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Abstract. Assuming that (�,�) is a measurable space and X is a Banach space
we provide a quite general sufficient condition on X for bvca(�, X) (the Banach space
of all X-valued countably additive measures of bounded variation equipped with the
variation norm) to contain a copy of c0 if and only if X does. Some well-known results
on this topic are straightforward consequences of our main theorem.
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1. Preliminaries. Throughout this paper X will be a Banach space over the field
� of real or complex numbers. Our notation is standard [3, 4]. If (�,�) is a measurable
space, ca(�, X) denotes the Banach space over � of all X-valued countably additive
measures F on � provided with the semivariation norm ‖F‖ and bvca(�, X) stand
for the Banach space of all X-valued countably additive measures F of bounded
variation on � equipped with the variation norm |F |. We represent by ca+(�) the
set of all positive and finite measures defined on �. If (�,�,μ) is a finite measure
space, recall that a weakly μ-measurable function f : � → X is said to be Dunford
integrable if x∗f ∈ L1(μ) for every x∗ ∈ X∗. If f is Dunford integrable and E ∈ �

the map x∗ �→ ∫
E x∗f dμ, denoted by (D)

∫
E f dμ, is a continuous linear form on X∗.

If (D)
∫

E f dμ ∈ X for each E ∈ � then f is called Pettis integrable and one writes
(P)

∫
E f dμ instead of (D)

∫
E f dμ. A strongly μ-measurable function f : � → X is said

to be Bochner integrable if
∫
�

‖f (ω)‖ dμ(ω) < ∞. As usual we denote by L1(μ, X) the
Banach space of all (equivalence classes of) μ-Bochner integrable functions equipped
with the norm ‖f ‖1 = ∫

�
‖f (ω)‖ dμ(ω). Recall that a series

∑∞
n=1 xn in X is said to be

weakly unconditionally Cauchy (wuC) if
∑∞

n=1 |x∗xn| < ∞ for each x∗ ∈ X∗.
If each μ ∈ ca+(�) is purely atomic, then ca(�, X) contains a copy of c0 or �∞ if

and only if X contains, respectively, a copy of c0 or �∞ [5]. Assuming that X has the
Radon–Nikodym property with respect to each μ ∈ ca+(�), then bvca(�, X) contains
a copy of c0 or �∞ if and only if X does [7]. As a consequence, if each μ ∈ ca+(�) is
purely atomic then bvca(�, X) contains a copy of c0 or �∞ if and only if X contains,
respectively, a copy of c0 or �∞. If there exists a nonzero atomless measure μ ∈ ca+(�),
the latter statement is no longer true [11]. However, if the range space of the measures
is a dual Banach space X∗, then bvca(�, X∗) contains a copy of c0 or �∞ if and only if
X∗ does [10].
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2. Banach spaces with property (M). If (�,�,μ) is a complete probability space,
we shall denote byH1(μ, X) the set of all those functions f : � → X such that ‖f ( · )‖ ∈
L1(μ). We shall say that two functions f, g ∈ H1(μ, X) are μ-equivalent if there is a
μ-zero set N such that f (ω) = g(ω) for all ω ∈ � \ N and we shall denote by H1(μ, X)
the set of all classes of μ-equivalent functions. By L∞

w∗ (μ, X∗) we shall design the linear
space over � of all μ-essentially bounded functions ϕ : � → X∗ which are weak*
measurable whereas bvcaμ(�, X) will represent the linear subspace of bvca(�, X) of
all those measures F for which there is some a > 0 (which depends on F) such that
‖F(E)‖ ≤ a μ(E) for each E ∈ �, [2].

DEFINITION 2.1. We say that a Banach space X has property (M) with respect to a
measurable space (�,�) if given a complete probability measure μ : � → [0, 1] there
is a map Tμ : bvcaμ(�, X) → H1(μ, X) with linear range which is linear as a map into
its range and for each F ∈ bvcaμ(�, X) it holds that

|F | =
∫

�

‖f (ω)‖ dμ (ω)

for each function f ∈ Tμ(F). If X has property (M) with respect to every measurable
space (�,�), then we shall say that X has property (M).

PROPOSITION 2.1. Each dual Banach space X∗ has property (M).

Proof. If (�,�,μ) is a complete probability space, according to a well-known
consequence of the lifting theorem [2, Theorem 1.5.2] there is a linear injective map
Sμ : bvcaμ(�, X∗) → L∞

w∗ (μ, X∗) such that for each F ∈ bvcaμ(�, X∗) the function
f = Sμ(F) satisfies:

(1) For each E ∈ � and x ∈ X one has

F (E) x =
∫

E
f (ω) x dμ (ω).

(2) The function ω → ‖f (ω)‖ is measurable, belongs to L1(μ) and

|F | (E) =
∫

E
‖f (ω)‖ dμ (ω)

for each E ∈ �.
Since Sμ(bvcaμ(�, X∗)) is a linear subspace of L∞

w∗ (μ, X∗) contained in H1(μ, X∗), if Q
denotes the quotient map from H1(μ, X∗) onto H1(μ, X∗) which maps f ∈ H1(μ, X∗)
into the class f̂ of all those functions of H1(μ, X∗) which are μ-equivalent to f , the
map Tμ := Q ◦ Sμ which carries F into the class f̂ satisfies the required conditions. �

PROPOSITION 2.2. If (�,�) is a measurable space such that X has the Radon–
Nikodym property with respect to each μ ∈ ca+(�), then X has property (M) with
respect to (�,�). If X has the Radon–Nikodym property, then X has property (M).

Proof. Let us assume that X has the Radon–Nikodym property with respect to each
complete measure space (�,�, λ) with λ ∈ ca+(�). Let μ be a complete probability on
� and let F ∈ bvcaμ(�, X). Since X has the Radon–Nikodym property with respect
to the complete probability space (�,�,μ) and F � μ, there is a unique f̃ ∈ L1(μ, X)
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such that

F (E) = (B)
∫

E
f dμ

for each f ∈ f̃ , so that

|F | (E) =
∫

E
‖f (ω)‖ dμ (ω)

for each f ∈ f̃ . SinceL1(μ, X) ⊆ H1(μ, X), if f̂ denotes the class in H1(μ, X) defined by
a representative f ∈ f̃ , the map Tμ : bvcaμ(�, X) → H1(μ, X) defined by Tμ(F) = f̂ is
linear into its range and satisfies the required conditions. �

PROPOSITION 2.3. Let (�,�) be a measure space with � = 2�. If BX∗ (the closed
unit ball of X∗) is weak* sequentially dense in BX∗∗∗ (the closed unit ball of X∗∗∗) and X
is norm-one complemented in X∗∗, then X has property (M) with respect to (�,�).

Proof. Let μ be a complete probability on �. The following argument is based on
the proof of [8, Theorem 1.1]. By the lifting theorem there is a linear injective map
Rμ : bvcaμ(�, X∗∗) → L∞

w∗ (μ, X∗∗) such that if f := Rμ(F) then
(1) x∗F(E) = ∫

E f (ω)x∗ dμ(ω) for each x∗ ∈ X∗ and E ∈ �, and
(2) |F |(E) = ∫

E ‖f (ω)‖ dμ(ω) for each E ∈ �.
Since BX∗ is weak* sequentially dense in BX∗∗∗ , given x∗∗∗ ∈ BX∗∗∗ there is a sequence
{x∗

n} in BX∗ that converges to x∗∗∗ under the weak* topology of BX∗∗∗ . Then, choosing
a fixed F ∈ bvcaμ(�, X) and setting f := Rμ(F), it follows that f (ω)x∗

n → x∗∗∗f (ω) for
each ω ∈ �. Since |f (ω)x∗

n| ≤ ‖f (ω)‖ for μ-almost all ω ∈ � then x∗∗∗f ∈ L1(μ) so
that f : � → X∗∗ is Dunford integrable in �. Moreover, the dominated convergence
theorem and condition 1 above imply that

x∗∗∗F (E) =
∫

E
x∗∗∗f (ω) dμ (ω)

for each E ∈ �. This guarantees that the function f : � → X∗∗ is Pettis integrable and
that F(E) = (P)

∫
E f dμ for each E ∈ �. On the other hand, since x∗∗∗f ∈ L1(μ) for

each x∗∗∗ ∈ X∗∗∗, if S is a norm-one linear projection form X∗∗ onto X then∫
E

x∗ (S ◦ f ) (ω) dμ (ω) = 〈S∗x∗, F (E)〉 = 〈x∗, S (F (E))〉 = x∗F (E)

for each x∗ ∈ X∗. This establishes that S ◦ f : � → X is Pettis integrable and that

F (E) = (P)
∫

E
(S ◦ f ) (ω) dμ (ω)

for all E ∈ �. Since ω �→ ‖(S ◦ f )(ω)‖ is μ-measurable because � = 2�, it follows that

|F | ≤
∫

�

‖(S ◦ f ) (ω)‖ dμ (ω). (2.1)

But the fact that ‖S‖ = 1 and condition 2 yield∫
�

‖(S ◦ f )(ω)‖ dμ (ω) ≤
∫

�

‖f (ω)‖ dμ (ω) = |F |. (2.2)
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Form (2.1) and (2.2) we conclude that

|F | =
∫

�

‖(S ◦ f ) (ω)‖ dμ (ω). (2.3)

Since (S ◦ Rμ)(bvca(�, X)) is a linear space contained in H1(μ, X), if Q denotes the
quotient map from H1(μ, X) onto H1(μ, X), the map Tμ := Q ◦ S ◦ Rμ which carries
F into the class ĥ in H1(μ, X) given by h = (S ◦ Rμ)(F) is as required. �

3. Main theorem and its consequences.

THEOREM 3.1. If X has property (M) with respect to a measurable space (�,�),
then bvca(�, X) contains a copy of c0 if and only if X does.

Proof. Let (�,�) be a measurable space, let {Fn} denote a normalized basic
sequence in bvca(�, X) equivalent to the unit vector basis of c0 and set μ :=∑∞

n=1 2−n |Fn|, so that ‖Fn(E)‖ ≤ 2nμ(E) for each E ∈ � and n ∈ �. By μ-completing
the σ -algebra � and extending by zero the Fn if necessary we may assume μ to be
complete. Clearly span({Fn}) ⊆ bvcaμ(�, X) and the fact that X has property (M) with
respect to (�,�) provides a linear map Tμ from span({Fn}) into H1(μ, X) such that

|F | =
∫

�

‖f (ω)‖ dμ (ω) (3.1)

for each f ∈ Tμ(F), with F ∈ span({Fn}).
For each n ∈ � pick a concrete representative fn ∈ Tμ(Fn). Since the series

∑∞
n=1 Fn

in bvca(�, X) is wuC, there is C > 0 such that |∑n
i=1 εi fi| < C for all finite set of signs

εi. Using the fact that Tμ is a linear map into its range, then

n∑
i=1

εiTμ (Fi) = Tμ

(
n∑

i=1

εi fi

)
(3.2)

for each n ∈ �. Since
∑n

i=1 εi fi is a representative of the class
∑n

i=1 εiTμFi, equations
(3.1) and (3.2) imply ∫

�

∥∥∥∥∥
n∑

i=1

εi fi (ω)

∥∥∥∥∥ dμ (ω) =
∣∣∣∣∣

n∑
i=1

εi fi

∣∣∣∣∣ < C (3.3)

for each εi ∈ {−1, 1}, 1 ≤ i ≤ n and n ∈ �.
Equation (3.3) along with Rosenthal’s disjointification lemma (cf. [2, Lemma

1.2.1]) forces the sequence {‖fn( · )‖} in L1(μ) to be uniformly integrable (this is almost
contained in the proof of [2, Theorem 2.1.1] as well as in the first part of the proof
of [8, Lemma 2.3]). Now, setting A1 = {ω ∈ � : limn→∞‖fn(ω)‖ > 0}, we claim that
μ(A1) > 0. Indeed, otherwise limn→∞ ‖fn(ω)‖ = 0 for almost all ω ∈ �, and since the
{‖fn( · )‖} is uniformly integrable it follows from Vitali’s lemma ([9, Exercise 13.38] or
[6, IV.10 Theorem 9]) that

lim
n→∞

∫
�

‖fn (ω)‖ dμ (ω) = 0,

contradicting that
∫
�

‖fn(ω)‖ dμ(ω) = 1 for each n ∈ �.
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Denoting by 
 the product space {−1, 1}�, � the σ -algebra of subsets of 


generated by the n-cylinders of 
, n = 1, 2, . . . and ν the probability measure ⊗∞
i=1ν i

on �, where ν i : 2{−1,1} → [0, 1] satisfies that ν i(∅) = 0, ν i({−1}) = ν i({1}) = 1/2 and
ν i({−1, 1}) = 1 for each i ∈ �, we may consider the μ-measurable map ϕn : � → �

defined by

ϕn (ω) =
∫




∥∥∥∥∥
n∑

i=1

εi fi (ω)

∥∥∥∥∥ dν (ε)

for n = 1, 2, . . . Since∫



∥∥∥∥∥
n∑

i=1

εi fi(ω)

∥∥∥∥∥ dν (ε) ≤
∫




∥∥∥∥∥
n+1∑
i=1

εi fi (ω)

∥∥∥∥∥ dν (ε)

for every n ∈ � and ω ∈ �, then {ϕn} is a monotone increasing sequence of nonnegative
functions. Thus (3.3) and Fubini’s theorem yield supn∈�

∫
�

ϕn(ω) dμ(ω) ≤ C. Hence,
by the monotone convergence theorem there exists a μ-null set A2 ∈ � such that
supn∈� ϕn(ω) < ∞ for each ω ∈ � \ A2. Considering the set A := A1 ∩ (� \ A2), it is
obvious that μ(A) > 0, hence A �= ∅. Moreover, limn→∞‖fn(ω)‖ > 0 and

sup
n∈�

∫



∥∥∥∥∥
n∑

i=1

εi fi (ω)

∥∥∥∥∥ dν (ε) < ∞

for each ω ∈ A. Choosing ω0 ∈ A and a strictly increasing sequence of positive integers
{ni} such that inf i∈� ‖fni (ω0)‖ > 0, setting yi := fni (ω0) for each i ∈ � and using the
properties of the measure space we conclude that

sup
n∈�

∫ 1

0

∥∥∥∥∥
n∑

i=1

ri (t) yi

∥∥∥∥∥ dt = sup
n∈�

∫



∥∥∥∥∥
n∑

i=1

εiyi

∥∥∥∥∥ dν (ε) < ∞,

where {ri} is the Rademacher sequence on [0, 1]. Since X is a normed space, Bourgain
averaging theorem [1] (see also [2, Lemma 2.1.2]) provides a subsequence of {yn} which
is a basic sequence in X equivalent to the unit vector basis of c0. �

REMARK 3.1. The sequence {fn} with fn ∈ TμFn constructed in the first part of the
proof of Theorem 3.1 is such that for any finite sequence of scalars {a1, . . . , an} the
function ω �→ ‖a1f1(ω) + · · · + anfn(ω)‖ is μ-measurable and there are two absolute
constant α, β > 0 with

α sup
1≤i≤n

|ai| ≤
∫

�

∥∥∥∥∥
n∑

i=1

ai fi (ω)

∥∥∥∥∥ dμ (ω) ≤ β sup
1≤i≤n

|ai| .

From these facts one can deduce the existence of some ω0 ∈ � and of certain
subsequence of {fn(ω0)} which is a basic sequence in X equivalent to the unit vector
basis of c0 just in the same way as Theorem 2 is deduced from Theorem 1 in [1]. This
provides an alternative argument to the proof of our main theorem.

COROLLARY 3.2. ([10]) The space bvca(�, X∗) contains a copy of c0 if and only if
X∗ does.
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Proof. This is a straightforward consequence of Proposition 2.1 and
Theorem 3.1. �

COROLLARY 3.3. ([7]) If X has the Radon–Nikodym property with respect to each
μ ∈ ca+(�), then bvca(�, X) contains a copy of c0 if and only if X does.

Proof. This is a straightforward consequence of Proposition 2.2 and
Theorem 3.1. �

COROLLARY 3.4. ([8]) Assume that BX∗ is weak* sequentially dense in BX∗∗∗ and that
� = 2�. If X is norm-one complemented in X∗∗, then bvca(�, X) contains a copy of c0

if and only if X does.

Proof. This is a straightforward consequence of Proposition 2.3 and
Theorem 3.1. �
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