CYCLIC SUBGROUP SEPARABILITY OF GENERALIZED FREE PRODUCTS

GOANSU KIM

Abstract

We derive a criterion for a generalized free product of groups to be cyclic subgroup separable. We see that most of the known results for cyclic subgroup separability are covered by this criterion, and we apply the criterion to polygonal products of groups. We show that a polygonal product of finitely generated abelian groups, amalgamating cyclic subgroups, is cyclic subgroup separable.

1. Introduction.

1.1. Notation. Let G be a group. Then we use $N \triangleleft_{f} G$ to denote that N is a normal subgroup of finite index in G. We denote by $A *_{H} B$ the generalized free product of A and B with the subgroup H amalgamated. If $G=A *_{H} B$ and $x \in G$, then $\|x\|$ denotes the amalgamated free product length of x in G. If \bar{G} is a homomorphic image of G, then we use \bar{x} to denote the image of $x \in G$ in \bar{G}.

Let H be a subgroup of a group G. Then G is said to be H-separable if, for each $x \in G \backslash H$, there exists $N \triangleleft_{f} G$ such that $x \notin N H$. A group G is subgroup separable if G is H-separable for all finitely generated (f.g.) subgroups H of G. A group G is residually finite (RF) if G is $\langle 1\rangle$-separable. In particular, a group G is said to be cyclic subgroup separable (π_{c}) if G is $\langle x\rangle$-separable for each $x \in G$. Clearly, every subgroup separable group is π_{c}, and every π_{c} group is RF.
1.2. Residual finiteness of generalized free products. In [4, Proposition 2], G. Baumslag proved a residual finiteness criterion for the generalized free product of two residually finite (RF) groups. For the generalized free product amalgamating a cyclic subgroup, Allenby and Tang [3] introduced a simple criterion, using potency, to derive the residual finiteness of the generalized free product with a cyclic subgroup amalgamated. Their idea motivated Wehrfritz [14] to find a residual finiteness criterion for the generalized free product with any subgroup amalgamated. Baumslag's criterion has been used extensively in the study of the residual finiteness of generalized free products.
1.3. Statement of results. The object of this paper is to study the cyclic subgroup separability of generalized free products of groups. The following theorem plays an important role in this study.

[^0]Theorem 1.1. Let $G=E *_{H} F$ andlet $\Lambda=\left\{(P, Q): P \triangleleft_{f} E, Q \triangleleft_{f} F\right.$ and $\left.P \cap H=Q \cap H\right\}$.
(1) $\bigcap_{(P, Q) \in \Lambda} P H=H$ and $\bigcap_{(P, Q) \in \Lambda} Q H=H$,
(2) $\bigcap_{(P, Q) \in \Lambda} P\langle x\rangle=\langle x\rangle$ and $\bigcap_{(P, Q) \in \Lambda} Q\langle y\rangle=\langle y\rangle$ for all $x \in E, y \in F$.

Then G is π_{c}.
We note that G. Baumslag [4, Proposition 2] proved that the group G is RF if we replace (2) above by $\bigcap_{(P, Q) \in \Lambda} P=1=\bigcap_{(P, Q) \in \Lambda} Q$. From Theorem 1.1, it is not difficult to derive the following:

Proposition 1.2. Let $G=E *_{H} F$. Suppose that
(a) E and F are π_{c} and H-separable,
(b) for each $N \triangleleft_{f} H$ there exist $N_{E} \triangleleft_{f} E$ and $N_{F} \triangleleft_{f} F$ such that $N_{E} \cap H=N_{F} \cap H \subset N$. Then G is π_{c}.

In [14], Wehrfritz showed that the group G in Proposition 1.2 is RF if we substitute " E and F are RF and H-separable" for (a) in the proposition.

Let G and Λ be as in Theorem 1.1. Then, for each $(P, Q) \in \Lambda$, we have a homomorphism

$$
\begin{equation*}
\psi_{P, Q}: E *_{H} F \rightarrow E / P *_{\bar{H}} F / Q, \tag{1}
\end{equation*}
$$

where $\bar{H}=H P / P=H Q / Q$. Using this notation, Shirvani [13] proved that $G=E *_{H} F$ is RF if, and only if, $\bigcap_{(P, Q) \in \Lambda} \operatorname{Ker} \psi_{P, Q}=\langle 1\rangle$. As an easy generalization of this, we find

Theorem 1.3. Let $G=E *_{H} F$ and let Λ be as in Theorem 1.1. For a given f.g. subgroup L of G, G is L-separable if, and only if, $\bigcap_{(P, Q) \in \Lambda}\left(\operatorname{Ker} \psi_{P, Q}\right) L=L$.

This result and Theorem 1.1 directly imply the following:
Corollary 1.4. Let $G=E *_{H} F$ and Λ be as in Theorem 1.1. Assume that $\bigcap_{(P, Q) \in \Lambda} P H=H=\bigcap_{(P, Q) \in \Lambda} Q H$. Then G is π_{c} if, and only if, $\bigcap_{(P, Q) \in \Lambda}\left(\operatorname{Ker} \psi_{P, Q}\right)\langle x\rangle=\langle x\rangle$, for all $x \in A \cup B$.

Finally, we apply our result to a special kind of generalized free products, known as polygonal products of groups, and we generalize some results found in [2], [11].

Let P be a polygon. Assign a group G_{v} to each vertex v and a group G_{e} to each edge e of P. Let α_{e} and β_{e} be monomorphisms which embed G_{e} as a subgroup of the two vertex groups at the ends of the edge e. Then the polygonal product G is defined to be the group generated by the generators and relations of the vertex groups G_{v} together with the extra relations obtained by identifying $g_{e} \alpha_{e}$ and $g_{e} \beta_{e}$ for each $g_{e} \in G_{e}$. By abuse of language, we say that G is the polygonal product of the (vertex) groups $G_{0}, G_{1}, \ldots, G_{n}$, amalgamating the (edge) subgroups $H_{0}, H_{1}, \ldots, H_{n}$ with trivial intersections, if $G_{i} \cap G_{i+1}=H_{i}$ and $H_{i} \cap H_{i+1}=1$, where $0 \leq i \leq n$ and the subscripts i are taken modulo $n+1$.

Theorem 1.5. Let P be the polygonal product of the polycyclic-by-finite groups A, B, C, D amalgamating the subgroups $\langle b\rangle,\langle c\rangle,\langle d\rangle,\langle a\rangle$ with trivial intersections. If a, b, c, d are in the centers of the vertex groups containing them, then P is π_{c}.

A similar result for the polygonal product of more than four f.g. abelian groups, amalgamating any subgroups with trivial intersections, will be considered in a later paper. But, if amalgamated cyclic subgroups in a polygonal product are finite, then we have the following result which is an extension of [2, Theorem 4.4.].

THEOREM 1.6. Let P_{0} be the polygonal product off.g. nilpotent groups $A_{0}, A_{1}, \ldots, A_{n}$ ($n \geq 3$), amalgamating finite cyclic subgroups $\left\langle h_{0}\right\rangle,\left\langle h_{1}\right\rangle, \ldots,\left\langle h_{n}\right\rangle$ with trivial intersections. If there exist two vertex groups $A_{i}, A_{j}($ say $i<j)$ such that h_{i-1}, h_{j} are of prime orders, then P_{0} is π_{c}.

Residual finiteness of the polygonal product in the next theorem is known [11]. We may prove the next result by following the proof of Theorem 1.1.

THEOREM 1.7 ([10]). Let P_{0} be the polygonal product of the f.g. nilpotent groups A_{0}, B_{0}, C_{0}, D_{0}, amalgamating $\langle b\rangle,\langle c\rangle,\langle d\rangle,\langle a\rangle$, with trivial intersections. If a and c are of prime orders p and q, respectively, then P_{0} is π_{c}.

For the polygonal product of f.g. nilpotent groups, amalgamating arbitrary cyclic subgroups, the situation is not as simple as it is in the above theorems. Considering the simplest polygonal product of four torsion-free nilpotent groups, we may prove the following result.

THEOREM 1.8. Let P be the polygonal product of the four $\mathrm{f} . \mathrm{g}$. torsion-free nilpotent groups $\langle a, b\rangle,\langle b, c\rangle,\langle c, d\rangle,\langle d, a\rangle$, amalgamating the cyclic subgroups $\langle b\rangle,\langle c\rangle,\langle d\rangle,\langle a\rangle$, with trivial intersections. Then P is π_{c}.
2. Proofs and applications. In this section, we prove our results and apply them to the known results. We begin by proving Theorem 1.1.

Proof of Theorem 1.1. Let $g \notin\langle x\rangle$, where $g, x \in G$. Since we want to find $N \triangleleft_{f} G$ such that $g \notin N\langle x\rangle$, we may assume that x is cyclically reduced. As we noted, G is RF by Baumslag [4, Proposition 2]. Hence, we also may assume that $x \neq 1$. Clearly $g \neq 1$.

Case 1. Suppose $g \notin\langle x\rangle$ is implied by the syllable lengths of g and x; that is,
Subcase 1: $\|x\|=0$ and $\|g\| \geq 1$,
Subcase 2: $\|x\|=1$, say, $x \in E \backslash H$ and
(i) $\|g\| \geq 2$, or
(ii) $\|g\|=1$ and $g \in F \backslash H$,

Subcase $3:\|x\| \geq 2$ and
(i) $\|g\|=0$, or
(ii) $\|g\| \neq 0$ and $\|x\|$ does not divide $\|g\|$.

If $\|g\| \geq 1$, say, $g=a_{1} b_{1} \cdots a_{m} b_{m}$ where $a_{i} \in E \backslash H$ and $b_{i} \in F \backslash H$ (the other cases being similar), then by (1) we can find $\left(P_{i}, Q_{i}\right),\left(P_{i}^{\prime}, Q_{i}^{\prime}\right) \in \Lambda$ such that $a_{i} \notin P_{i} H$ and $b_{i} \notin Q_{i}^{\prime} H$ for all i. Let $P_{0}=\bigcap_{i=1}^{m}\left(P_{i} \cap P_{i}^{\prime}\right)$ and $Q_{0}=\bigcap_{i=1}^{m}\left(Q_{i} \cap Q_{i}^{\prime}\right)$. Then $\left(P_{0}, Q_{0}\right) \in \Lambda$. If $1 \neq g \in H$ then we choose, from (2), $\left(P_{0}, Q_{0}\right) \in \Lambda$ such that $g \notin P_{0}$. Note that $\left\|g \psi_{P_{0}, Q_{0}}\right\|=\|g\|$ and $g \psi_{P_{0}, Q_{0}} \neq 1$, where $\psi_{P_{0}, Q_{0}}$ is as in (1). In a similar way, we can find ($\left.P_{0}^{\prime}, Q_{0}^{\prime}\right) \in \Lambda$ such that
$\left\|x \psi_{P_{0}^{\prime}, Q_{0}^{\prime}}\right\|=\|x\|$ and $x \psi_{P_{0}^{\prime}, Q_{0}^{\prime}} \neq 1$. Let $P=P_{0} \cap P_{0}^{\prime}$ and $Q=Q_{0} \cap Q_{0}^{\prime}$. Then $(P, Q) \in \Lambda$, and $\bar{g} \neq 1 \neq \bar{x},\|\bar{g}\|=\|g\|$ and $\|\bar{x}\|=\|x\|$, where $\bar{G}=G \psi_{P, Q}=E / P *_{\bar{H}} F / Q$. Note that $\bar{g} \notin\langle\bar{x}\rangle$. Since $\bar{G}=E / P *_{\bar{H}} F / Q$ is free-by-finite, hence it is subgroup separable [8], and since $\bar{g} \notin\langle\bar{x}\rangle$, there exists $\bar{N} \triangleleft_{f} \bar{G}$ such that $\bar{g} \notin \bar{N}\langle\bar{x}\rangle$. Let N be the preimage of \bar{N} in G. Then $g \notin N\langle x\rangle$ and $N \triangleleft_{f} G$ as required.

CASE 2. Suppose that g and x are in the same factor, say, E. Since g and x are in E, by assumption (2), there exists $(P, Q) \in \Lambda$ such that $g \notin P\langle x\rangle$. It follows that $\bar{g} \notin\langle\bar{x}\rangle$, where $\bar{G}=E / P *_{\bar{H}} F / Q$. Now, as in Case 1 , we can find $N \triangleleft_{f} G$ such that $g \notin N\langle x\rangle$.

Case 3. Suppose $\|x\| \geq 2,\|g\| \neq 0$ and $\|x\|$ divides $\|g\|$. Since x is cyclically reduced, we may assume that $x=e_{1} f_{1} \cdots e_{n} f_{n}$, where $e_{i} \in E \backslash H$ and $f_{i} \in F \backslash H$. Since $\|x\|$ divides $\|g\|$, we may write $g=a_{1} b_{1} \cdots a_{m} b_{m}$ or $g=b_{1} a_{1} \cdots b_{m} a_{m}$, where $a_{j} \in E \backslash H$, $b_{j} \in F \backslash H$, and $m=n s$ for some integer s. As in Case 1 , we can find $\left(P_{1}, Q_{1}\right) \in \Lambda$ such that $a_{j}, e_{i} \notin P_{1} H$ and $b_{j}, f_{i} \notin Q_{1} H$ for all i, j. Now $g^{-1} x^{s} \neq 1 \neq g x^{s}$ and G is RF by [4]. Hence there exists $M \triangleleft_{f} G$ such that $g^{-1} x^{s} \notin M$ and $g x^{s} \notin M$. Note that $(M \cap E, M \cap F) \in \Lambda$. Let $P=P_{1} \cap M \cap E$, and $Q=Q_{1} \cap M \cap F$, then $(P, Q) \in \Lambda$. Hence, in $\bar{G}=G \psi_{P, Q}=E / P *_{\bar{H}} F / Q$, we have $\|\bar{g}\|=\|g\|$ and $\|\bar{x}\|=\|x\|$. By the choice of M, $\bar{g} \neq \bar{x}^{s}$ and $\bar{g} \neq \bar{x}^{-s}$, thus $\bar{g} \notin\langle\bar{x}\rangle$ in \bar{G}. Now, as before, we can find $N \triangleleft_{f} G$ such that $g \notin N\langle x\rangle$. This completes the proof.

It is not difficult to see that (a) and (b) in Proposition 1.2 imply (1) and (2) in Theorem 1.1. Hence, we omit the proof of Proposition 1.2. Now we list some known results which follow from Proposition 1.2. For the proofs, we refer the reader to [10, §2.2].

Corollary 2.1 ([1]). Let E and F be π_{c} and let H be finite. Then $E *_{H} F$ is π_{c}.
Corollary 2.2 ([7]). Let A and B be π_{c} groups and $A \cap B=\langle a\rangle$. Assume that there exists an integer k such that, for each integer n, we can find $N \triangleleft_{f} A$ satisfying $N \cap\langle a\rangle=\left\langle a^{n k}\right\rangle$. Then $A *_{\langle a\rangle} B$ is π_{c}.

In [6, p.42], Dyer mentioned that $A *_{H} A$ is not RF, if A is not H-separable. Hence, we have the following from Theorem 1.1.

Corollary 2.3. Let A be π_{c} (or RF) and H be a subgroup of A. Then A is H-separable if, and only if, $A *_{H} A$ is π_{c} (or RF).

Next result is a generalization of Boler and Evans' result [5] and Allenby and Gregorac [1] mentioned the result for the generalized free product of two π_{c} groups amalgamating a retract. A subgroup H of a group G is called a retract if there exists $G_{1} \triangleleft G$ such that $G=G_{1} H$ and $G_{1} \cap H=1$. In this case, we denote $G=G_{1} \cdot H$.

Corollary 2.4 ([1]). Let G_{i} be a π_{c} group with a retract H for each $i \in I$. Then the generalized free product Q_{I} of the $G_{i}(i \in I)$ amalgamating H is π_{c}.

Now we prove Theorem 1.3. We recall the homomorphism $\psi_{P, Q}$ from (1).

Proof of Theorem 1.3. (\Longleftrightarrow) Let $g \in G \backslash L$. Then, by assumption, there exists $(P, Q) \in \Lambda$ such that $g \notin\left(\operatorname{Ker} \psi_{P . Q}\right) L$, where $\psi_{P, Q}$ is as in (1). Hence $g \psi_{P, Q} \notin L \psi_{P . Q}$. Since $G \psi_{P . Q}=E / P *_{\bar{H}} F / Q$ is subgroup separable by [8], we can find $N \triangleleft_{f} G$ such that $g \notin N L$.
(\Longrightarrow) Let $g \in G \backslash L$. Since G is L-separable, there exists $N \triangleleft_{f} G$ such that $g \notin N L$. Let $P=N \cap E$ and $Q=N \cap F$. Then clearly $P \triangleleft_{f} E, Q \triangleleft_{f} F$, and $P \cap H=N \cap H=Q \cap H ;$ hence $(P, Q) \in \Lambda$. Moreover, $\operatorname{Ker} \psi_{P, Q}=\langle P, Q\rangle^{G} \subset N$, hence $g \notin\left(\operatorname{Ker} \psi_{P . Q}\right) L$. This proves that $\bigcap_{(P, Q) \in \Lambda}\left(\operatorname{Ker} \psi_{P, Q}\right) L \subset L$; hence $\bigcap_{(P, Q) \in \Lambda}\left(\operatorname{Ker} \psi_{P, Q}\right) L=L$.

We note that $A *_{\langle c\rangle} B$ has solvable power problem whenever A and B have solvable power problems (Lipschutz, [12]). On the other hand, it is not known whether $A *_{\langle c\rangle} B$ is π_{c} whenever A and B are π_{c}. However, for residual finiteness, the Higman's group $\left\langle a, c ; a^{-1} c a=c^{2}\right\rangle{ }^{*}\langle c\rangle\left\langle b, c ; b^{-1} c b=c^{2}\right\rangle$ is not RF [9], but its factors are RF.

Finally, we prove our results on polygonal products.
Proof of Theorem 1.5. Let $P=E *_{H} F$ where $E=A *_{\langle b\rangle} B, F=D *_{\langle d\rangle} C$ and $H=\langle a\rangle *\langle c\rangle$. To apply Proposition 1.2, we first note that E and F are subgroup separable [1, Theorem 5]. Hence (a) in the proposition holds. For (b) in the proposition, let $N \triangleleft_{f} H$. Then there exists a natural homomorphism $\pi: E \rightarrow(A /\langle b\rangle) *(B /\langle b\rangle)$. Let $\bar{E}=E \pi=\bar{A} * \bar{B}$, where $\bar{A}=A /\langle b\rangle$ and $\bar{B}=B /\langle b\rangle$. We note that $\langle\bar{a}\rangle *\langle\bar{c}\rangle \cong H$ and $N \cong \bar{N} \triangleleft_{f}\langle\bar{a}\rangle *\langle\bar{c}\rangle$. Now, considering $\bar{A} * \bar{B}=\bar{A} *\langle\bar{a}\rangle\langle(\langle\bar{a}\rangle *\langle\bar{c}\rangle) *\langle\bar{c}\rangle, \bar{B}$, we have a homomorphism $\phi: \bar{E} \rightarrow$ $(\bar{A} / \bar{N} \cap\langle\bar{a}\rangle) *_{\langle\tilde{a}\rangle}(\langle\bar{a}\rangle *\langle\bar{c}\rangle / \bar{N}) *_{\langle\bar{c}\rangle}(\bar{B} / \bar{N} \cap\langle\bar{c}\rangle)$, where $\langle\tilde{a}\rangle=\langle\bar{a}\rangle / \bar{N} \cap\langle\bar{a}\rangle=\bar{N}\langle\bar{a}\rangle / \bar{N}$ and $\langle\tilde{c}\rangle=\bar{N}\langle\bar{c}\rangle / \bar{N}=\langle\bar{c}\rangle / \bar{N} \cap\langle\bar{c}\rangle$. Since $\langle\tilde{a}\rangle$ and $\langle\tilde{c}\rangle$ are finite, therefore, $\bar{E} \phi$ is RF. Note that $(\langle\bar{a}\rangle *\langle\bar{c}\rangle) / \bar{N}$ is finite. It follows that there exists $\tilde{M} \triangleleft_{f} \bar{E} \phi$ such that $\tilde{M} \cap((\langle\bar{a}\rangle *\langle\bar{c}\rangle) / \bar{N})=1$. Now, let N_{E} be the preimage of \tilde{M} in E under the homomorphism $\pi \circ \phi$. Then $N_{E} \triangleleft_{f} E$ and $N_{E} \cap H=N$. Similarly, we can find $N_{F} \triangleleft_{f} F$ such that $N_{F} \cap H=N$. This proves (b) in Proposition 1.2. Therefore, P is π_{c} by the proposition.

As a consequence of Theorem 1.5, we have the next result which is a generalization of [2, Theorem 3.4.].

Corollary 2.5. Let P be the polygonal product of the f.g. abelian groups A, B, C, D amalgamating the subgroups $\langle b\rangle,\langle c\rangle,\langle d\rangle,\langle a\rangle$ with trivial intersections. Then P is π_{c}.

It is easy to prove the next lemma.
Lemma 2.6 ([10]). Let $E=E_{1} \cdot H$ be a RF group with a retract H. Then E is H separable.

Lemma 2.7. Let $E=E_{1} \cdot H$ be a π_{c} group with a retract H, where H is f.g., and let F be subgroup separable. Then $E *_{H} F$ is π_{c}.

Proof. By Lemma 2.6, E is H-separable. Clearly F is H-separable. Thus, to apply Proposition 1.2, we need only consider (b) in Proposition 1.2. For this, let $N_{H} \triangleleft_{f} H$ be given. Choose $T=\left\{h_{0}, h_{1}, \ldots, h_{r}\right\}$ to be a complete set of coset representatives of N_{H} in H, where $h_{0}=1$. Note that N_{H} is f.g. Since F is N_{H}-separable, and since $h_{k} \notin N_{H}$,
for $1 \leq k \leq r$, there exists $M \triangleleft_{f} F$ such that $h_{k} \notin M N_{H}$, for all $k \neq 0$. This implies that $M \cap H \subset N_{H}$. Since H is a retract of E and $M \cap H \triangleleft_{f} H$, there exists $N \triangleleft_{f} E$ such that $N \cap H=M \cap H$. This proves (b) in Proposition 1.2. Thus $E *_{H} F$ is π_{c} by Proposition 1.2.

Proof of Theorem 1.6. Without loss of generality, we let $i=0$.
CASE 1. All A_{i} are finite. We put $E=\left\langle h_{n}, h_{0}\right\rangle *_{\left\langle h_{0}\right\rangle} A_{1} *_{\left\langle h_{1}\right\rangle} \cdots *_{\left\langle h_{j-2}\right\rangle} A_{j-1} *_{\left\langle h_{j-1}\right\rangle}\left\langle h_{j-1}, h_{j}\right\rangle$ and $F=A_{n} *_{\left\langle h_{n-1}\right\rangle} A_{n-1} *_{\left\langle h_{n-2}\right\rangle} \cdots *_{\left\langle h_{j+1}\right\rangle} A_{j+1}$. Then $P_{0}=\left(\left(E *_{H} F\right) *_{S} A_{0}\right) *_{T} A_{j}$, where $H=\left\langle h_{n}\right\rangle *\left\langle h_{j}\right\rangle, S=\left\langle h_{n}, h_{0}\right\rangle$, and $T=\left\langle h_{j-1}, h_{j}\right\rangle$. Since all A_{k} are finite, E and F are subgroup separable [1]. Now A_{0}, A_{j} are nilpotent, and orders of h_{n}, h_{j} are primes. It follows that $\left\langle h_{n}\right\rangle \cap\left\langle h_{0}\right\rangle^{S}=1=\left\langle h_{j}\right\rangle \cap\left\langle h_{j-1}\right\rangle^{T}$. Thus, there exists a homomorphism $\pi: E \rightarrow\left\langle h_{n}\right\rangle *\left\langle h_{j}\right\rangle$ defined by $x \pi=1$ for all $x \in A_{1} \cup A_{2} \cup \cdots \cup A_{j-1}$ (if $j \geq 2$) (or $x \pi=1$ for all $x \in\left\langle h_{0}\right\rangle($ if $j=1)$) and $y \pi=y$ for all $y \in\left\langle h_{n}\right\rangle \cup\left\langle h_{j}\right\rangle$. Briefly, $H=\left\langle h_{n}\right\rangle *\left\langle h_{j}\right\rangle$ is a retract of E. Hence, by Lemma 2.7, $E *_{H} F$ is π_{c}. Note that the S, T are finite. It follows that $P_{0}=\left(\left(E *_{H} F\right) *_{S} A_{0}\right) *_{T} A_{j}$ is π_{c} by Corollary 2.1.

CASE 2. The A_{k} are not necessarily finite. Note that each $B_{k}=\left\langle h_{k-1}, h_{k}\right\rangle$ is finite, and note that the polygonal product P, of the subgroups B_{k}, of the A_{k}, amalgamating the $\left\langle h_{k}\right\rangle$, is π_{c} by the above case, where the subscripts k are taken modulo $n+1$. It follows that P_{0} is π_{c}, since $P_{0}=P *_{B_{0}} A_{0} *_{B_{1}} A_{1} *_{B_{2}} \cdots *_{B_{n}} A_{n}$, and since each B_{k} is finite.

Proof of Theorem 1.8. Let $A=\langle a, b\rangle, B=\langle b, c\rangle, C=\langle c, d\rangle$ and $D=\langle d, a\rangle$. Then $P=E *_{H} F$, where $E=A *_{\langle b\rangle} B, F=D *_{\langle d\rangle} C$ and $H=\langle a\rangle *\langle c\rangle$. Note that $\langle a\rangle^{A} \cap\langle b\rangle=1=\langle c\rangle^{B} \cap\langle b\rangle$. It follows that $\langle b\rangle$ is a retract of both A and B. Hence, E is π_{c} by Corollary 2.4. Similarly F is π_{c}. Since $\langle b\rangle^{A} \cap\langle a\rangle=1=\langle b\rangle^{B} \cap\langle c\rangle, H$ is a retract of E. Similarly H is a retract of F. Hence, the theorem follows from Corollary 2.4.

References

1. R. B. J. T. Allenby and R. J. Gregorac, On locally extended residually finite groups. In: Lecture Notes in Mathematics 319, Springer Verlag, New York, 1973, 9-17.
2. R. B. J. T. Allenby and C. Y. Tang, On the residual finiteness of certain polygonal products, Canad. Math. Bull. (1) 32(1989), 11-17.
3. \qquad The residual finiteness of some one-relator groups with torsion, J. Algebra (1) 71(1981), 132140.
4. G. Baumslag, On the residual finiteness of generalized free products of nilpotent groups, Trans. Amer. Math. Soc. 106(1963), 193-209
5. J. Boler and B. Evans, The free product of residually finite groups amalgamated along retracts is residually finite, Proc. Amer. Math. Soc.6(1973), 284-285.
6. J. L. Dyer, Separating conjugates in amalgamated free products and HNN extensions, J. Austral. Math. Soc. Ser. A, (1) 29(1980), 35-51.
7. B. Evans, Cyclic amalgamations of residually finite groups, Pacific J. Math. 55(1974), 371-379.
8. M. Hall, J.., Coset representations in free groups, Trans. Amer. Math. Soc. 67(1949), 421-432.
9. G. Higman, A finitely related group with an isomorphic proper factor group, J. London Math. Soc. 26(1951), 59-61.
10. G. Kim, Conjugacy and Subgroup Separability of Generalized Free Product, Ph.D. thesis submitted to University of Waterloo, 1991.
11. G. Kim and C. Y. Tang, On the residual finiteness of polygonal products of nilpotent groups, Canad. Math. Bull (3) 35(1992), 390-399.
12. S. Lipschutz, Groups with solvable conjugacy problems, Illinois J. Math. 24(1980), 192-195.
13. M. Shirvani, A converse to a residual finiteness theorem of G. Baumslag, Proc. Amer. Math. Soc. (3) 104(1988), 703-706.
14. B. A. F. Wehrfritz, The residual finiteness of some generalized free products, J. London Math. Soc. (2) 24(1981), 123-126.

Department of Mathematics
Kangnung National University
Kangnung, 210-702
Republic of Korea

[^0]: The author thanks his supervisor, Professor C. Y. Tang.
 Received by the editors March 20, 1991; revised August 27, 1992.
 AMS subject classification: Primary: 20E26, 20 E 06.
 Key words and phrases: generalized free products, polygonal products, residually finite, cyclic subgroup separable (π_{c}).
 (c) Canadian Mathematical Society, 1993.

