THE INFLUENCE OF WR LIKE STELLAR WIND MASS LOSS RATES ON THE EVOLUTION OF MASSIVE CORE HELIUM BURNING STARS.

D. VANBEVEREN Dept. of Physics, VUB, Brussels, Belgium.

SUMMARY. Evolutionary computations of massive close binaries (MCB) including the effects of stellar wind (SW) and convective core overshooting predict that all massive primaries with ZAMS mass larger than 10 M₀ start their core helium burning phase (CHeB) as bare helium cores; the hydrogen rich layers are removed on a timescale of the order of 10⁴ yrs as a consequence of Roche lobe overflow (RLOF). The CHeB remnant after RLOF resembles closely a zero age CHeB star and its further evolution is entirely independent from its binary nature. Similarly as has been done previously by Vanbeveren and Packet (1979, A.&A.80, 242), I have performed a phenomenological study on the evolution of massive hydrogen less CHeB stars including the effect of SW mass loss using updated M determinations of van der Hucht et al. (1986, A.&A. 168, 111). The SW mass loss rate formalism used in the computations is based on the following requirements:

- a. according to the theory of radiation driven winds, I looked for a relation $M=aL^b$,
- b. there are (only) two WR+OB binaries for which a reasonable good estimate of the mass of the WR component is known and which are also included in the updated \dot{M} list of van der Hucht et al. (1986), i.e. V444 Cyg and γ^2 Vel. The WR mass can be transformed into a luminosity using the M-L relation of hydrogen less CHeB stars proposed by Vanbeveren and Packet (1979); this gives us values for a and b (within some uncertainty margin of course),
- c. the observed WN/WC number ratio of WR stars with a detected OB type companion ≈ 1.2 ; varying a and b leads to different predicted WN/WC ratios when the M formalism is applied in an evolutionary code.

The resulting relation which reproduces as closely as possible the foregoing requirements is given by

$$\dot{M}$$
=3.2 10⁻¹³ L^{1.5} (L in L₀, \dot{M} in M₀/yr)

The evolutionary computations then reveal the following conclusions:

- 1. all primaries of MCB's with initial mass between 10 Me and 80 Me (possibly up to 100 Me) end their life as stars with mass between 1.4 Me and 8 Me respectively,
- 2. all primaries with initial mass larger than 40 Mo end their life as a WO star.

555

K. A. van der Hucht and B. Hidayat (eds.), Wolf-Rayet Stars and Interrelations with Other Massive Stars in Galaxies, 555. © 1991 IAU. Printed in the Netherlands.