ON 4-DIMENSIONAL GENERALIZED COMPLEX SPACE FORMS UN KYU KIM

(Received 13 May 1998; revised 25 March 1999)

Communicated by K. Ecker

Abstract

We characterize four-dimensional generalized complex forms and construct an Einstein and weakly *-Einstein Hermitian manifold with pointwise constant holomorphic sectional curvature which is not globally constant.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 53C55, 53B20. Keywords and phrases: generalized complex space form, almost Hermitian manifold, pointwise constant holomorphic sectional curvature, weakly *-Einstein.

1. Introduction

Let M = (M, J, g) be a 2n-dimensional almost Hermitian manifold with Riemannian connection ∇ and let the curvature tensor of M is given by

$$R(X, Y)Z = [\nabla_X, \nabla_Y]Z - \nabla_{[X, Y]}Z,$$

$$R(X, Y, Z, W) = g(R(X, Y)Z, W)$$

for $X, Y, Z, W \in \chi(M)$, where $\chi(M)$ is the Lie algebra of all smooth vector fields on M.

The holomorphic sectional curvature is defined by H(X) = -R(X, JX, X, JX) for $X \in T_pM$ $(p \in M)$ with g(X, X) = 1. If H(X) is constant $\mu(p)$ for all $X \in T_pM$ at each point p of M, then M is said to be of pointwise constant holomorphic sectional curvature. Further, if μ is constant on all of M, then M is said to be of constant holomorphic sectional curvature.

This research was supported by BSRI-97-1419.

^{© 1999} Australian Mathematical Society 0263-6115/99 \$A2.00 + 0.00

An almost Hermitian manifold (M, J, g) is said to be a generalized complex space form if the Riemannian curvature tensor R satisfies the condition $R = f \pi_1 + h \pi_2$ for some functions f and h, where π_1 and π_2 are given by

$$\pi_1(X, Y, Z) = g(X, Z)Y - g(Y, Z)X,$$

$$\pi_2(X, Y, Z) = 2g(JX, Y)JZ + g(JX, Z)JY - g(JY, Z)JX,$$

for $X, Y, Z \in \chi(M)$.

In [8, p. 389], Tricerri and Vanhecke stated the following problem: Do there exist 4-dimensional manifolds (M, J, g) with $R = f \pi_1 + h \pi_2$, where h is a nonconstant C^{∞} function? They remarked that if h is a nonzero constant, then M is a complex space form. Also they proved that f + h is a constant and M must be Hermitian on $U = \{m \in M | h(m) \neq 0\}$. Olszak showed that the above question has a positive answer [5]. One of his results is the following.

THEOREM 1.1 ([5]). Let (M, J, \tilde{g}) be a Bochner flat Kaehlerian manifold of dimension 4. Assume, additionally, that the scalar curvature $\tilde{\tau}$ of \tilde{g} is nonzero everywhere on M and nonconstant. Let $g = e^{\sigma} \tilde{g}$, where $\sigma = -\log(C(\tilde{\tau})^2)$, C is a positive constant. Then the Hermitian manifold (M, J, g) is a generalized complex space form for which the function $h \neq 0$ everywhere on M and $h = C/24(\tilde{\tau})^3 \neq constant$.

Curvature identities are a key to understanding the geometry of various classes of almost Hermitian manifolds. In this paper we shall be concerned with the following curvature identity:

(*)
$$R(X, Y, Z, W) = R(JX, JY, Z, W) + R(JX, Y, JZ, W) + R(JX, Y, Z, JW),$$

which implies

$$R(X, Y, Z, W) = R(JX, JY, JZ, JW).$$

Gray and Vanhecke [2] posed the following question: Let \mathcal{L} be a given class of almost Hermitian manifolds. Suppose that $M \in \mathcal{L}$ with $\dim M \geq 4$ and assume that M is of pointwise constant holomorphic sectional curvature $\mu = \mu(p)$ ($p \in M$). Must μ be a constant function? In [2] Gray and Vanhecke gave a negative answer to the question for the class of Hermitian manifolds. They have constructed an example of a 4-dimensional Hermitian manifold with pointwise constant holomorphic sectional curvature which is not globally constant. In [4], the present author, Kim, and Jun showed that this example is a weakly *-Einstein manifold, but it is not Einstein.

In the present paper we characterize 4-dimensional generalized complex space forms as the almost Hermitian manifolds with pointwise constant holomorphic sectional curvature whose curvature tensor satisfies the identity (*). Also we construct

a 4-dimensional Einstein and weakly *-Einstein Hermitian manifold with pointwise constant holomorphic sectional curvature which is not globally constant.

2. Preliminaries

Let (M, J, g) be a 4-dimensional almost Hermitian manifold. Then we have

(2.1)
$$J^{2}X = -X, \qquad g(JX, JY) = g(X, Y),$$
$$(\nabla_{X}J)JY = -J(\nabla_{X}J)Y, \qquad g((\nabla_{X}J)Y, Z) = -g(Y, (\nabla_{X}J)Z),$$
$$g((\nabla_{X}J)Y, Y) = 0, \qquad g((\nabla_{X}J)Y, JY) = 0$$

for $X, Y, Z \in \chi(M)$. The *-Ricci tensor ρ^* and the *-scalar curvature τ^* of M are defined respectively by

(2.2)
$$\rho^*(X, Y) = g(Q^*X, Y) = \operatorname{trace}(Z \mapsto R(X, JZ)JY)$$
$$\rho^*(X, Y) = \operatorname{trace} Q^*$$

for all $X, Y, Z \in T_pM$, $p \in M$. For a Kaehler manifold $(\nabla J = 0)$, ρ^* coincides with the Ricci tensor ρ but this does not necessarily hold on a general almost Hermitian manifold. Furthermore, M is said to be a weakly *-Einstein manifold if $\rho^* = (\tau^*/4)g$ holds. In particular, M is called a *-Einstein manifold if, in addition, τ^* is constant. We define three linear operators L_i , i = 1, 2, 3 as the following [8]:

$$(L_1R)(X, Y, Z, W) = \frac{1}{2} \{ R(JX, JY, Z, W) + R(Y, JZ, JX, W) + R(JZ, X, JY, W) \},$$

$$(L_2R)(X, Y, Z, W) = \frac{1}{2} \{ R(X, Y, Z, W) + R(JX, JY, Z, W) + R(JX, Y, Z, JW) \},$$

$$(L_3R)(X, Y, Z, W) = R(JX, JY, JZ, JW).$$

Tricerri and Vanhecke proved the following.

THEOREM 2.1 ([8]). Let M be an almost Hermitian manifold with real dimension four and curvature R. Then we have the following identities:

(2.3)
$$(I - L_1)(I + L_2)(I + L_3)R = -\frac{1}{4}(\tau - \tau^*)(3\pi_1 - \pi_2),$$

$$\rho(R + L_3R) - \rho^*(R + L_3R) = \frac{1}{2}(\tau - \tau^*)g$$

where I is the identity transformation.

On the other hand Gray and Vanhecke obtained the following.

LEMMA 2.2 ([2]). Let M be any almost Hermitian manifold which satisfies curvature identity (*), and assume that M has pointwise constant holomorphic sectional curvature μ . Then

(2.4)
$$R(W, X, Y, Z) = \frac{\mu}{4} \{ g(W, Z) g(X, Y) - g(W, Y) g(X, Z) + g(JW, Z) g(JX, Y) - g(JW, Y) g(JX, Z) - 2g(JW, X) (JY, Z) \} + \frac{1}{4} \{ 2\lambda(W, X, Y, Z) - \lambda(W, Z, X, Y) - \lambda(W, Y, Z, X) \},$$

where
$$\lambda(W, X, Y, Z) = R(W, X, Y, Z) - R(W, X, JY, JZ)$$
.

The Kaehler form Ω of the almost Hermitian manifold is defined by $\Omega(X, Y) = g(X, JY), X, Y \in \chi(M)$. The Nijenhuis tensor N of the almost complex structure J is a tensor field of type (1, 2) defined by

$$N(X, Y) = [JX, JY] - [X, Y] - J[JX, Y] - J[X, JY]$$

for $X, Y \in \chi(M)$. The Lee form of (M, J, g) is the 1-form defined by

(2.5)
$$d\Omega = \omega \wedge \Omega, \quad \omega = \delta \Omega \cdot J.$$

We denote by B the Lee vector field which is defined by $g(B, X) = \omega(X)$ for $X \in \chi(M)$. In an almost Hermitian manifold, it is known that the following equality holds:

(2.6)
$$g((\nabla_X J)Y, Z) = \frac{1}{2} \{ d\Omega(X, JY, JZ) - d\Omega(X, Y, Z) + g(N(Y, Z), JX) \}$$

for $X, Y, Z \in \chi(M)$ [7, 10]. Thus by (2.5) and (2.6), we get

(2.7)
$$2g((\nabla_X J)Y, Z) = \omega(JY)g(X, Z) + \omega(Y)\Omega(X, Z) - \omega(JZ)g(X, Y) - \omega(Z)\Omega(X, Y) - \Omega(X, N(Y, Z)).$$

From (2.7) and (2.1) we obtain

(2.8)
$$2g((\nabla_X J)Y, Z) = g(B, JY)g(X, Z) - g(B, Y)g(JX, Z)$$

$$+ g(X, Y)g(JB, Z) - g(X, JY)g(B, Z)$$

$$- g((\nabla_{JY} J)JX, Z) - g(JX, (\nabla_{JZ} J)Y)$$

$$+ g(X, (\nabla_Z J)Y) + g((\nabla_Y J)X, Z).$$

If the Lee form ω of (M, J, g) is closed (that is, $d\omega = 0$), then a 4-dimensional Hermitian manifold (M, J, g) is said to be a locally conformal Kaehler manifold.

3. A characterization of generalized complex space forms

Let M = (M, J, g) be a 4-dimensional almost Hermitian manifold and let the curvature tensor of M satisfy the condition

(3.1)
$$R(X, Y, Z, W) = R(JX, JY, Z, W) + R(JX, Y, JZ, W) + R(JX, Y, Z, JW)$$

for X, Y, Z, $W \in \chi(M)$. Then we have, with the help of Theorem 2.1, $L_2R = R$ and $L_3R = R$,

(3.2)
$$4R(X, Y, Z, W) - 2\{R(JX, JY, Z, W) + R(Y, JZ, JX, W) + R(JZ, X, JY, W)\}$$

$$= \frac{1}{4}(\tau^* - \tau)\{3g(X, Z)g(Y, W) - 3g(Y, Z)g(X, W) - 2g(JX, Y)g(JZ, W) - g(JX, Z)g(JY, W) + g(JY, Z)g(JX, W)\}.$$

Using Bianchi's identity, (3.1), $L_2R = R$ and $L_3R = R$, we obtain

(3.3)
$$R(JX, JY, Z, W) + R(Y, JZ, JX, W) + R(JZ, X, JY, W)$$
$$= -R(X, Y, Z, W) + 2R(X, Y, JZ, JW) - R(X, W, JY, JZ)$$
$$-R(X, Z, JW, JY).$$

Moreover, we assume that M is of pointwise constant holomorphic sectional curvature μ . Then we have, by the Lemma 2.2,

(3.4)
$$R(X, Y, Z, W) = \mu\{g(X, W)g(Y, Z) - g(X, Z)g(Y, W) + g(JX, W)g(JY, Z) - g(JX, Z)g(JY, W) - 2g(JX, Y)g(JZ, W)\} - \{2R(X, Y, JZ, JW) - R(X, Z, JW, JY) - R(X, W, JY, JZ)\}.$$

Comparing (3.2), (3.3) and (3.4), we obtain

(3.5)
$$R(X, Y, Z, W)$$

= $\left\{ \frac{3}{32} (\tau^* - \tau) - \frac{\mu}{4} \right\} \left\{ g(X, Z) g(Y, W) - g(Y, Z) g(X, W) \right\}$

$$+ \left\{ \frac{1}{32} (\tau^* - \tau) + \frac{\mu}{4} \right\} \left\{ g(JX, W) g(JY, Z) - g(JX, Z) g(JY, W) - 2g(JX, Y) g(JZ, W) \right\}.$$

By the assumption (3.1) (and hence $L_3R = R$), M is a RK-manifold with pointwise constant holomorphic sectional curvature μ . Hence it is known [6] that

(3.6)
$$\rho(X, Y) + 3\rho^*(X, Y) = 6\mu g(X, Y), \quad \tau + 3\tau^* = 24\mu.$$

From (3.5) and (3.6), we get

(3.7)
$$R(X, Y, Z, W) = \left(\frac{\mu}{2} - \frac{\tau}{8}\right) \left\{ g(X, Z)g(Y, W) - g(X, W)g(Y, Z) \right\} + \left(\frac{\tau}{24} - \frac{\mu}{2}\right) \left\{ 2g(JX, Y)g(JZ, W) + g(JZ, W)g(JY, W) - g(JX, W)g(JY, Z) \right\},$$

that is,

$$R = f \, \pi_1 + h \pi_2,$$

where the functions f and g are given by

(3.8)
$$f = \frac{\mu}{2} - \frac{\tau}{8}, \quad h = \frac{\tau}{24} - \frac{\mu}{2}.$$

Thus M is a generalized complex space form.

REMARK. In [3], the present author and Jun obtained (3.7) in another way.

Conversely, suppose that (M, J, g) is a 4-dimensional generalized complex space form whose curvature tensor R is given by

$$R=f\,\pi_1+h\pi_2,$$

where f and h are certain smooth functions on M. We can easily check that R satisfies the condition (3.1) and the holomorphic sectional curvature is given by

$$H(X) = -R(X, JX, X, JX) = -(f + 3h),$$

which shows that H(X) is constant for each unit tangent vector $X \in T_pM$ $(p \in M)$. Hence H(X) depends only on $p \in M$. Therefore, M is an almost Hermitian manifold with pointwise constant holomorphic sectional curvature -(f + 3h). Thus we have, from (3.8),

(3.9)
$$R = \left(\frac{\mu}{2} - \frac{\tau}{8}\right)\pi_1 + \left(\frac{\tau}{24} - \frac{\mu}{2}\right)\pi_2,$$

where we have put $-(f + 3h) = \mu$. Thus we have the following characterization.

THEOREM 3.1. A 4-dimensional almost Hermitian manifold (M, J, g) is a generalized complex space form if and only if M is of pointwise constant holomorphic sectional curvature and the curvature tensor R of M satisfies

$$R(X, Y, Z, W) = R(JX, JY, Z, W) + R(JX, Y, JZ, W) + R(JX, Y, Z, JW)$$

for $X, Y, Z, W \in \chi(M)$.

Now let M be a 4- dimensional generalized complex space form, or equivalently M is a 4-dimensional almost Hermitian manifold with pointwise constant holomorphic sectional curvature μ whose curvature tensor satisfies (3.1). Then the curvature tensor R is given by

$$R = f \, \pi_1 + h \pi_2,$$

where f and h are given by (3.8). And M is both Einstein and weakly *-Einstein [3, 8]. If the function h is nonzero constant, then M is a complex space form [8]. If the function $h \neq 0$ at each point of M and $h \neq constant$, then M is globally conformal to a Bochner flat Kaehler surface [5]. Now let $O = \{p \in M \mid h(p) \neq 0\}$ and $\Gamma = \{q \in M \mid h(q) = 0\}$. Suppose that $O \neq \emptyset$ and $\Gamma \neq \emptyset$. If we put Y = X in (2.8), then we have, with the help of (2.1),

(3.10)
$$(\nabla_X J)X + (\nabla_{JX} J)JX = g(B, JX)X - g(B, X)JX + g(X, X)JB.$$

We choose two unit vectors W and X which define orthogonal holomorphic planes $\{W, JW\}$ and $\{X, JX\}$. In [8, Equation (12.5)], it is shown that

$$(3.11) 2W(h) + 3hg((\nabla_X J)X + (\nabla_{JX} J)JX, JW) = 0.$$

Substituting (3.10) into (3.11), we obtain

$$2W(h) + 3h\omega(W) = 0,$$

which implies

$$(3.12) 3h\omega + 2dh = 0, dh \wedge \omega + hd\omega = 0.$$

Hence we have $\omega = -\frac{1}{3}d\log(h^2)$ and $d\omega = 0$ on O. Since (M, J, g) is a generalized complex space form, the Bochner curvature tensor vanishes on M [8]. And the Bochner curvature tensor is an invariant of a conformal transformation. Therefore the open set O is locally conformal to a Bochner flat Kaehler manifold.

Let q be any point of Γ and let $d\omega \neq 0$ at q. Then $d\omega \neq 0$ on an open neighborhood \mathcal{U} of q in M. If there exists a point p in \mathcal{U} such that $h \neq 0$ on an open neighborhood

 \mathscr{V} of p, then $d\omega = 0$ on \mathscr{V} by the previous argument. But this is impossible. Therefore h = 0 holds on all of \mathscr{U} and $R = f \pi_1$ on \mathscr{U} . Hence \mathscr{U} is locally conformal to the 4-dimensional Euclidean space.

Summing up the above results and Olszak's [5, Theorem 2] we have the following

THEOREM 3.2. Let (M, J, g) be a 4-dimensional almost Hermitian manifold with pointwise constant holomorphic sectional curvature μ and let the curvature tensor of M satisfies

$$R(X, Y, Z, W) = R(JX, JY, Z, W) + R(TX, Y, JZ, W) + R(JX, Y, Z, JW)$$

for $X, Y, Z, W \in \chi(M)$.

- (1) If $h = \tau/24 \mu/2 = 0$ holds everywhere on M, then M is of constant sectional curvature μ .
- (2) If $h = \tau/24 \mu/2$ is a nonzero constant, then M is a complex space form, that is, a Kaehlerian manifold with constant holomorphic sectional curvature.
- (3) If $h = \tau/24 \mu/2 \neq 0$ at each point of M and h is not constant, then (M, J, \tilde{g}) is a Bochner flat Kaehler manifold, where we have put $\tilde{g} = e^{-\sigma}g$, $\sigma = -\frac{1}{3}\log(C_1h^2)$, C_1 is a positive constant.
- (4) If $\{p \in M \mid h(p) \neq 0\} \neq \emptyset$, $\{p \in M \mid h(p) = 0\} \neq \emptyset$ and $\{p \in M \mid h = 0 \text{ and } d\omega = 0 \text{ at } p\} = \emptyset$, then M is locally conformal to Bochner flat Kahler manifold or Euclidean space.

4. An example

In this section, using Derdzinski's results and Olszak's theorem we shall give an example of an Einstein and a weakly *-Einstein Hermitian manifold with pointwise constant holomorphic sectional curvature.

Let (M, J, \tilde{g}) be a Bochner flat Kaehlerian manifold of dimension four. Assume, additionally, that the scalar curvature $\tilde{\tau}$ of \tilde{g} is nonzero everywhere on M and nonconstant. Such an example was constructed by Derdzinski in [1, 5]. Let $g = e^{\sigma} \tilde{g}$, where $\sigma = -\log(C\tilde{\tau}^2)$, C is a positive constant. Then (M, J, g) is a Hermitian manifold and M is a generalized complex space form for which $h = (C/24^3)\tilde{\tau}^3 \neq 0$. h is not constant since $\tilde{\tau}$ is not constant. Since h is not constant, we have from (3.9) $\tau/24 - \mu/2 \neq \text{const.}$ Since M is a generalized complex space form, it is Einstein and weakly *-Einstein. Hence we have τ is a constant. Therefore the holomorphic sectional curvature μ is not constant. Thus (M, J, g) is an Einstein and weakly *-Einstein Hermitian manifold with pointwise constant holomorphic sectional curvature which is not globally constant.

References

- [1] A. Derdzinski, 'Exemples de métriques de Kahler et d'Einstein auto-duales sur le plan complexe', in: Géométrie Riemannienne en Dimension 4. Séminaire Arthur Besse 1978/79 (Cedic/Fernand Nathan, Paris, 1981) pp. 334-346.
- [2] A. Gray and L. Vanhecke, 'Almost Hermitian manifolds with constant holomorphic sectional curvature', Časopis Pěst. Mat. 104 (1979), 170-179.
- [3] U. K. Kim and J.-B. Jun, 'On 4-dimensional almost Hermitian manifolds with pointwise constant holomorphic sectional curvature', *Kyungpook Math. J.* 35 (1996), 649–656.
- [4] U. K. Kim, I. B. Kim and J.-B. Jun, 'On self-dual almost Hermitian 4-manifolds', Nihonkai Math. J. 3 (1992), 163-176.
- [5] Z. Olszak, 'On the existence of generalized complex space forms', Israel J. Math. 65 (1989), 214-218.
- [6] T. Sato, 'On some almost Hermitian manifolds with constant holomorphic sectional curvature', Kyungpook Math. J. 29 (1989), 11-25.
- [7] K. Sekigawa, 'Geometry of almost Hermitian manifold', in: *Proceedings of the Topology and Geometry Research Center* 5 (Dec. 1994) pp. 73-153.
- [8] F. Tricerri and L. Vanhecke, 'Curvature tensors on almost Hermitian manifolds', Trans. Amer. Math. Soc. 267 (1981), 365-398.
- [9] K. Yano, Differential geometry on complex and almost complex spaces (Pergamon Press, New York, 1965).
- [10] K. Yano and M. Kon, Structures on manifolds, Ser. Pure Math. 3 (World Scientific Publ., Singapore, 1984).

Department of Mathematics Education Sung Kyun Kywan University Seoul 110-745 Korea

e-mail: kimuk@yurim.skku.ac.kr