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ANALOGUES OF THE LIOUVILLE THEOREM FOR
LINEAR FRACTIONAL RELATIONS IN BANACH SPACES

V.A. KHATSKEVICH, M.I. OSTROVSKII AND V.S. SHULMAN

Consider a bounded linear operator T between Banach spaces B, B' which can be
decomposed into direct sums B = Bi © B2, B' = B\ © B'2. Such linear operator can
be represented by a 2 x 2 operator matrix of the form

Tn T12

where Ty € £(B,-,Bj), i,j = 1,2. (By C(Bj,B[) we denote the space of bounded
linear operators acting from Bj to B\ (i,j = 1,2).) The map GT from C(B\,B2) into
the set of closed affine subspaces of C(B\, B'2), defined by

GT(X) = {Y € C(B[,B2): T21 + T22X = Y(Tn+TaX)}

is called a linear fractional relation associated with T.
Such relations can be considered as a generalisation of linear fractional transfor-

mations which were studied by many authors and found many applications. Many
traditional and recently discovered areas of application of linear fractional transforma-
tions would benefit from a better understanding of the behaviour of linear fractional
relations. The present paper is devoted to analogues of the Liouville theorem "a
bounded entire function is constant" for linear fractional relations.

1. INTRODUCTION

The subject of the present paper belongs to both linear and non-linear analysis:
it considers some problems of infinite-dimensional holomorphic analysis of multivalued
non-linear maps, constructed via linear bounded operators between Banach spaces.

Consider a bounded linear operator T between Banach spaces B, B' which can be
decomposed into direct sums B = Bx ® B2, B' = B[ @ B'2. Such linear operator can be
represented by a 2 x 2 operator matrix of the form

(1) T =
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where Ty € C(Bj, BJ), i,j = 1,2. (By C{Bj, SJ) we denote the space of bounded linear
operators acting from Bj to B\ (i, j' = 1,2).

With each such matrix T one can associate a map (defined on some, possibly empty,
part of £(Bi, B2)) by the formula

(2) HT{X) = (rai + T22X)(Tn w

Such maps are called (operator) linear fractional transformations.
Krein [16, 17] discovered that linear fractional transformations can serve as a pow-

erful tool in the study of operators on indefinite metric spaces. The theory of lin-
ear fractional transformations, with their comparatively simple algebraic and compli-
cated analytic properties, is an interesting subject of investigation which attracted many
prominent mathematicians (Helton, Iokhvidov, Krein, Langer, Shmulian, and others, see
[2, 7, 8, 18, 19, 20]). Operator linear fractional transformations found applications in
non-linear holomorphic analysis in Banach spaces (see, for example, [3, 4, 6, 15] and ref-
erences therein), to Koenigs embedding problem, Abel-Schroder equations, composition
operators on Hardy and Bergman spaces, theory of generators of non-linear semigroups,
and to many other problems (see [1, 3, 4, 6, 13, 14, 22], and references therein). In
most of these applications the requirement that (Tn + T\2X) is invertible (needed to
define a linear fractional transformation) is not natural and is quite restrictive. In this
connection it became important to generalise results of the theory of linear fractional
transformations to the case when (Tn + T\2AT) is not invertible. Work in this direction
has been done in [9, 10, 11 , 12]. In these papers results of the theory of linear fractional
transformations were generalised through the study of multivalued maps defined in the
following way.

DEFINITION 1: The map GT from C(Bi, B?) into the set of closed affine subspaces
of£(0i ,B2) , defined by

(3) GT(X) = {YeC(Bt
1,B'2): T21+T22X = Y(T11+TUX)},

is called a linear fractional relation (associated with T).

DEFINITION 2: A linear fractional relation GT is said to be defined at X if GT{X)
^ 0. The set of all X e £(61,82) at which GT is defined is called the domain of GT and
is denoted by domGr.

An interesting (though somewhat vague) problem is: how should one define and
check "holomorphic" properties of multivalued maps? In this paper we mainly consider,
for linear fractional relations (which without doubt can be considered as "holomorphic"
multivalued maps and expected to have the corresponding behaviour) one such property
- the validity of analogues of Liouville's theorem "a bounded entire function is constant".
Clearly for single-valued holomorphic (in any reasonable sense) maps between Banach
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spaces the direct analogue is valid. In the multivalued case one should first define constant
and bounded maps. We use the following definitions. Let G be a mutivalued map from
an arbitrary set 5 into a Banach space B. We say that G is constant on a subset U of S
if there is an element y belonging to G(s) for all s € U. The map G is called bounded on
U if there is C > 0 such that inf ||y|| ^ C for each s 6 U.

(
It was noted in [12] that even in the case when B and B' are Hilbert spaces, there are

non-constant and non-linear linear fractional relations defined on the whole £(Bi ,B 2 ) .
We shall give such an example for the convenience of the reader, because in [12] it was
not clearly written out.

Let Tu be an isometry with the image Z C B[ of infinite codimension. Let Ti2 be a
compact operator whose image is orthogonal to Z. Operators T2i can be arbitrary. Then,
for each X, the operator T u + T^X has trivial kernel and a closed image. Since B\ is a
Hilbert space, it follows that GT(X) is non-empty. The map GT is clearly non-constant
if, for example, T& is a non-compact operator.

We are going to study the following problem on analogues of the Liouville theorem for
linear fractional relations: can maps GT be defined and bounded on £(B 1 ,S 2 ) without
being constant? The answer is surprising: it depends on the geometry of the spaces.
Namely, for reflexive spaces the answer is negative (Theorem 1), but in general the
answer is affirmative (Theorem 2).

Theorem 1 actually proves (for spaces complemented in their second duals) much
more than an analogue of the Liouville theorem: if a linear fractional transformation is
bounded on its domain, then it is constant. For linear fractional transformations this
"strong Liouville theorem" (without any restrictions on the Banach spaces involved) will
be established in Theorem 3.

In the last section of the work we consider similar problems for Banach (mostly C-)

algebras.

2. PRELIMINARY RESULTS

For linear fractional relations the notion of constant maps introduced above can be
written in the following way.

DEFINITION 3: A linear fractional relation GT is called constant on A C C(B\, fi2)
if A C domG T and there exists W € £(B[, B'2) such that W 6 GT(X) for each l e i
If GT is constant on C(B\, B2) we simply say that GT is constant.

It turns out that if GT is constant on a rich-set (see the definition below), then the
second row of T is an operator multiple of the first row (see (ii) in Proposition 1). For
Hilbert space operators this was observed in [12]. Below we show that the same argument
works for Banach space operators.
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DEFINITION 4: A subset A of C(BU &i) is called rich if the subspace of Bi spanned
by the union of all subspaces of the form {K\ — K2){B\), where K\,K2 G A, is dense in

62-

PROPOSITION 1. Let A C £(61,62) be rich. For a matrix T the following
conditions are equivalent:

(i) GT is constant on A.

(ii) There exists an operator W in C(B'VB'2) such that

(4) T=(Tn T l 2 \ .

(iii) GT is constant.

PROOF: We start by proving (i)^(ii). Let GT be constant on a rich set A and let
Wbean operator satisfying .

WeGT(K) VATS A

Let KUK2 e A. Then

(5) T21 + TnKt = W(Tn + T^K^

and

(6) , Tn + T22K2 = W(TU + T12K2)

Subtracting (6) from (5) we get

- K2) = WTl2{Ki - K2).

Therefore T22x = WTi2x for each x € (Ki — K2){B\). Since A is rich, it implies
T22 = WTl2.

. Now we derive T2X = WTn from either (5) or (6).
The implications (ii)=»(iii)=>-(i) are obvious. D

REMARK. In general, if GT is constant on its domain, it does not imply that the second
row of T is a multiple of the first. As we shall see in Theorem 1, the only example of this
kind is

T= ° °)
\0 Tn)

with T22 ^ 0.
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3. M A I N RESULTS

In this section we find analogues of the Liouville Theorem for linear fractional rela-
tion. The restriction of the general definition of boundedness (mentioned above) to the
case of linear fraction relations is:

D E F I N I T I O N 5: A linear fractional relations GT is called bounded if

sup inf ||K|| < co.
Xedom(GT) YZGW

Our first result is the following analogue of the Liouville Theorem for linear fraction
relations between Banach space operators.

THEOREM 1. Let B'2 be such that the canonical image of B'2 is complemented in
{B2)**. If dom GT i=- 0 and GT is bounded, then either GT is constant, orT is of the form

(7) • T =

with T22 i=- 0. In the latter case GT is defined at X if and only ifT22X = 0, and, for such
X, GT(X) = C(B[,B'2). Therefore in both cases Gf is constant on dom(?r-

PROOF: First we prove the theorem in the case T2\ = 0. In such a case 0 € dom GT,

0 e GT(0), and the equation in (3) becomes

(8) T22X = Y(Tn+Tl2X).

Our first purpose is to prove that in this case dom GT contains all operators of finite
rank. Let R be the set of operators X of rank one in domGr, such that GT(X) contains
a rank one operator. An operator X = u®j (this means that Xx = f{x)u for all x)
belongs to R if and only if there is an operator Y = p®g satisfying (8). This condition
can be written as

(9) P®{T'ng + g(Tl2u) • f) = T22u®f.

It is clear that this condition is satisfied for arbitrary u and g satisfying g(Ti2u) ^ 1, if
we let / = (l - g(Ti2u))~ T*tg and p = T22u. In particular, the condition (9) is satisfied
if g(Tl2u) = 0, / = T^g, and p = T22u.

For x € B\ we denote by W(x) the set of all vectors y £ B2 which can be written in
the form y = Xx, for some X € R.

CASE 1. Tn ^ 0. Suppose that Tnx ^ 0 . Let X = u <g> / , we have Xx = f{x)u. Take

30 e {B[)' with go(Tnx) ± 0, g = Xg0, and / = ( A / ( 1 - A5(T12u)))ri
<

lffo. Then
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can be arbitrarily close to u (if one choose A in a proper way). This means that W(x)
is dense in B2 if Tnx ^ 0. Therefore for Tn / 0 the set Q of all pairs (x, y) satisfying
y 6 W(x) is dense in BxxB2.

Let
C= sup inf | |y||.

Then

(10) \\T

for all X € R and all x. Hence

(11)

for all (x,y) € Q. Since Q is dense, we may assume that (11) holds for all x,y.
In particular, the inequality (10) holds for each X and all x. So, for a fixed finite

rank operator X, setting Y{T\\ + Ti2X)x = T22Xx we define a bounded operator Y on
the linear subspace (Tn + Ti2X)Bi. Being finite rank it extends to whole B2 and clearly
belongs to GT{X). Thus domGr contains all operators of finite rank.

Now we show that for each triple (M,N,e), where M and N are finite dimensional
subspaces in B\ and B2, respectively, e > 0; there exists an operator QM,N,C '• B[ —t B'2
such that ||QM,W,£|| ^ C and the following two conditions are satisfied:

(12) QM,N,eTnx = 0 for each 1 € M,

(13) \\QM,N,eTi2y - TnyW «S e for each y € BN

(by BB we denote the unit ball of a Banach space B).

Let X e JC(0I,2?2) be an operator of finite rank, such that

(14) X\M = 0

and

(15)

(Here we use the assumption that the space B\ is infinite dimensional.)

Since X is in the domain of Gr, there exists an operator QM.N^ such that ||QM,Ar,e||

or

(16) QM,N,CTI2X - T22X = -
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By (14) the condition (16) immediately implies (13).

Also (16) implies

\\QuMTuX-TaX\\ZC\Fn\\.

By condition (15) it implies

-Tny\\ZC\\Tu\\
e

for each y G BN- The condition (13) follows.
We endow the set of all triples (M, AT, e) with the following ordering:

(Mi, Ni, £X) >• (M2, N2,e2) if and only if Mi D M2, Ni D N2, and ex ^ e2.

Let U be an ultrafilter majorising this ordering. The set of all linear operators from
B[ into (B'2)" with norm ^ C is compact in the pointwise weak* topology. Hence the
image of the ultrafilter U under the map (M, N, e) i-> QM,N^ is convergent in this set.
Let Q = w* - limi/ QM,N,€ be the corresponding limit. Let P : (52)** —• B'2 be a bounded
linear projection (whose existence is one of the conditions of Theorem 1). We let Q = PQ.
It is easy to check that QT12 = T22 and QTn = 0. By Proposition 1, the linear fractional
relation GT is constant.

CASE 2. T u = 0. In this case the equation has the form: YTnX = T22X. Take
X = u®/ , then it is easy to see that X € domGx, if 7\2u ^ 0. Hence for 7\2 ^ 0. W(x)
is dense in B2 and \\T22y\\ < C||Ti2y|| for all y € B2. This means that T22 = QTi2, for
some Q € C(B[, B2), and GT is constant.

It remains to consider the case when both Tn = 0 and Tu = 0. In this case T
is of the form given in the statement of Theorem 1. It is easy to see that all relevant
statements of Theorem 1 are valid. We have proved Theorem 1 in the case when T2i = 0 .

Now we consider the general case. Let Xo G domGr and Yo 6 GT{X0). Then

T2i + T22X0 = 5"o(7

Subtracting this equation from (3) and using simple algebraic transformations, we get

(T22 - Y0Tl2)(X - Xo) = (Y- YO)((TU + T12X0) + Tl2(X - Xo)).

Hence the equation (3) is equivalent to

(17) f22X = Y(fn+T12X),

where X = X - Xo, Y = Y - Yo, f12 = T12, fn = Tu + T12X0, and f a = T22 - Tl2Y0.

The equation (17) describes Gf for

0 7V
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It is clear that 0 6 dom Gf and that Gf is bounded. Therefore the argument above
implies that either Gf is constant, or T satisfies

(18) fu = fa = T21 = 0.

It is easy to see that "Gf is constant" implies "GT is constant", and that (18) implies
that T is of the form (7). D

In particular, the result holds when B'2 is a reflexive space.
The following lemma shows that in the reflexive case it is enough to require bound-

edness of GT on a weakly dense subspace in dom GT only. (The basic facts about the
weak operator topology and the strong operator topology which we use below can be
found in [5, Chapter V].)

LEMMA 1. Suppose that the space B'2 is reflexive. A bounded linear fractional
relation GT on a subspace V. of C{B\, B2) can be extended to a bounded linear fractional
relation on the closure WofTZ in the weak operator topology.

PROOF: Since the closures of a linear subspace in the weak operator topology and
the strong operator topology coincide, for each X € W there is a net Xa € 71 which
converges to X in the strong operator topology. Let Ya € GT{XC); by the boundedness
and reflexivity conditions we may assume that the net Ya converges to some Y e W in
the weak operator topology. Then

Y(Tn+Tl2X)-(T2l+T22X) = {Y-Ya){Tn+Tl2X)+YaTn{X-Xa)+T22{Xa-X) -> 0

in the weak operator topology. D

At this moment it is not clear to what extent the restriction on B2 in Theorem 1
can be relaxed. Our next result shows that some restrictions on B'2 are necessary for an
analogue of the Liouville theorem for linear fractional relations to be valid. Below we
assume that all direct sums are in £„, sense. It means that ||(z,y)|| = max{||x||, ||y||}
for (x,y) 6 X (BY. Necessary background in Banach space theory can be found in [21].

THEOREM 2. If Bx = B[ = 4o © Co and Bi = B'2 = £«, © Co © ̂ i(F), where T
has the cardinality of continuum, then there exists T of the form (1) such that the linear
fractional relation GT is bounded, domGr = C{Bi,B2), but GT is not constant.

PROOF: We need the following properties of the introduced objects

(1) The space Bi is isometric to B\ @ B\ (because the direct sums are in £«,
sense).

(2) B\ is isometric to an uncomplemented subspace of B\. This fact immedi-
ately follows from the well-known fact: the canonical image of CQ in £,» is
uncomplemented (see [21, Section II.4.n]). Let A : B\ -*• B\ be such an
isometry.
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(3) Each operator from B\ into ^i(F) is compact (see [21, Section I.l.b]).

(4) For each finite set Z in B\ and each e > 0 there exists a finite-dimensional

subspace M in B\, which is isometric to ̂  for some n € N and satisfies

dist(z, M) <e for each z e Z (see [21, Section II.5.b]).

(5) There exists a quotient map ip : £i(T) -»• Bx (see [21, p. 37]).

Now we define operators l y . In all these definitions we use representations:

where in (19) we use the existence of isometry from (1). When we write vectors of B\ as

pairs, and vectors of B2 as triples, we mean the decompositions (19) and (19).

Let Tn : Bx -> Bx © d be defined by Tu(x) = (x,0) (that is, T n is isometry of B,

onto its 'half')-

Tn(zu z2)z3) = (tp(z3),A<p{z3)),

T22(zuZ2,z3) = ((p{z3),<p(z3),Q),

and
T21(i) = (i,0,0).

LEMMA 2 . Tie linear fractional relation GT is not constant.

PROOF: Assume the contrary. By Proposition 1, there exists Q € C(Bi,B2) such

that QTn = T22 and QTn = T21. By the definitions of Tn and T2i, we get

Q(x,0) = (i,0,0) Vx€fli .

Using the definitions of T12 and T22, and the fact that tp is a quotient map, we get

Therefore
Q(0,Ac) = (0,z,0).

Consider R : B2 -> Bx defined by

R(u,x,z) = (0,Ax).

Then RQ is a projection of B\ © B\ onto 0 © ABi, the existence of such projection

contradicts the fact that AB\ is uncomplemented in B\. U

It remains to show that domGT = C{B\,B2) and that GT is bounded. That is, we

need to find for each K : B\ —> B2 an operator a(K) : B\ —̂  B2, such that

(19) {Tn + T22K) = a(K)(Tu + TX2K)
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and
sup||a(AT)|| < oo.

Let Kb = {K\b, Kib, K3b) according to the three components of Bi. The condition
(19) can be written as

a(K) (b + <p(K3b), A<p(K3b)) • = (6 + <p{K3b), <p{K3b), 0).

We need to establish the existence of such "moderate-norm" operator a{K) (no
matter how large the norm of K is).

The operator a(K) should map pairs (according to the decomposition (19)) onto
triples (according to the decomposition (19)). It is easy to determine the first component
of a(K), and to suggest the most natural third component, namely

a(K)(x,y) = (x,?,0).

It remains to determine the operator which should replace the question mark.
The operator K3 is compact by the condition (3) above. Hence, A(pK3(BBi) is a

compact set. Let {XJ}"=1 be an e-net in it. By the property (4) we can find a finite-
dimensional subspace M € B\ isometric to P^ for some m such that dist(a;j, M) < e Vi.
Let P be a projection of norm 1 onto M and let x € A<pK3(BBl)- There exists y € M
such that ||x - y\\ < 2e. Hence \\Px - Py\\ ^ 2e. Since y = Py, we get ||x - Px\\ ^ 4e.
In. other words

\\{I-P)A¥>K3\\^4e.

On the other hand, it is clear that P can be considered as an operator defined
on the whole space B\ © B\, we let P(x, 0) = 0. We consider an auxiliary operator
U : B\ @ B\ -»• 0i © Bi given by U{x,y) = (x - A~lPy, Py). The norm of this operator
is < 2. Another useful property of this operator is that

(20) U(Tn + Tl2K)b =(b+(I- P)<pK3b, PA<pK3b),

where P — A~lPA. The first operator in the right-hand side of (20) is a small perturba-
tion of the identity, namely

(21) (1 - 4e) \\b\\ ^ \\b + (I - P)<pK3b\\ £ (1 + 4e) ||b||.

We let
a(K)(x, y) = (x, A~xPy + D(I - A~lP)x, 0),

where D is an operator satisfying

D(b + (I- P)<pK3b) = <pK3b - P<pK3b.
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Such a "moderate-norm" operator D exists because of (21) and because (/ — P)<pK3 is a
"moderate-norm" operator. D

Our next purpose is to prove an analogue of Theorem 1 for linear fractional trans-
formations HT : C{Bi, B2) ->• C(B[, B'2) of the form

(22) HT(X) = (T21 + T22X)(TU + TaX)~x.

The domain of HT is defined by domHT = {X e C(BX, B2) : Tu + Tl2X is invertible}.
It is clear that doxaHT ^ £(Bi,02) for each T with 7\2 ^ 0. For linear fractional
transformations we prove the following analogue of Theorem 1 (without any restrictions
on the geometry of Banach spaces involved).

THEOREM 3 . If a linear fractional transformation HT is such that dom HT ^ 0
and HT is bounded on dom HT, then HT is constant.

PROOF: It is convenient to start with a change of the variable. Suppose Xo €

dom HT- Let
Y = (X-X0)(Tu+T12X0)-

1.

Then

HT{X) — (T21 + T22XQ + T22(X — Xo)) (Tu + Ti2X0 + TU(X — Xo))

/ / T 1 i T1 V \frT> i T* V \ — 1 i T1 ~w\ t T i T1 V'X —1

— \\l-2\-T •L22-X-Q)\1\\ + 1\2XQ) + i22J ){1 + i\2Y) .

Hence HT(X) = HS(Y), where 5 is a matrix given by

( Sn S12 j _ [ ^ T12 \
O21 i 2 2 1 \ IlT\-n-0) i-22 I

Therefore

(23) HS(Y) = (52 i + 52 2y)(7 + SuY)~l.

We shall prove that 522 = 52iSi2. This equality immediately implies that H$ and

HT are constant.

If 512 = 0, then 522 should also be equal to 0 (otherwise Hs(Y) is unbounded). So

we suppose that Si2 ± 0.

Let y E 5 2 \kerSi 2 and let x = Sny. Let e 6 B\ be such that e(x) = ||x|| ||e|| = 1.

For Y = e®y we have Yx = y and SX2Y = e®x, so | |5i2y| | = 1, 5i2Kx = x.

Therefore the form of the denominator in (23) implies that XY 6 dom H$ for

Ae (-1,1). Hence

XS22y\\ = \\(S2l + A 5 2 2 y ) x | | ^ fc||(7 + \Si2Y)x\\ = k\\(l + X)x\\,
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where .
k= sup \\HS(Y)\\.

YedomHs

Letting A \ - 1 we get S21S12J/ = S22y.
Since B2 \kerS12 is dense in Bi (we have assumed that 5i 2 / 0), the same is true

for all y 6 Bi. Hence S21S12 = 522- D

4. LINEAR FRACTIONAL RELATIONS IN C-ALGEBRAS

Our next purpose is to find analogues of the Liouville Theorem for linear fractional
relations on Banach algebras. (Theorem 1 in the case B\ = B2 = B[ = B'2 may be
considered as a result of this type.)

A C*-algebra is called primitive if it has a faithful (= injective) irreducible represen-
tation. The class of primitive algebras is quite wide: it includes all simple algebras and
many others.

Recall that the multiplier algebra M(A) of a C*-algebra A may be realised as a
subalgebra of the universal enveloping von Neumann algebra W(.4) consisting of all
T € iy(-4) such that TA C A and AT c A. So any representation of A extends to
M{A).

We say that a C*-algebra A has property (D) if any element of A is a product AV
where A € A is non-negative and V e M(A) is invertible. The property (D) holds for
the algebra K{%) of all compact operators and for its unital extension. Also it holds for
all finite and all purely infinite von Neumann algebras.

THEOREM 4 . Suppose that a primitive C*-algebra A has the property (D). Then
a bounded linear fractional relation defined at each point of A is constant.

PROOF: Since A is primitive, we may realise it as an irreducible (hence dense in the
weak operator topology) subalgebra of £(H). By Lemma 1, GT extends to a bounded
linear fractional relation on C{W.). By Theorem 1, there is Q € £>{Ji) such that T2\ =
QTu, T22 = QT\2- I* remains to prove that such an operator Q can be found in A.

By our assumption, Tn = ,/VV, where N ^ 0 and V is an invertible element of
M(A). By the remark above, V is an invertible element of C{%). We claim that for
Xo = T{2V, the subspace cl((Tn + Tl2Xa)U) contains both TnU and TUH. Since V
is an invertible element of C{%), we have (Tn + Tl2X0)H = (N + Tl2T^2)U. Hence the
orthogonal complement to (Tu + Ti2X0)H is the kernel of N + Ti2T*2, which coincides
with the intersection of the kernels of N and T\2T^\ the latter coincides with the kernel

By definition, there is Yo € GT(X0) such that Y0{Tn + Ti2X0) = Tn + T22X0. Since
the same is true for Q, we get that Yo coincides with Q on the range of Tn +Ti2X0. Hence
they coincide on the closure of this subspace. By the above, it follows that they coincide
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on TnH and Tl2H. Hence Y0Tn = T2l and Y0Tl2 = T22. This means that Yo e GT(X)
for each X e C(U). D

Now we consider the opposite extreme and prove an analogue of the Liouville the-
orem for linear fractional relations on commutative C*-algebras, that is, on algebras of
continuous functions on compacta. Let ft be a compactum, by C(fl) we denote the space
of all continuous functions on ft with the supremum norm.

THEOREM 5 . LetA = C(ft), and Jet Ttj e A (i, j = 1,2). Suppose that for each
X eA there isY = YX eA such that

= T21+T22X

and

(24) \\YX\\ ^ f(\\X\\), where /(a) = o(a) a s a ^ o o .

Then there exists Q € A such that QTU = T-n, QTn = T21.

P R O O F : Consider functions Xn(u) =n, n = 0,1,2,.... Let Yn = YXn. Then

(25) Y0Tu=Tti.

For n ^ l w e can rewrite the defining identity for Yn in the form

YnTli-Ti2 = -^Tn + —.
n n

By the condition (24) we get

lim (Yn(u)Ta{u) - T22(LJ)) = 0 Vw 6 ft.

It follows that there exists a function Y^ on ft such that

(26) yoo(w)ru(w) = T a (u) .

Observe that the argument above does not imply that V ,̂ is continuous.
Let Zi = {ui: TU{UJ) = b}, i = 1,2, and let Z = Zx n Z2.

We shall need the following observations.

(a) Yn(u) = Y0(u) for u 6 Z2\Zt.

(0) Yn(u>) = n o M for CJ G ZX\Z2, n 2 1.

Statements (a) and ($) follow immediately from the definitions.

(7) Y0{u) = Koo(w) for w € fl\(Zi U Z2).
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PROOF OF (7): Consider w0 € fi\(Zi U Z2) and let X be the constant function
-(Tn(u;o))/(T12(Wo)). Then

Evaluating both sides at u>0 we get

Hence Y ^ M = *b(wo)- D
Now we turn to definition of Q. Observe that the equations (25) and (26) imply that

T\\{ui) = 7*12(0;) = T2i(w) = T2i(ui) = 0 for w 6 Z. Since fi is compact (and hence each
continuous function on its closed subset has a continuous extension to fi), it is enough
to define Q satisfying the conditions of Theorem 5 on cl(Q\Z).

We let

and try to extend it to cl(Q\Z).
This approach does not work if and only if there exists a point a G cl(fi\Z) such

that lim^, Q does not exist, where Ua is the filter on Q,\Z given by

Ua = {U\Z : U is a neighbourhood of a}.

This, in turn, can happen if and only if one of the following is true

(1) There exists an ultrafilter V majorising Ua such that limv |Q| = 00 or;

(2) There exist two ultrafilters V and W majorising Ua such that

In the case (1) we may assume that Z\\Z? € V. Hence we get for Yx (defined above)

i ^
V V T\2 v

A contradiction.

As for (2): without loss of generality we may assume that one of the following is
true

(a) Zi\Z2 belongs to both V and VW.

(b) Zi\Z2 e V and Q\ZX e W.
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In the case (a) we get a contradiction in a straightforward way: it implies that
limv Y\ ^ limw Y\, this contradicts the continuity of Yy.

In the case (b), let

Kn = {w : Tu(u) + Ta(u)n ± 0}.

The statement (7) implies that Yn{w) = Y0(UJ) = Y^u) provided w € Knn(U\(ZiUZ2)).
The case (b) contains the following subcases

(b0)

In this case

limFi = lim ^ = limQ ^ limQ = lim ^ = l i m n ,
vv w Tn w v v Tl2 v

a contradiction.

(bn) n ^ 1. Kn n (n\(Zx U Z2)) e W.

In such a case, by the observation above

l imr n = lirnQ / UmQ = l i m ^ = limy,.,

a contradiction.

It remains to show that at least one of the cases (bj) (i = 0,1,2) occurs. Assume
the contrary. Using the basic properties of ultrafilters we get that W contains

U Z2)) n {w : Tn(oj) + Ta{u) = 0}

and
(n\(Zx U Z2)) n {w : T,,(w) + Ta(u) • 2 = 0}.

Hence W contains

(f2\(Zi U Z2)) D {w : Tu(w) + T12(o;) = 0} D {w : r u ( w ) + T12(w) -2 = 0}.

Since this set is empty, we get a contradiction. D

REMARK. The result extends to many other Banach algebras of functions, for example
the algebra A(D) of bounded continuous functions on a compact D c C" analytic in
all inner points of D. For the proof it suffices to apply Theorem 5 and to note that if
a continuous function / coincides with an analytic function g outside the nullset of a
non-zero analytic function, then / = g.
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