Small sets with large power sets

G.P. Monro

Abstract

One problem in set theory without the axiom of choice is to find a reasonable way of estimating the size of a non-well-orderable set; in this paper we present evidence which suggests that this may be very hard. Given an arbitrary fixed aleph K we construct a model of set theory which contains a set X such that if $Y \subseteq X$ then either Y or $X-Y$ is finite, but such that K can be mapped into $S(S(S(X)))$. So in one sense X is large and in another X is one of the smallest possible infinite sets. (Here $S(X)$ is the power set of X.)

1. Preliminaries

We work in Zermelo-Fraenkel (ZF) set theory, without the axiom of choice but with the axiom of foundation.

Notations. If $f: X \rightarrow Y$ and $A \subseteq X$ then:
$f^{\prime \prime} A=\{y:(\exists x \in A)(f(x)=y)\} ;$
$X \geq Y$ means that X can be mapped onto Y;
$A \Delta B=A \cup B-(A \cap B)$.
We write $|X|$ for the cardinal of $X, S(X)$ for the power set of $X, S_{K}(X)$ for $\{Y \subseteq X:|Y|<\kappa\}, X^{[n]}$ for $\{Y \subseteq X:|Y|=n\}$. A_{B} is the set of functions from A into $B ; B^{A}=\left|A_{B}\right|, \quad ' X$ is finite' means that X has n elements for some $n<\omega$.

Relative constructibility. We write L for Gödel's constructible universe. If X is a transitive set, $L(X)$ is the smallest transitive

Received 24 January 1973.
proper class which contains X and satisfies $Z F$. It can be shown that, inside $L(X)$, any element of $L(X)$ can be defined from X, an element of L and a finite number of elements of X.

If X is not transitive, by $L(X)$ we mean $L(\operatorname{TC}(X))$, where

$$
T C(X)=\{X\} \cup X \cup(U X) \cup(U U X) \cup \ldots
$$

$T C(X)$ (the transitive closure of X) is the smallest transitive set with X as a member.

Forcing. We follow Shoentield [3], but adopt a different convention for names in the forcing language: for $x \in M$ we take x as a name for x, and we take G as a name for G. We adopt from [3] the notation $H_{K}(A, B)$ for

$$
\left\{f: \operatorname{dom}(f) \in S_{K}(A), \operatorname{ran}(f) \subseteq B\right\}
$$

We note the following symmetry lemma.
LEMMA. Let M be a countable transitive model of ZF, $P \in M$ a notion of forcing, $\pi \in M$ an automorphism of P and $\varphi\left(v_{0}, v_{1}\right)$ a ZF-formula. Then

$$
p\left\|\varphi(G, x) \leftrightarrow \pi^{-1} p\right\| \varphi\left(\pi^{\prime \prime} G, x\right)
$$

where $x \in M$ and $p \in P$.

2. Dedekind-finite sets

In this section all proofs are carried out in $Z F$; no use is made of the axiom of choice.

A Dedekind-finite (DF) set is defined to be a set not equinumerous with any of its proper subsets; a DF cardinal is the cardinal of a DF set. In the absence of the axiom of choice infinite DF sets may exist.

LEMMA 2.1. The following are equivalent;

$$
\text { (i) } X \text { is } D F \text {; }
$$

(ii) $|X| \neq|X|-1$;
(iii) $\omega \neq|X|$.

LEMMA 2.2. For an arbitrary set X, $\omega \leq \star X$ iff $\omega \leq 2^{X}$.
Proof. This is due to Kuratowski ([4], p. 94-95). We say a set X is quasi-minimal (QM) if X is infinite but has only finite and cofinite subsets ($Y \subseteq X$ is cofinite if $X-Y$ is finite). Clearly a $Q M$ set is DF; in fact it is obvious that $X Q M \rightarrow X \not \approx \omega$.

The name 'quasi-minimal' (due to Hickman) arises as follows. By Lemma 2.1 (ii) the only cardinal minimal among the infinite cardinals is ω. However we put an equivalence relation on infinite cardinals thus: $m \equiv m^{\prime}$ if there is $n<\omega$ such that either $m+n=m^{\prime}$ or $m^{\prime}+n=m$. Write [m] for the equivalence class of m, and set $[m] \leq{ }_{1}\left[m^{\prime}\right]$ if $m \leq m^{\prime}$. Then $[m]$ is minimal under the partial order \leq_{1} iff $m=\omega$ or m is QM.

LEMMA 2.3. If $X * \neq \omega$ and $n<\omega$ then $X^{[n]} \not \approx \neq \omega$.
Proof. It is straightforward to prove that if $Y * \neq \omega$ and $Z * \neq \omega$ then $Y \times Z * \neq \omega$. So $X^{n} \neq \omega$, and trivially $X^{n} * \geq X^{[n]}$.

THEOREM 2.4. Let X be QM, K an aleph.

$$
\begin{aligned}
& \text { (i) } k \leq|x| \rightarrow \kappa<\omega \\
& \text { (ii) } k \leq|S(X)| \rightarrow \kappa<\omega . \\
& \text { (iii) } k \leq|S(S(X))| \rightarrow \kappa \leq 2^{\omega} .
\end{aligned}
$$

Proof. Since $X * \neq \omega$ it follows from Lemma 2.2 that X and $S(X)$ are both DF, which establishes (i) and (ii).

We note that $|S(X)|=2 .\left|S_{\omega}(X)\right|$ (this may be seen by associating each infinite subset of X with its complement), and so $|S(S(X))|=\left|S\left(S_{\omega}(X)\right)\right|^{2}$. To establish (iii) it then suffices to show

$$
\kappa \leq\left|S\left(S_{\omega}(X)\right)\right| \rightarrow \kappa \leq 2^{\omega} .
$$

For if λ is an aleph, m any infinite cardinal and $\lambda \leq m^{2}$, then $\lambda \leq m$ (see [2], Lemma 6.13, p. 55).

Suppose then that $f: k \rightarrow S\left(S_{\omega}(X)\right)$ is one-to-one. Set
$f_{n}(\alpha)=f(\alpha) \cap X^{[n]}$. Now $\left\{f_{n}(\alpha): \alpha \in K\right\} \subseteq S\left(X^{[n]}\right)$, and by Lemma 2.3, $X^{[n]} * \omega$, so by Lemma 2.2, $S\left(x^{[n]}\right)$, and thus $\left\{f_{n}(\alpha): \alpha \in \kappa\right\}$, is DF . However $\left\{f_{n}(\alpha): \alpha \in \kappa\right\}$ has a canonical well-order and so is finite, and can be canonically mapped into ω. Combining these canonical maps for each n yields a one-to-one map of $A=\left\{f_{n}(\alpha): \alpha \in \kappa\right.$ and $\left.n<\omega\right\}$ into $\omega \times \omega$. Now $f(\alpha)$ is determined by $\left(f_{n}(\alpha)\right)_{n<\omega}$, which is an ω-sequence of elements of A, and so $f(\alpha)$ can be associated with an element of ${ }^{\omega}(\omega \times \omega)$. It follows that κ can be mapped one-to-one into ${ }^{\omega}(\omega \times \omega)$, and so $k \leq 2^{\omega}$.

3. A large $Q M$ set

In this section we construct the model promised in the abstract. Theorem 2.4 shows why we have to look at $S(S(S(X)))$ rather than some smaller power of X.

Let M be a countable transitive model of $2 F+V=L$, k a (successor aleph) ${ }^{M}$. Then $M F 2^{\lambda}=\kappa$ for some aleph λ of M. We take $\left(H_{K}\left(\left(\lambda_{2}\right) x_{\kappa}, 2\right)\right)^{M}$ as our notion of forcing, with the partial order defined by $p \leq q$ iff $p \supseteq q$. Let G be generic over M with respect to this notion.

LEMMA 3.1. (i) M and $M[G]$ have the same cofinality (cf) function and the some alephs.
(ii) For $\alpha<\kappa$ and $x \in M, \quad\left({ }^{\alpha} x\right)^{M}=\left({ }^{\alpha} x\right)^{M[G]}$.

Proof. We note that K is (regular) ${ }^{M}$. We assume the terms ' μ-closed' and ' μ-chain condition' from [3], §10. Our notion of forcing satisfies the κ^{+}-chain condition (by [3], Lemma 10.3) and is K-closed, so our results follow from [3], Lemma 10.2, and Lemma 10.6 and Corollary.

We now work in $M[G]$ unless otherwise stated. For $f \in \lambda_{2}$ set $G(f)=U\{p(f): p \in G\}$. Note that by $p(f)$ we mean
$\{(\alpha, \beta\rangle:\langle\{f, \alpha\rangle, \beta\rangle \in p\} . \operatorname{Set} G^{*}=\left\{G(f): f \in \lambda_{2}\right\}$. It can be shown by standard arguments that each $G(f)$ is a member of K_{2} and that if $f \neq g$ then

$$
|\{i<k:(G(f))(i) \neq(G(g))(i)\}|=\kappa .
$$

For $r \in K_{2}$ set

$$
[r]=\left\{s \in K_{2}:|\{i<k: s(i) \neq r(i)\}|<\kappa\right\}
$$

Set $X=\left\{[r]: r \in G^{*}\right\}$. Define for $\alpha<\lambda$,
$Y_{\alpha}=\left\{\left[[G(f)],\left[G\left(f^{\prime}\right)\right]\right\}: f, f^{\prime} \epsilon^{\lambda} 2, f^{\prime}(\alpha)=\operatorname{l-f}(\alpha)\right.$
and $f^{\prime}(\beta)=f(\beta)$ for $\left.\beta \neq \alpha\right\}$.
Then Y_{α} is a partition of X into disjoint two-element subsets, and $\alpha \neq \beta \rightarrow Y_{\alpha} \cap Y_{\beta}=\varnothing \cdot$ Set
$Y=\{K: K$ is a partition of X into two-element subsets and $K-Y_{\alpha}$ is finite for some $\left.\alpha<\lambda\right\}$, $Z=\left\{\langle K, \alpha\rangle: K \in Y\right.$ and $K-Y_{\alpha}$ is finite $\}$.

The model which is to contain the large $Q M$ set is $N=(L(Z))^{M[G]}$.
The motivation of the construction is as follows. If we set $N^{\prime}=(L(X))^{M[G]}$ it can be readily shown that $N^{\prime} \models X$ is $Q M$. In constructing N we add enough sets to N^{\prime} to make X large in the desired sense, but not enough to destroy the quasi-minimality of X.

LEMMA 3.2. (i) M, N and $M[G]$ have the same cf function and alephs.
(ii) For $\alpha<k$ and $x \in M, \quad\left({ }^{\alpha} x\right)^{M}=\left({ }^{\alpha} x\right)^{N}=\left({ }^{\alpha} x\right)^{M[G]}$.
(iii) $N \neq 2^{\lambda}=\kappa$.

Proof. (i) and (ii) are immediate from Lemma 3.1, since $M \subset N \subset M[G] ;(i i i)$ is essentially just a special case of (ii).

THEOREM 3.3. $N \models \kappa \leq|S(S(S(X)))|$.

Proof. Clearly in $N, Y \subseteq S\left(X^{[2]}\right)$, and also $Z: Y \rightarrow \lambda$ is onto. So $N F S(S(X)) * \geq \lambda$. It follows that

$$
N \vDash 2^{\lambda} \leq|S(S(S(X)))|
$$

and the result follows by Lemma 3.2 (iii).
We now look at $\operatorname{TC}(2)$. If $x \in \operatorname{TC}(Z)$ then either $x=2$ or $x=\langle K, \beta\rangle$ for some $K \in Y$ and $\beta<\lambda$ or $x \in Y$ or \ldots or $x \in M$. It can easily be seen that in all cases either $x=2$ or x is codable by (at worst) some Y_{α}, a finite number of elements of G^{*} and an element of M. We recall from $\S 1$ that inside N every element of N is definable from $\operatorname{TC}(Z)$, an element of $M\left(=(L)^{M[G]}\right)$ and a finite number of elements of $\mathrm{TC}(Z)$. By using the coding just mentioned we have that inside N any element of N is definable from Z, a finite number of $Y_{\alpha}{ }^{\prime}$, a finite number of elements of G^{*}, and an element of M (as $T C(Z)$ is definable from Z).

We proceed to a continuity lemma, but first introduce some notation. Suppose A is a set, $s \subseteq A$ and $f: A \rightarrow 2$. We define $f^{s}: A \rightarrow 2$ thus:

$$
f^{s}(a)=f(a) \text { if } a \notin s ; f^{s}(a)=1-f(a) \text { if } a \in s
$$

LEMMA 3.4. Suppose that

$$
N \vDash \varphi\left(z, Y_{\alpha_{1}}, \ldots, Y_{\alpha_{n}}, G\left(f_{1}\right), \ldots, G\left(f_{m}\right), x,[G(f)]\right)
$$

where $x \in M$ and $f \neq f_{i}^{s}$ for $1 \leq i \leq m$ and any $s \subseteq\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. Let $g \in \lambda_{2}$, be any function such that $g \neq f_{i}^{s}$ for $1 \leq i \leq m$ and $s \subseteq\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. Then

$$
N \vDash \varphi\left(z, Y_{\alpha_{1}}, \ldots, Y_{\alpha_{n}}, G\left(f_{1}\right), \ldots, G\left(f_{m}\right), x,[G(g)]\right)
$$

Proof. Let ψ be a formula such that
$M[G] \vDash \psi(G, y) \leftrightarrow N \vDash \varphi\left(2, Y_{\alpha_{1}}, \ldots, Y_{\alpha_{n}}, G\left(f_{1}\right), \ldots, G\left(f_{m}\right), x,[G(f)]\right)$.
ψ 'describes' the construction of $Z, Y_{\alpha_{1}}$, and so on, from G and also relativizes φ to the class N. Here $y \in M$. Take $p \in G$ such that $p \Vdash \psi(G, y)$. Set, for $s \subseteq\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$,

$$
\begin{aligned}
& A_{s}=\left\{i \in \operatorname{dom}\left(p\left(f^{s}\right)\right): p\left(f^{s}, i\right) \neq\left(G\left(g^{s}\right)\right)(i)\right\} \\
& B_{s}=\left\{i \in \operatorname{dom}\left(p\left(g^{s}\right)\right): p\left(g^{s}, i\right) \neq\left(G\left(f^{s}\right)\right)(i)\right\}
\end{aligned}
$$

Then $A_{s}, B_{s} \in S_{K}(K)$ and so by Lemma 3.2 (ii), $A_{s}, B_{s} \in M$.
For $A \in S_{K}(K)$ we define an automorphism σ_{A} of $H_{K}(K, 2)$ thus:

$$
\left.\begin{array}{l}
\left.\qquad \begin{array}{l}
\left(\sigma_{A}(t)\right)(i) \\
=1-t(i) \text { if } i \in \operatorname{dom}(t) \cap A \\
\quad\left(\sigma_{A}(t)\right)(i)
\end{array}\right) \text { for } t \in H_{K}(K, 2) \text { if } i \in \operatorname{dom}(t)-A
\end{array}\right\} \text { and } \operatorname{dom}\left(\sigma_{A}(t)\right)=\operatorname{dom}(t) \text {. }
$$

We define an automorphism π of $H_{K}\left(\left(\lambda_{2}\right) \times K, 2\right)$ thus:

$$
\left.\begin{array}{c}
(\pi p)\left(f^{s}\right)=\sigma_{A_{s}}\left(p\left(g^{s}\right)\right) \\
(\pi p)\left(g^{s}\right)=\sigma_{B_{s}}\left(p\left(f^{s}\right)\right)
\end{array}\right\} \text { for } s \subseteq\left\{\alpha_{1}, \ldots, \alpha_{n}\right\},
$$

Then $\pi \in M$, and

$$
\begin{gathered}
\left(\pi^{-1} p\right)\left(f^{\mathcal{S}}\right)=\sigma_{B}\left(p\left(g^{s}\right)\right) \subset G\left(f^{s}\right) \\
\left(\pi^{-1} p\right)\left(g^{s}\right)=\sigma_{A_{s}}\left(p\left(f^{s}\right)\right) \subset G\left(g^{s}\right) \\
\left(\pi^{-1} p\right)(h)=p(h) \subset G(h) \quad\left(\text { for } h \neq f^{s}, g^{s}\right)
\end{gathered}
$$

It follows that $\pi^{-1} p \in G$. Now $p \| \psi(G, y)$, so by the symmetry lemma of $\xi 1, \pi^{-1} p \| \psi\left(\pi^{\prime \prime} G, y\right)$, whence

$$
M[G] \vDash \psi(\pi " G, y) .
$$

Now

$$
\begin{gathered}
\left(\pi^{\prime \prime} G\right)\left(f^{s}\right)=\sigma_{A_{s}}\left(G\left(g^{s}\right)\right), \\
\left(\pi^{\prime \prime} G\right)\left(g^{s}\right)=\sigma_{B_{s}}\left(G\left(f^{s}\right)\right), \\
\left(\pi^{\prime \prime} G\right)(h)=G(h), \quad h \neq f^{s}, g^{s} \text { for any } s \subseteq\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} .
\end{gathered}
$$

So $\left[\left(\pi^{\prime \prime} G\right)\left(f^{s}\right)\right]=\left[G\left(g^{s}\right)\right], \quad\left[\left(\pi^{\prime \prime} G\right)\left(g^{s}\right)\right]=\left[G\left(f^{s}\right)\right]$, and
$\left[\left(\pi^{\prime \prime} G\right)(h)\right]=[G(h)]$ for $h \neq f^{s}, g^{s}$.
Thus the change from G to $\pi^{\prime \prime} G$ leaves X, and thence Y and Z, unchanged, leaves $G\left(f_{1}\right), \ldots, G\left(f_{m}\right)$ unchanged and carries $[G(f)]$ to $[G(g)]$. Take $\alpha \in\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$; for $s \subseteq\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ set $s^{\prime}=s \Delta\{\alpha\}$. Then $\left\{\left[G\left(f^{s}\right)\right],\left[G\left(f^{s^{\prime}}\right)\right]\right\} \in Y_{\boldsymbol{a}}$ and $\left\{\left[G\left(g^{s}\right)\right],\left[G\left(g^{s^{\prime}}\right)\right]\right\} \in Y_{\alpha}$. The change from G to $\pi^{\prime \prime} G$ carries each of these pairs to the other, so y_{α} is carried into itself.

In conclusion
$M[G] \vDash \psi\left(\pi^{\prime \prime} G, y\right) \leftrightarrow N \vDash \varphi\left(z, y_{\alpha_{1}}, \ldots, y_{\alpha_{n}}, G\left(f_{1}\right), \ldots, G\left(f_{m}\right), x,[G(g)]\right)$.
Since $M[G] \vDash \psi\left(\pi^{\prime \prime} G, y\right)$, the proof is complete.
THEOREM 3.5. $N \vDash X$ is $Q M$.
Proof. We work in N. Suppose that

$$
N \vDash A \text { is an infinite subset of } X \text {. }
$$

By the remarks after Theorem 3.3 we may assume that A is defined in terms of $2, Y_{\alpha_{1}}, \ldots, Y_{\alpha_{n}}, G\left(f_{1}\right), \ldots, G\left(f_{m}\right)$ say, and $x \in M$. Take $a \in A-\left\{\left[G\left(f_{i}^{s}\right)\right]: 1 \leq i \leq m\right.$ and $\left.s \subseteq\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right\}$. Now $a=[G(f)]$ for some f, so the sentence $' a \in A$ ' may be written in the form

$$
N \vDash \varphi\left(z, Y_{\alpha_{1}}, \ldots, Y_{\alpha_{n}}, G\left(f_{1}\right), \ldots, G\left(f_{m}\right), x,[G(f)]\right)
$$

Application of Lemma 3.4 shows that

$$
N \vDash A \supseteq X-\left\{\left[G\left(f_{i}^{s}\right)\right]: 1 \leq i \leq m \text { and } s \subseteq\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right\}
$$

so $N \neq A$ is cofinite.
In conclusion we have shown that for k an arbitrary aleph it is possible to have a QM set X such that $K<|S(S(S(X)))|$. This result is one of a series: Hickman [1] and the author (PhD thesis, University of Bristol, 1971) have independently shown that it is possible to have a DF set X such that $K<|S(X)|$ (again for K an arbitrary aleph); indeed Hickman obtains $k<\left|X^{[2]}\right|$. Also the author (unpublished) has shown that it is possible to have a set X such that X 抻 ω (whence by Lemma 2.2, $S(X)$ is DF) but such that $k<|S(S(X))|$. It should be emphasised that none of these results have anything to do with the possibility that 2^{ω} can be large; in all the models concerned if k, λ are alephs then

$$
k \leq 2^{\lambda} \rightarrow \kappa \leq \lambda^{+} .
$$

References

[1] J.L. Hickman, "On the set of finite subsets of a set", submitted.
[2] Herman Rubin and Jean E. Rubin, Equivalents of the axiom of choice (North-Holland, Amsterdam, 1963).
[3] J.R. Shoenfield, "Unramified forcing", Axiomatic set theory, 357-381 (Proc. Sympos. Pure Math., Vol. 13, Part 1, Univ. California, Los Angeles, Calif., 1967; Amer. Math. Soc., Providence, Rhode Island, 1971).
[4] Alfred Tarski, "Sur les ensembles finis", Fund. Math. 6 (1924), 45-95.

Department of Pure Mathematics,
University of Sydney,
Sydney, New South Wales.

