$bvca(\Sigma, X)$ REVISITED

J. C. FERRANDO

Centro de Investigación Operativa, Edificio Torretamarit, Avda de la Universidad, Universidad Miguel Hernández, E-03202 Elche (Alicante). SPAIN e-mail: jc.ferrando@umh.es

(Received 10 March 2010; accepted 9 August 2010; first published online 13 December 2010)

Abstract. Assuming that (Ω, Σ) is a measurable space and X is a Banach space we provide a quite general sufficient condition on X for $bvca(\Sigma, X)$ (the Banach space of all X-valued countably additive measures of bounded variation equipped with the variation norm) to contain a copy of c_0 if and only if X does. Some well-known results on this topic are straightforward consequences of our main theorem.

2010 Mathematics Subject Classification. 28B05, 46B03.

1. Preliminaries. Throughout this paper X will be a Banach space over the field K of real or complex numbers. Our notation is standard [3, 4]. If (Ω, Σ) is a measurable space, $ca(\Sigma, X)$ denotes the Banach space over K of all X-valued countably additive measures F on Σ provided with the semivariation norm ||F|| and $bvca(\Sigma, X)$ stand for the Banach space of all X-valued countably additive measures F of bounded variation on Σ equipped with the variation norm |F|. We represent by $ca^+(\Sigma)$ the set of all positive and finite measures defined on Σ . If (Ω, Σ, μ) is a finite measure space, recall that a weakly μ -measurable function $f: \Omega \to X$ is said to be Dunford integrable if $x^* f \in \mathcal{L}_1(\mu)$ for every $x^* \in X^*$. If f is Dunford integrable and $E \in \Sigma$ the map $x^* \mapsto \int_E x^* f \, d\mu$, denoted by (D) $\int_E f \, d\mu$, is a continuous linear form on X^* . If $(D) \int_E f d\mu \in X$ for each $E \in \Sigma$ then f is called Pettis integrable and one writes $(P)\int_E f d\mu$ instead of $(D)\int_E f d\mu$. A strongly μ -measurable function $f: \Omega \to X$ is said to be Bochner integrable if $\int_{\Omega} ||f(\omega)|| d\mu(\omega) < \infty$. As usual we denote by $L_1(\mu, X)$ the Banach space of all (equivalence classes of) μ -Bochner integrable functions equipped with the norm $||f||_1 = \int_{\Omega} ||f(\omega)|| d\mu(\omega)$. Recall that a series $\sum_{n=1}^{\infty} x_n$ in X is said to be weakly unconditionally Cauchy (wuC) if $\sum_{n=1}^{\infty} |x^*x_n| < \infty$ for each $x^* \in X^*$.

If each $\mu \in ca^+(\Sigma)$ is purely atomic, then $ca(\Sigma, X)$ contains a copy of c_0 or ℓ_{∞} if and only if X contains, respectively, a copy of c_0 or ℓ_{∞} [5]. Assuming that X has the Radon–Nikodym property with respect to each $\mu \in ca^+(\Sigma)$, then $bvca(\Sigma, X)$ contains a copy of c_0 or ℓ_{∞} if and only if X does [7]. As a consequence, if each $\mu \in ca^+(\Sigma)$ is purely atomic then $bvca(\Sigma, X)$ contains a copy of c_0 or ℓ_{∞} if and only if X contains, respectively, a copy of c_0 or ℓ_{∞} . If there exists a nonzero atomless measure $\mu \in ca^+(\Sigma)$, the latter statement is no longer true [11]. However, if the range space of the measures is a dual Banach space X^* , then $bvca(\Sigma, X^*)$ contains a copy of c_0 or ℓ_{∞} if and only if X^* does [10].

Research supported by project MTM 2008-01502 of the Spanish Ministry of Science and Innovation

J. C. FERRANDO

2. Banach spaces with property (M). If (Ω, Σ, μ) is a complete probability space, we shall denote by $\mathcal{H}_1(\mu, X)$ the set of all those functions $f : \Omega \to X$ such that $||f(\cdot)|| \in \mathcal{L}_1(\mu)$. We shall say that two functions $f, g \in \mathcal{H}_1(\mu, X)$ are μ -equivalent if there is a μ -zero set N such that $f(\omega) = g(\omega)$ for all $\omega \in \Omega \setminus N$ and we shall denote by $H_1(\mu, X)$ the set of all classes of μ -equivalent functions. By $\mathcal{L}_{w^*}^{\infty}(\mu, X^*)$ we shall design the linear space over \mathbb{K} of all μ -essentially bounded functions $\varphi : \Omega \to X^*$ which are weak* measurable whereas $bvca_{\mu}(\Sigma, X)$ will represent the linear subspace of $bvca(\Sigma, X)$ of all those measures F for which there is some a > 0 (which depends on F) such that $||F(E)|| \leq a \mu(E)$ for each $E \in \Sigma$, [2].

DEFINITION 2.1. We say that a Banach space X has property (M) with respect to a measurable space (Ω, Σ) if given a complete probability measure $\mu : \Sigma \to [0, 1]$ there is a map $T_{\mu} : bvca_{\mu}(\Sigma, X) \to H_1(\mu, X)$ with linear range which is linear as a map into its range and for each $F \in bvca_{\mu}(\Sigma, X)$ it holds that

$$|F| = \int_{\Omega} \|f(\omega)\| \, d\mu(\omega)$$

for each function $f \in T_{\mu}(F)$. If X has property (M) with respect to every measurable space (Ω, Σ) , then we shall say that X has property (M).

PROPOSITION 2.1. Each dual Banach space X^* has property (M).

Proof. If (Ω, Σ, μ) is a complete probability space, according to a well-known consequence of the lifting theorem [2, Theorem 1.5.2] there is a linear injective map $S_{\mu} : bvca_{\mu}(\Sigma, X^*) \to \mathcal{L}^{\infty}_{w^*}(\mu, X^*)$ such that for each $F \in bvca_{\mu}(\Sigma, X^*)$ the function $f = S_{\mu}(F)$ satisfies:

(1) For each $E \in \Sigma$ and $x \in X$ one has

$$F(E) x = \int_{E} f(\omega) x d\mu(\omega).$$

(2) The function $\omega \to ||f(\omega)||$ is measurable, belongs to $\mathcal{L}_1(\mu)$ and

$$|F|(E) = \int_{E} \|f(\omega)\| \, d\mu(\omega)$$

for each $E \in \Sigma$.

Since $S_{\mu}(bvca_{\mu}(\Sigma, X^*))$ is a linear subspace of $\mathcal{L}_{w^*}^{\infty}(\mu, X^*)$ contained in $\mathcal{H}_1(\mu, X^*)$, if Q denotes the quotient map from $\mathcal{H}_1(\mu, X^*)$ onto $H_1(\mu, X^*)$ which maps $f \in \mathcal{H}_1(\mu, X^*)$ into the class \widehat{f} of all those functions of $\mathcal{H}_1(\mu, X^*)$ which are μ -equivalent to f, the map $T_{\mu} := Q \circ S_{\mu}$ which carries F into the class \widehat{f} satisfies the required conditions. \Box

PROPOSITION 2.2. If (Ω, Σ) is a measurable space such that X has the Radon– Nikodym property with respect to each $\mu \in ca^+(\Sigma)$, then X has property (M) with respect to (Ω, Σ) . If X has the Radon–Nikodym property, then X has property (M).

Proof. Let us assume that X has the Radon–Nikodym property with respect to each complete measure space $(\Omega, \Sigma, \lambda)$ with $\lambda \in ca^+(\Sigma)$. Let μ be a complete probability on Σ and let $F \in bvca_{\mu}(\Sigma, X)$. Since X has the Radon–Nikodym property with respect to the complete probability space (Ω, Σ, μ) and $F \ll \mu$, there is a unique $\tilde{f} \in L_1(\mu, X)$

such that

$$F(E) = (B) \int_{E} f \, d\mu$$

for each $f \in \tilde{f}$, so that

$$|F|(E) = \int_{E} \|f(\omega)\| \, d\mu(\omega)$$

for each $f \in \tilde{f}$. Since $\mathcal{L}_1(\mu, X) \subseteq \mathcal{H}_1(\mu, X)$, if \hat{f} denotes the class in $H_1(\mu, X)$ defined by a representative $f \in \tilde{f}$, the map $T_{\mu} : bvca_{\mu}(\Sigma, X) \to H_1(\mu, X)$ defined by $T_{\mu}(F) = \hat{f}$ is linear into its range and satisfies the required conditions.

PROPOSITION 2.3. Let (Ω, Σ) be a measure space with $\Sigma = 2^{\Omega}$. If B_{X^*} (the closed unit ball of X^*) is weak* sequentially dense in $B_{X^{***}}$ (the closed unit ball of X^{***}) and X is norm-one complemented in X^{**} , then X has property (M) with respect to (Ω, Σ) .

Proof. Let μ be a complete probability on Σ . The following argument is based on the proof of [8, Theorem 1.1]. By the lifting theorem there is a linear injective map $R_{\mu} : bvca_{\mu}(\Sigma, X^{**}) \to \mathcal{L}^{\infty}_{w^*}(\mu, X^{**})$ such that if $f := R_{\mu}(F)$ then

(1) $x^*F(E) = \int_E f(\omega)x^* d\mu(\omega)$ for each $x^* \in X^*$ and $E \in \Sigma$, and

(2) $|F|(E) = \int_{E} ||f(\omega)|| d\mu(\omega)$ for each $E \in \Sigma$.

Since B_{X^*} is weak^{*} sequentially dense in $B_{X^{***}}$, given $x^{***} \in B_{X^{***}}$ there is a sequence $\{x_n^*\}$ in B_{X^*} that converges to x^{***} under the weak* topology of $B_{X^{***}}$. Then, choosing a fixed $F \in bvca_{\mu}(\Sigma, X)$ and setting $f := R_{\mu}(F)$, it follows that $f(\omega)x_n^* \to x^{***}f(\omega)$ for each $\omega \in \Omega$. Since $|f(\omega)x_n^*| \le ||f(\omega)||$ for μ -almost all $\omega \in \Omega$ then $x^{***}f \in \mathcal{L}_1(\mu)$ so that $f : \Omega \to X^{**}$ is Dunford integrable in Ω . Moreover, the dominated convergence theorem and condition 1 above imply that

$$x^{***}F(E) = \int_{E} x^{***}f(\omega) \ d\mu(\omega)$$

for each $E \in \Sigma$. This guarantees that the function $f : \Omega \to X^{**}$ is Pettis integrable and that $F(E) = (P) \int_E f d\mu$ for each $E \in \Sigma$. On the other hand, since $x^{***}f \in \mathcal{L}_1(\mu)$ for each $x^{***} \in X^{***}$, if S is a norm-one linear projection form X^{**} onto X then

$$\int_{E} x^{*} (S \circ f)(\omega) \ d\mu (\omega) = \langle S^{*} x^{*}, F(E) \rangle = \langle x^{*}, S(F(E)) \rangle = x^{*} F(E)$$

for each $x^* \in X^*$. This establishes that $S \circ f : \Omega \to X$ is Pettis integrable and that

$$F(E) = (P) \int_{E} (S \circ f)(\omega) \, d\mu(\omega)$$

for all $E \in \Sigma$. Since $\omega \mapsto ||(S \circ f)(\omega)||$ is μ -measurable because $\Sigma = 2^{\Omega}$, it follows that

$$|F| \le \int_{\Omega} \|(S \circ f)(\omega)\| \ d\mu(\omega).$$
(2.1)

But the fact that ||S|| = 1 and condition 2 yield

$$\int_{\Omega} \|(S \circ f)(\omega)\| \ d\mu(\omega) \le \int_{\Omega} \|f(\omega)\| \ d\mu(\omega) = |F|.$$
(2.2)

Form (2.1) and (2.2) we conclude that

$$|F| = \int_{\Omega} \|(S \circ f)(\omega)\| \ d\mu(\omega).$$
(2.3)

Since $(S \circ R_{\mu})(bvca(\Sigma, X))$ is a linear space contained in $\mathcal{H}_1(\mu, X)$, if Q denotes the quotient map from $\mathcal{H}_1(\mu, X)$ onto $H_1(\mu, X)$, the map $T_{\mu} := Q \circ S \circ R_{\mu}$ which carries F into the class \hat{h} in $\mathcal{H}_1(\mu, X)$ given by $h = (S \circ R_{\mu})(F)$ is as required.

3. Main theorem and its consequences.

THEOREM 3.1. If X has property (M) with respect to a measurable space (Ω, Σ) , then $bvca(\Sigma, X)$ contains a copy of c_0 if and only if X does.

Proof. Let (Ω, Σ) be a measurable space, let $\{F_n\}$ denote a normalized basic sequence in $bvca(\Sigma, X)$ equivalent to the unit vector basis of c_0 and set $\mu := \sum_{n=1}^{\infty} 2^{-n} |F_n|$, so that $||F_n(E)|| \le 2^n \mu(E)$ for each $E \in \Sigma$ and $n \in \mathbb{N}$. By μ -completing the σ -algebra Σ and extending by zero the F_n if necessary we may assume μ to be complete. Clearly span($\{F_n\}$) $\subseteq bvca_{\mu}(\Sigma, X)$ and the fact that X has property (M) with respect to (Ω, Σ) provides a linear map T_{μ} from span($\{F_n\}$) into $H_1(\mu, X)$ such that

$$|F| = \int_{\Omega} \|f(\omega)\| \ d\mu(\omega) \tag{3.1}$$

for each $f \in T_{\mu}(F)$, with $F \in \text{span}(\{F_n\})$.

For each $n \in \mathbb{N}$ pick a concrete representative $f_n \in T_{\mu}(F_n)$. Since the series $\sum_{n=1}^{\infty} F_n$ in $bvca(\Sigma, X)$ is wuC, there is C > 0 such that $|\sum_{i=1}^{n} \varepsilon_i f_i| < C$ for all finite set of signs ε_i . Using the fact that T_{μ} is a linear map into its range, then

$$\sum_{i=1}^{n} \varepsilon_{i} T_{\mu} \left(F_{i} \right) = T_{\mu} \left(\sum_{i=1}^{n} \varepsilon_{i} f_{i} \right)$$
(3.2)

for each $n \in \mathbb{N}$. Since $\sum_{i=1}^{n} \varepsilon_i f_i$ is a representative of the class $\sum_{i=1}^{n} \varepsilon_i T_{\mu} F_i$, equations (3.1) and (3.2) imply

$$\int_{\Omega} \left\| \sum_{i=1}^{n} \varepsilon_{i} f_{i}(\omega) \right\| d\mu(\omega) = \left| \sum_{i=1}^{n} \varepsilon_{i} f_{i} \right| < C$$
(3.3)

for each $\varepsilon_i \in \{-1, 1\}, 1 \le i \le n \text{ and } n \in \mathbb{N}$.

Equation (3.3) along with Rosenthal's disjointification lemma (*cf.* [2, Lemma 1.2.1]) forces the sequence { $||f_n(\cdot)||$ } in $\mathcal{L}_1(\mu)$ to be uniformly integrable (this is almost contained in the proof of [2, Theorem 2.1.1] as well as in the first part of the proof of [8, Lemma 2.3]). Now, setting $A_1 = \{\omega \in \Omega : \overline{\lim}_{n \to \infty} ||f_n(\omega)|| > 0\}$, we claim that $\mu(A_1) > 0$. Indeed, otherwise $\lim_{n\to\infty} ||f_n(\omega)|| = 0$ for almost all $\omega \in \Omega$, and since the { $||f_n(\cdot)||$ } is uniformly integrable it follows from Vitali's lemma ([9, Exercise 13.38] or [6, IV.10 Theorem 9]) that

$$\lim_{n\to\infty}\int_{\Omega}\|f_n(\omega)\|\ d\mu(\omega)=0,$$

contradicting that $\int_{\Omega} ||f_n(\omega)|| d\mu(\omega) = 1$ for each $n \in \mathbb{N}$.

Denoting by Δ the product space $\{-1, 1\}^{\mathbb{N}}$, Γ the σ -algebra of subsets of Δ generated by the *n*-cylinders of Δ , n = 1, 2, ... and ν the probability measure $\bigotimes_{i=1}^{\infty} \nu_i$ on Γ , where $\nu_i : 2^{\{-1,1\}} \rightarrow [0, 1]$ satisfies that $\nu_i(\emptyset) = 0$, $\nu_i(\{-1\}) = \nu_i(\{1\}) = 1/2$ and $\nu_i(\{-1, 1\}) = 1$ for each $i \in \mathbb{N}$, we may consider the μ -measurable map $\varphi_n : \Omega \rightarrow \mathbb{R}$ defined by

$$\varphi_n(\omega) = \int_{\Delta} \left\| \sum_{i=1}^n \varepsilon_i f_i(\omega) \right\| d\nu(\varepsilon)$$

for n = 1, 2, ... Since

$$\int_{\Delta} \left\| \sum_{i=1}^{n} \varepsilon_{i} f_{i}(\omega) \right\| d\nu\left(\varepsilon\right) \leq \int_{\Delta} \left\| \sum_{i=1}^{n+1} \varepsilon_{i} f_{i}\left(\omega\right) \right\| d\nu\left(\varepsilon\right)$$

for every $n \in \mathbb{N}$ and $\omega \in \Omega$, then $\{\varphi_n\}$ is a monotone increasing sequence of nonnegative functions. Thus (3.3) and Fubini's theorem yield $\sup_{n \in \mathbb{N}} \int_{\Omega} \varphi_n(\omega) d\mu(\omega) \leq C$. Hence, by the monotone convergence theorem there exists a μ -null set $A_2 \in \Sigma$ such that $\sup_{n \in \mathbb{N}} \varphi_n(\omega) < \infty$ for each $\omega \in \Omega \setminus A_2$. Considering the set $A := A_1 \cap (\Omega \setminus A_2)$, it is obvious that $\mu(A) > 0$, hence $A \neq \emptyset$. Moreover, $\overline{\lim_{n \to \infty}} \|f_n(\omega)\| > 0$ and

$$\sup_{n\in\mathbb{N}}\int_{\Delta}\left\|\sum_{i=1}^{n}\varepsilon_{i}f_{i}(\omega)\right\|d\nu\left(\varepsilon\right)<\infty$$

for each $\omega \in A$. Choosing $\omega_0 \in A$ and a strictly increasing sequence of positive integers $\{n_i\}$ such that $\inf_{i \in \mathbb{N}} ||f_{n_i}(\omega_0)|| > 0$, setting $y_i := f_{n_i}(\omega_0)$ for each $i \in \mathbb{N}$ and using the properties of the measure space we conclude that

$$\sup_{n\in\mathbb{N}}\int_{0}^{1}\left\|\sum_{i=1}^{n}r_{i}\left(t\right)y_{i}\right\|dt=\sup_{n\in\mathbb{N}}\int_{\Delta}\left\|\sum_{i=1}^{n}\varepsilon_{i}y_{i}\right\|d\nu\left(\varepsilon\right)<\infty,$$

where $\{r_i\}$ is the Rademacher sequence on [0, 1]. Since X is a normed space, Bourgain averaging theorem [1] (see also [2, Lemma 2.1.2]) provides a subsequence of $\{y_n\}$ which is a basic sequence in X equivalent to the unit vector basis of c_0 .

REMARK 3.1. The sequence $\{f_n\}$ with $f_n \in T_{\mu}F_n$ constructed in the first part of the proof of Theorem 3.1 is such that for any finite sequence of scalars $\{a_1, \ldots, a_n\}$ the function $\omega \mapsto ||a_1f_1(\omega) + \cdots + a_nf_n(\omega)||$ is μ -measurable and there are two absolute constant $\alpha, \beta > 0$ with

$$\alpha \sup_{1 \le i \le n} |a_i| \le \int_{\Omega} \left\| \sum_{i=1}^n a_i f_i(\omega) \right\| d\mu(\omega) \le \beta \sup_{1 \le i \le n} |a_i|.$$

From these facts one can deduce the existence of some $\omega_0 \in \Omega$ and of certain subsequence of $\{f_n(\omega_0)\}$ which is a basic sequence in X equivalent to the unit vector basis of c_0 just in the same way as Theorem 2 is deduced from Theorem 1 in [1]. This provides an alternative argument to the proof of our main theorem.

COROLLARY 3.2. ([10]) The space $bvca(\Sigma, X^*)$ contains a copy of c_0 if and only if X^* does.

Proof. This is a straightforward consequence of Proposition 2.1 and Theorem 3.1. \Box

COROLLARY 3.3. ([7]) If X has the Radon–Nikodym property with respect to each $\mu \in ca^+(\Sigma)$, then $bvca(\Sigma, X)$ contains a copy of c_0 if and only if X does.

Proof. This is a straightforward consequence of Proposition 2.2 and Theorem 3.1. \Box

COROLLARY 3.4. ([8]) Assume that B_{X^*} is weak* sequentially dense in $B_{X^{***}}$ and that $\Sigma = 2^{\Omega}$. If X is norm-one complemented in X^{**} , then $bvca(\Sigma, X)$ contains a copy of c_0 if and only if X does.

Proof. This is a straightforward consequence of Proposition 2.3 and Theorem 3.1. \Box

REFERENCES

1. J. Bourgain, An averaging result for c_0 -sequences, Bull. Soc. Math. Belg. **30** (1978), 83–87.

2. P. Cembranos and J. Mendoza, Banach spaces of vector-valued functions, in *Lecture Notes in Math.*, vol. 1676 (Springer, Berlin, Heidelberg, New York, 1997).

3. J. Diestel, *Sequences and series in Banach spaces*, GTM vol. 92 (Springer, New York, Berlin, Heidelberg, Tokyo, 1984).

4. J. Diestel and J. J. Uhl, Jr., Vector measures, in *Math Surveys*, vol. 15 (Amer. Math. Soc. Providence, 1977).

5. L. Drewnowski, When does $ca(\Sigma, Y)$ contain a copy of ℓ_{∞} or c_0 ?, Proc. Amer. Math. Soc. **109** (1990), 747–752.

6. N. Dunford and J. T. Schwartz, *Linear operators Part I. General theory* (John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore, 1988).

7. J. C. Ferrando, When does $bvca(\Sigma, X)$ contain a copy of ℓ_{∞} ?, *Math. Scand.* 74 (1994), 271–274.

8. J. C. Ferrando and L. M. Sánchez Ruiz, Embedding c_0 in $bvca(\Sigma, X)$, *Czech. Math. J.* **57** (2007), 679–688.

9. E. Hewitt and K. Stromberg, *Real and abstract analysis*, GTM vol. 25 (Springer, Berlin Heidelberg, 1965).

10. E. Saab and P. Saab, On complemented copies of c_0 in injective tensor products. *Contemp. Math.* **52** (1986), 131–135.

11. M. Talagrand, Quand l'espace des mesures à variation bornée est-il faiblement séquentiellement complet?, *Proc. Amer. Math. Soc.* **90** (1984), 285–288.

346