologies of the form {Fa, S — p, S}, 

pes. 
THEOREM 2. The lattice of the complete homomorphisms of' LTi(S) is isomorphic 

to the lattice consisting of finite subsets of S and the set S ordered under set in­
clusion. 

Proof. First we shall show that to each finite subset A of S there corresponds 
a complete homomorphism 6(A). To see this let Ri be congruent to R2 mod 
6(A) if and only if Ri and R2 induce the same topology on S — A. It can be 
seen that this does define a complete homomorphism on LTi(S) and that to 
two distinct subsets there correspond distinct homomorphisms. 

To complete the proof we shall show that every complete homomorphism 
is of this type. First we shall show that if a complete homomorphism 6 maps 
a join irreducible element J = {FaiD V Fa, S} which does not contain a 
point of the lattice into the zero element then the homomorphism is trivial. 
Let Di be a subset of 5 such that D — Di and D\ — D are infinite. Then 
; U ( f t , A V F « , S ) s {Fa,D!V Fa,DV Fa, ( A A D ) V f t . A V D V Fa,S] 
from which it follows that {Fa, (Dx V D) V Fai S} = 0 and {Fa, (Dx A D) 
V Fa} S} = 0. Proceeding this way we can show that all the join irreducible 
elements are mapped into the zero element. Thus because of the completeness 
of the homomorphism 6 we conclude that it identifies all the elements of 
LTi(S). Assume now that 6 is a non-trivial complete homomorphism which 
identifies two topologies Ri and R2, Ri < R2. Then there exists a join 
irreducible element Ji such that R2 P J\ — J\ and Ri P J\ = J2 ^ J\. Then 
J2 is a join irreducible element or the zero element. If we let J\ = {7^, D V 
Fa, S) then J2 = {Fa, D V A V Fa, S}, where A is a finite subset of 6* and 
D A A = 0. From this we shall show that 6 identifies all topologies which 
agree on S — A. To see this let C be an infinite subset of D such that D — C 
is also infinite. Then the quotients {Fa, D V Fa, S] : {Fa, D V A V Fa, S} and 
{Fa,CW Fa, DVFa,S}:{Fa,CVA V Fa,D V A V Fa, S} are perspective, 
and the quotient {Fa, C V Fa, S} : {Fa, C V A V Fa, S} is perspective into the 
second quotient. From this, since the first quotient is collapsed by 6, we obtain 
that the last quotient is also collapsed. Repeating the same argument for 
{Fa, C V Fa,S}: {Fa, C V Ay Fa,S), {Fa,CV Fa,Ci V Fa, (S -A) V Fa}: 
{Fa, C V A V Fa, d V Fa, S\ and {Fa, (S - A) V Fa) : {Fa, S}, where 
Ci = S - (C V A), we obtain that {Fa, (S - A) V F«} = 0. But then if Mx 

and Af2 are any two topologies which induce the same topology on 5 — A we 
conclude that Ml U {Fa, (S - A) V Fa} = M2KJ {Fa, (S - A) V F«} and 
thus Mi = Af2. It can now be easily seen that if for some other finite set B we 
have that [Fa, (S — B) V Fa] = 0 then all the topologies which agree on 
S — (A V B) are identified by 6. Because of the completeness of the 
homomorphism this holds for the union of any number of such subsets. But 
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for the homomorphism to be non-trivial there must exist a finite set V such 
that two topologies are congruent if and only if they agree on S — V. Note 
that otherwise there would exist a join irreducible element which does not 
contain a point of LTi(S) but which would be mapped into the zero element. 
But this would force the homomorphism to be trivial. This completes the 
proof by showing that there is a one-to-one order preserving correspondence 
between the non-trivial complete homomorphisms on LTi(S) and the proper 
finite subsets of S. 

We shall now investigate the problem of complementation in the lattice of 
all topologies on S. 

THEOREM 3. LT(S) is complemented if S is finite. 

Proof. Assume that S is finite. We shall call a closed non-void set C of a 
topology R minimal if no proper subset of C is a closed set of R. To construct 
a complement Rr of a topology R we pick a point from each minimal set and 
denote this collection of points by A. Let the union of all minimal sets be 
denoted by U. If U = S then let R' be the topology on *S which is generated 
by A and the subsets oi S — A.Iî U (Z S then let R' be the topology generated 
by A V (S — U) and the subsets of S — A. It can be seen that in either case 
R VJ Rf = I and R C\ Rf = 0. 

COROLLARY 1. Let S be a finite set which consists of more than two elements. 
Then R in LT(S) has a unique complement if and only if R = 0 or R = I. 

Proof. From the proof of Theorem 3 we see that if in R, R j* 0, / , a minimal 
closed set consists of more than one element then we have more than one 
way to construct the set A. Thus the complements are not unique. If all the 
minimal closed sets of R consist of a single element than either R = I or the 
union of the minimal sets U C S. In the second case we can construct one of 
the complements Rr as it was done in the previous proof. To construct a 
different complement R" for R we shall proceed as follows. Assume that 
S — U contains at least two distinct elements. If R contains a closed set 
C, C C S, such that p in C, q not in C, and p and q in S — U, then a comple­
ment R" can be chosen to be the topology generated by all subsets of 5 — 
(U V p) and p V q. If R does not contain a closed set C as described above 
then we can let R" be the topology generated by all subsets of S — U and 
p V r, where p in S — U and r in U. li S — U consists of a single element p 
and there is a closed set C in R such that {p} C C C S then let R" = {</>, 
(S — C) V p, S}. In the case if there is no such set C in R we let R" = {</>, p, 
q V p, S}. It is seen that in all cases R" ^ R! and R" \J R = J, R" r\ R = 0. 
This completes the proof. 

The corresponding questions about complements of LT(S) and LT1(S) 
when 5 is an infinite set are interesting problems and have not been answered 
in this paper. 
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We shall now investigate the group of automorphisms of the lattice of 
topologies and the lattice of 7Vtopologies on S. 

We shall say that the points p and q of a point lattice L form a union of 
type n\i p\J q contains n distinct points. 

THEOREM 4. The group of automorphisms of LT(S) is isomorphic to the 
symmetric group on S if S consists of one or two elements or is infinite; otherwise 
the group of automorphisms is isomorphic to the direct product of the symmetric 
group on S with the two element group. 

Proof. Since the lattice of topologies on 5 is a complete point lattice any 
automorphism is characterized by the permutation it induces on the set of 
points of LT(S). If S consists of one or two elements then it can be seen that 
the group of automorphisms of LT(S) is the symmetric group on S. Let us 
now assume that 5 consists of three or more elements. We shall denote the 
collection consisting of topologies of the form {</>, £, S}, p in 5, by n, and 
the collection consisting of topologies of the form {</>, 5 — p, S}, p in Sy by m. 
Then any element from n V m forms a union of type at most three with any 
other point of LT(S). On the other hand, for every point P of LT(S), P not 
in n V m there is a point Q such that Q KJ P is of type four. From this it 
follows that every automorphism maps the set n V m onto itself. Further­
more, any two distinct elements from n or m form a union of type three, and 
an element from n always forms a union of type two with an element from 
m. This implies that every automorphism has to map either n onto n and m 
onto m, or n onto m and m onto n. We shall now show that an automorphism 
which maps n onto n and m onto m corresponds to a permutation of the set S 
and we know that to every permutation of S there corresponds such an auto­
morphism. First let us show that if [<j>, a, S} —» {</>, b, S} then {</>, S — a, S} 
—•» {</>, S •— b,S}. To see this observe that the third point {</>, a V x, S}, 
x y£ a, x in 5, contained in the union of {<£, a, S} and {<£, x, S} forms unions 
of type three with {</>, S — a, S}. Thus its image {</>, a' V x'f S} has to form 
unions of type three with the image of {</>, S — a, S\. Let this image be {</>, 
S — a", S\. But this can hold for all possible x in 5 only if a' = a". Further­
more, if {</>, D, S] not in n V m then p in D if and only if {(/>, p, S] \J {</>, D, S} 
is a union of type two. Thus p in D if and only if p' in D', which shows that the 
mapping corresponds to a permutation on S. It can be seen that the lattice 
operations are preserved under this mapping and that to distinct auto­
morphisms of this type there correspond distinct permutations of S and vice 
versa. By a similar argument one can show that if there exists an auto­
morphism which maps n onto m and m onto n then this automorphism corres­
ponds to a permutation on S followed by a complementation : 

{4>,D,S} -> {4>,D',S} -+ {4>,S - D',S}. 

Such a mapping preserves the lattice operations if S is finite. Thus for every 
permutation on S we have an automorphism which maps the permuted ele-
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ments of their complements. Thus if 5 is finite and contains three or more 
elements the group of automorphisms is isomorphic to the group which is 
the direct product of the symmetric group on 5 and the two-element group. 
If S is infinite then there can be no automorphism which maps n onto m and m. 
onto n because U n < U m and thus the lattice operations are not preserved. 
In this case the group of automorphisms on LT(S) is isomorphic to the sym­
metric group on S. 

THEOREM 5. The group of automorphisms of LTi(S) is isomorphic to the 
symmetric group on S if S is infinite. 

Proof. We recall that the points of LTi(S) are topologies of the form 
{Fa,S — p, S}. Any automorphism on LTi(S) has to map the set of points 
onto itself. Similarly every automorphism has to map the set 8 of join ir­
reducible elements of LTi(S), that is, the set consisting of topologies of the 
form {<£, D V Fa, 5} , D proper infinite subset of S, onto itself. But since any 
topology of LTi(S) can be written as a union of topologies of 8 we see that every 
automorphism is defined by the permutation it induces on the set 2. On the 
other hand, we note that p is in D, S — D infinite, if and only if {Fa> D V Fa, 
S}\J {FajS - p,S} does not cover {Fa, D V FajS}. Similarly p is in D, 
S — D finite, if and only if {Fa, S — p, S} is not contained in {Fa, D V Fa). 
Thus every automorphism is characterized by the permutation it induces on 
the set of points of LTi(S) and every permutation of the set of points defines 
an automorphism. Thus the group of automorphisms is isomorphic to the 
symmetric group on S. 

We shall conclude by giving a definition of a lattice theoretic property which 
clarifies the difference between the lattice of topologies on a finite set and an 
infinite set, and which is in general useful in the study of point lattices. Let L 
be a complete point lattice with the set of points P = {p, q, r, s, . . . , }. If 
i Ç P then let 

Â = A {B\A QB ÇZP]p,q in B and r < p U q implies r in B}. 

DEFINITION. Let L be a complete point lattice with the set of points P. 
Then L is said to be tall if for every A Ç P , U A = a, we have that Â = 
\p € P\p <a\. 

This means that if L is a tall lattice then L is completely determined if we 
know the unions of pairs of points in L and it is the largest possible lattice 
which can be constructed with these given unions of pairs of points. Note 
that if we consider a lattice of subspaces of a geometry (4) then A is the 
smallest subspace which contains the set of points A. The following result can 
now be obtained. 

THEOREM 6. LT(S) is a tall lattice if and only if S is finite. 
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