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COLLINEAR CASE 
BY 
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It is well-known that Wilks' A criterion is distributed as the product ofp inde
pendent beta variables in the /^-variable null-case [3]. In the collinear case, A 
is still distributed as the product of p independent beta variables, one of them 
following a non-central beta density. Thus when/>=2, the exact non-null distribu
tion of A in the collinear case is given by the product of two independent beta 
variables, one central and the other having non-centrality parameter A. Therefore, 
if we let A be denoted by the random variable w, its distribution function is 

(1) f(w) = f f(x,y)dxdy 
Jxy<w 

where 
(2) /(x,y)-/i(x)A(y) 

_ x'-ni-*)»-1 s n - y ) w -q/>(my 
P(a~ll2,b) â> P(a9b+i) il ' 

a = (tf-n)/2 > 1/2, b = (n-l)/2 > 0, 0 £ x, y £ 1, 
2a and 2b being the degrees of freedom for the error and for the hypothesis re
spectively. 

Malik [4] uses the Mellin transform to derive the distribution of the product 
of two independent non-central beta variables. The distribution of w here, however, 
cannot be obtained from his formula, since the non-centrality is imposed on 1 — y 
and not on y. We use the technique of Mellin transformas in [4], to obtain our result. 

The Mellin transform g(s)—§™ ts~]f(t) dt in our case yields 

_p(s+a-3l2,b) 
fla-1/2, b) 

(4) gzis) = 2 a, . ' — -7T- e ày 
i-oJo p(a,b+i) J! 

= | M s + a - 1 , b+i) {Xjiy _m 

ié0 p(a,b+i) il 
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Since the Mellin transform of the density function of the product of two inde
pendent random variables is the product of their individual Mellin transforms [2], 
the Mellin transform of the density function of w=xy is 

(5) 

where 

= SP(s+a-3l2,bW(s+a-l,b+i) (A/2)f _m 

Â P(a-ll2,b)p(a,b+i) i! 

= ^ r(q+b-l/2)r(g+fe+i) (A/2y m 

Â r (a- l /2)I \a) * i! 

Mt-
 r ( s + a - l ) r ( s + a - 3 / 2 ) 

T(s+a+b+i-l)V(s+a+b-3l2) 

In order to obtain the density function of w we need to find the inverse Mellin 

transform/(/)=(l/277ï)Jcito '"'SCOds of each term in (5). We use [1], 

(6) M 1[Mi] = — xs - v ' v ' ds 

x»(l-x)"»+"-i 
= —— — F(n, u—v+m; m+n; 1—x) 

T(m+n) 
where F(a., /?; y ; x) is a hypergeometric function 2FX( • ). Letting u=a—1, u=a—•§, 
I M = 6 + / , n=è and x=w in (6), we obtain 

M [Mil = TYOhll F ( 6 ' 6 + f + 1 / 2 ; 2fc + I'; 1 _ W ) -

Hence, the density function of w is 

(7) f(w) = | r ( a + b~l/2)r(a + & + Q , fl ^ f f i ^ 
w ^ *fo r(a-i/2)r(a)r(26+o v n 

xF(6, fc+i+1/2; 26+z; 1-w), 0 ^ w ̂  1. 

In the null-case, A=0 and (7) reduces to the product of two independent beta 
densities. 
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