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CYCLIC SUBGROUP SEPARABILITY 
OF GENERALIZED FREE PRODUCTS 

GOANSU KIM 

ABSTRACT. We derive a criterion for a generalized free product of groups to be 
cyclic subgroup separable. We see that most of the known results for cyclic subgroup 
separability are covered by this criterion, and we apply the criterion to polygonal 
products of groups. We show that a polygonal product of finitely generated abelian 
groups, amalgamating cyclic subgroups, is cyclic subgroup separable. 

1. Introduction. 

1.1. Notation. Let G be a group. Then we use N <f G to denote that N is a normal 
subgroup of finite index in G. We denote by A *# B the generalized free product of A 
and B with the subgroup H amalgamated. If G = A *# B and xGG, then ||x|| denotes the 
amalgamated free product length of x in G. If G is a homomorphic image of G, then we 
use x to denote the image of x G G in G. 

Let H be a subgroup of a group G. Then G is said to be H-separable if, for each 
x G G \ //, there exists N <f G such that x <£ NH. A group G is subgroup separable if G 
is //-separable for all finitely generated (f .g.) subgroups H of G. A group G is residually 
finite (RF) if G is (Inseparable. In particular, a group G is said to be cyclic subgroup 
separable (TTC) if G is (x)-separable for each x G G. Clearly, every subgroup separable 
group is 7rc, and every ixc group is RF. 

1.2. Residual finiteness of generalized free products. In [4, Proposition 2], G. Baumslag 
proved a residual finiteness criterion for the generalized free product of two residually 
finite (RF) groups. For the generalized free product amalgamating a cyclic subgroup, 
Allenby and Tang [3] introduced a simple criterion, using potency, to derive the residual 
finiteness of the generalized free product with a cyclic subgroup amalgamated. Their idea 
motivated Wehrfritz [14] to find a residual finiteness criterion for the generalized free 
product with any subgroup amalgamated. Baumslag's criterion has been used extensively 
in the study of the residual finiteness of generalized free products. 

1.3. Statement of results. The object of this paper is to study the cyclic subgroup 
separability of generalized free products of groups. The following theorem plays an 
important role in this study. 
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THEOREM 1.1. LetG = E*HFandletA = {(P, Q):P<fE>Q <f FandPDH = QHH}. 
(1) f](P1Q)eAPH = Handf](P,Q)eAQH = Hf 

(2> r\(P,Q)eAP(x) = (x) andf)(p,Q)eA Q(y) = (y) for all x G E, y G F. 
Then G is irc. 

We note that G. Baumslag [4, Proposition 2] proved that the group G is RF if we 
replace (2) above by C\(P,Q)£AP = 1 = C\(p,Q)eA Q- From Theorem 1.1, it is not difficult 
to derive the following: 

PROPOSITION 1.2. LetG-E *H F. Suppose that 
(a) E and F are nc and H-separable, 
(b) for each N <f H there exist NE <f E and NF <f F such that NEPiH = NFnH C N. 

Then G is irc. 

In [14], Wehrfritz showed that the group G in Proposition 1.2 is RF if we substitute 
"E and F are RF and //-separable" for (a) in the proposition. 

Let G and A be as in Theorem 1.1. Then, for each (P, Q) G A, we have a homomor-
phism 

(1) il>P,Q:E*HF^E/P*jiF/Q, 

where 77 = HP jP = HQ/Q. Using this notation, Shirvani [13] proved that G = E *H F 
is RF if, and only if, fl(p,0GA ^ e r ^P,<2 = (1)- As an easy generalization of this, we find 

THEOREM 1.3. Let G = E*H F and let A be as in Theorem 1.1. For a given f.g. 
subgroup LofG, G is L-separable if and only if f]^PQ)eA(Kev I[)P,Q)L = L. 

This result and Theorem 1.1 directly imply the following: 

COROLLARY 1.4. Let G = E*HE and A be as in Theorem 1.1. Assume that 
rW)eA PH = H = ri(p,G)GA QH- Then G is ^c if and only if (\Pg)eA(Ker ^P,Q)(X) = (x), 
forallx G A UP. 

Finally, we apply our result to a special kind of generalized free products, known as 
polygonal products of groups, and we generalize some results found in [2], [11]. 

Let P be a polygon. Assign a group Gv to each vertex v and a group Ge to each 
edge e of P. Let ae and (3e be monomorphisms which embed Ge as a subgroup of 
the two vertex groups at the ends of the edge e. Then the polygonal product G is 
defined to be the group generated by the generators and relations of the vertex groups 
Gv together with the extra relations obtained by identifying geae and ge(3e for each 
ge G Ge. By abuse of language, we say that G is the polygonal product of the (vertex) 
groups Go, G i , . . . , Gn, amalgamating the (edge) subgroups HQ.H\, ..., //„ with trivial 
intersections, if G, D Gi+] = /// and Hi H Hi+i = 1, where 0 < i < n and the subscripts / 
are taken modulo n + 1. 

THEOREM 1.5. Let P be the polygonal product of the polycyclic-by-finite groups 
A,P, C, D amalgamating the subgroups (Z?), (c), (J), (a) with trivial intersections. If 
a, b, c, d are in the centers of the vertex groups containing them, then P is irc. 
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A similar result for the polygonal product of more than four f .g. abelian groups, 
amalgamating any subgroups with trivial intersections, will be considered in a later 
paper. But, if amalgamated cyclic subgroups in a polygonal product are finite, then we 
have the following result which is an extension of [2, Theorem 4.4.]. 

THEOREM 1.6. LetPo be the polygonal product off.g. nilpotent groups Ao, A\,..., An 

(n > 3), amalgamating finite cyclic subgroups (ho), (h\),..., (hn) with trivial intersec
tions. If there exist two vertex groups AnAj (say i < j) such that ht-\, hj are of prime 
orders, then Po is TTC. 

Residual finiteness of the polygonal product in the next theorem is known [11]. We 
may prove the next result by following the proof of Theorem 1.1. 

THEOREM 1.7 ([10]). Let Po be the polygonal product of the f .g. nilpotent groups Ao, 
Bo, Co, Do, amalgamating (b), (c), (d), (a), with trivial intersections. If a and c are of 
prime orders p and q, respectively, then Po is ixc. 

For the polygonal product of f .g. nilpotent groups, amalgamating arbitrary cyclic 
subgroups, the situation is not as simple as it is in the above theorems. Considering 
the simplest polygonal product of four torsion-free nilpotent groups, we may prove the 
following result. 

THEOREM 1.8. Let P be the polygonal product of the four f.g. torsion-free nilpotent 
groups (a,b), (b,c), (c,d), (d,a), amalgamating the cyclic subgroups (b), (c), (d), (a), 
with trivial intersections. Then P is TTC. 

2. Proofs and applications. In this section, we prove our results and apply them to 
the known results. We begin by proving Theorem 1.1. 

PROOF OF THEOREM 1.1. Let g <j£ (x), where g, x e G. Since we want to find N<fG 
such that g $É N(x), we may assume that x is cyclically reduced. As we noted, G is RF 
by Baumslag [4, Proposition 2]. Hence, we also may assume that x ^ 1. Clearly g ^ 1. 

CASE 1. Suppose g <£ (x) is implied by the syllable lengths of g and x\ that is, 
Subcase 1: ||JC|| = 0 and ||g|| > 1, 

Subcase 2: ||*|| = 1, say,x G E\Hand 

(0 ||*|| > 2, or 
(ii) ||s|| = l a n d g e F \ / / , 

Subcase 3: ||JC|| > 2 and 

(i) | |* | |=0, or 
(ii) ||g|| ^ 0 and ||JC|| does not divide ||g||. 

If ||*|| > l,say, g = a\b\ ••• ambm where at G E\H and bt G F\H (the other cases being 
similar), then by (1) we can find (Ph &), (P\, Q[) G A such that at £ Pfl and bt £ Q[H 
for all i. Let P0 = n S i ( ^ n P Î ) and Q0 = Çf^Qi^Q'i)- Then (P0, Go) e A. If 1 ̂ g G H 
then we choose, from (2), (Po, Go) £ A such that * ^ Po- Note that \\g^pQ,QQ \\ = \\g\\ and 
g^p0,Q0 ̂  1, where V^ôo is as in (1). In a similar way, we can find (PQ, Q'0) G A such that 
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WX^Q'0W = IWI a n d X^Q'Q ¥ 1. Let P = P0 H P^and Q=Q0H Q'0. Then (P, 0 G A, 
and g ^ I ^x, \\g\\ = ||g|| and ||x|| = ||JC||, where G = G^p,g = E/P^F/Q. Note that 
£ ^ (x). Since G = E/P *^ F/Qis free-by-finite, hence it is subgroup separable [8], and 
since g £ (x), there exists N<fG such that g £ N(x). Let N be the preimage of N in G. 
Then g £ N(x) and N <f G as required. 

CASE 2. Suppose that g and x are in the same factor, say, E. Since g and x are in E, 
by assumption (2), there exists (P, 0 G A such that g £ P{x). It follows that g £ (3c), 
where G = Zs/P *^ F / 0 Now, as in Case 1, we can find N <f G such that g £ N(x). 

CASE 3. Suppose ||JC||> 2, \\g\\ ^ 0 and ||JC|| divides ||g||. Since x is cyclically 
reduced, we may assume thatx = e\f\ • • • e„fn, where et G E\Hand/ G F\H. Since 
||*|| divides ||g||, we may write g = a\b\ • • -ambm org = b\a\ • • -bmam, where ay G £ \ / / , 
Z?y G F \ //, and m = ns for some integer s. As in Case 1, we can find (Pi, Q\) G A 
such that a^ei £ P\H and bj,f £ Q\H for all ij. Now g~lxs ^ 1 ^ gxs and G is 
RF by [4]. Hence there exists M <tyG such that g~lx* £ M and gx* ^ M. Note that 
(MDE, MHF) G A. Let P = P{ HMHE, and Q = 0 HMHF, then (P, 0 G A. Hence, 
in G = Gipp^Q = EJP *jjF/Q, we have \\g\\ = \\g\\ and \\x\\ = ||JC||. By the choice of M, 
g ^ Xs and g ^ x~\ thus g £ (x) in G. Now, as before, we can find N<fG such that 
g £ N(x). This completes the proof. • 

It is not difficult to see that (a) and (b) in Proposition 1.2 imply (1) and (2) in The
orem 1.1. Hence, we omit the proof of Proposition 1.2. Now we list some known 
results which follow from Proposition 1.2. For the proofs, we refer the reader to 
[10, §2.2]. 

COROLLARY 2.1 ([1]). Let E and F be TTC and let H be finite. Then E*H F is TTC. 

COROLLARY 2.2 ([7]). Let A and B be ixc groups and AH B = (a). Assume that 
there exists an integer k such that, for each integer n, we can find N <\f A satisfying 
Nn(a) = (ank). ThenA*{a) B is nc. 

In [6, p.42], Dyer mentioned that A *#A is not RF, if A is not H- separable. Hence, we 
have the following from Theorem 1.1. 

COROLLARY 2.3. Let A be nc (orRF) and H be a subgroup of A. Then A is H-separable 
if and only if A*HA is TTC (or RFJ. 

Next result is a generalization of Boler and Evans' result [5] and Allenby and Gregorac 
[1] mentioned the result for the generalized free product of two TTC groups amalgamating 
a retract. A subgroup H of a group G is called a retract if there exists G\ < G such that 
G = G\H and Gi H / / = 1. In this case, we denote G = G\ • H. 

COROLLARY 2.4 ([1]). Let Gt be a nc group with a retract H for each i G L Then the 
generalized free product Qj of the Gi (i G I) amalgamating H is irc. 

Now we prove Theorem 1.3. We recall the homomorphism i/^g from (1). 
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PROOF OF THEOREM 1.3. (<=) Let g G G \ L. Then, by assumption, there exists 
CP, 0 G A such that g ÇÉ (Ker i/;p.g)L, where x/jpg is as in (1). Hence gi/ip^Q £ LIJJP.Q. 

Since Gipp^Q = E/P *jjF/Q is subgroup separable by [8], we can find N <f G such that 
g£NL. 

(=>) Let g G G\L. Since G is L-separable, there exists N <f G such that g £ NL. Let 
P = NH E and Q = NH F. Then clearly P<f E, Q<f F, <md PC\H = NHH = QH H\ 
hence (P,Q) G A. Moreover, Ker^p,£ = (P, Q)G C N, hence g £ (Ker^P>(2)L. This 
proves that ri(p,0eA(Ker

 ^P,Q)L C L>
 n e n c e fVô)eA(Ker

 # , Q ) £ = L. • 

We note that A * ^ 5 has solvable power problem whenever A and B have solvable 
power problems (Lipschutz, [12]). On the other hand, it is not known whether A * ^ B 
is 7rc whenever A and 5 are ixc. However, for residual finiteness, the Higman's group 
(a, c\ a~lca = c2) * / \ (b, c; fr_1cZ? = c2) is not RF [9], but its factors are RF. 

Finally, we prove our results on polygonal products. 

PROOF OF THEOREM 1.5. Let P = E *# F where £ = A * ^ B, F = D * ^ C and 
/ / = (a) * (c). To apply Proposition 1.2, we first note that E and F are subgroup separable 
[1, Theorem 5]. Hence (a) in the proposition holds. For (b) in the proposition, let Af <y H. 
Then there exists a natural homomorphism IT: E —> (A/ (b)) *(#/ (b)). Let Ê = FÎT = Â*/?, 
where Â = A/(&) and B = B/(b). We note that (à) * (c) = H and N = N <f (a) * (c). 
Now, considering Â * B = Â * ^ ((à) * (c)) *^) 5, we have a homomorphism <\>:E—+ 
(A/NH (à)) *(a) ((à) * (c)/Â0 *(?) (5/Ârn (c>), where (a) = <â)/iVn (â) = ;V(â)//V and 
(c) = N(c)/N = (c)/;Vn (c). Since (â) and (c) are finite, therefore, È<j> is RF. Note that 
((â)*(c))/Â^s finite. Itfollowsthatto = 1. 
Now, let NE be the preimage of M in £ under the homomorphism 7r o </>. Then Afe <y £ 
andNEHH = N. Similarly, we can findNp <3y F such thatNpHH - N. This proves (b) 
in Proposition 1.2. Therefore, P is TTC by the proposition. • 

As a consequence of Theorem 1.5, we have the next result which is a generalization 
of [2, Theorem 3.4.]. 

COROLLARY 2.5. Eet P be the polygonal product of the f.g. abelian groups A, B, C, 
D amalgamating the subgroups (b), (c), (d), (a) with trivial intersections. Then P is ixc. 

It is easy to prove the next lemma. 

LEMMA 2.6 ([10]). Eet E - E\ • H be a RF group with a retract H. Then E is H-
separable. 

LEMMA 2.7. Let E = E\ • H be a TTC group with a retract H, where H is f.g., and let F 
be subgroup separable. Then E *# F is irc. 

PROOF. By Lemma 2.6, E is //-separable. Clearly F is //-separable. Thus, to apply 
Proposition 1.2, we need only consider (b) in Proposition 1.2. For this, let NH </ H be 
given. Choose T = {ho, h\,..., hr] to be a complete set of coset representatives of NH 
in //, where /i0 = 1. Note that NH is f.g. Since F is ^//-separable, and since hk £ NH, 
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for 1 < k < r, there exists M<\f F such that hk <£ MNH, for all k ^ 0. This implies that 
M PI H C NH. Since / / is a retract of E and MP\H<fH, there exists N<\f E such that 
NHH - MHH. This proves (b) in Proposition 1.2. Thus E *# Fis 7rc by Proposition 1.2. 
• 

PROOF OF THEOREM 1.6. Without loss of generality, we let / = 0. 

CASEl. AWAi are finite. We put E= (hn,h0)*{ho)Ai*{hiy • •*^._2>A /_I*<A;_1)(/Ï /_I,/I /) 

and F = A„ * ( V ] ) A„_i *(^_2) • • • *(/2.+i) A/+i. Then P0 = ((E *H F) *5 A0) *r A,-, where 
H = (hn) * (hj), S = (hn, ho), and T = (hj-\,hj). Since all Â  are finite, £ and F are 
subgroup separable [1]. Now Ao,A7 are nilpotent, and orders of hn, hj are primes. It 
follows that (hn) D (ho)s = 1 = (hj) Pi (hj-\)T. Thus, there exists a homomorphism 
7r: £ —> (hn) * (fy) defined by JC7r = 1 for all x G A\ U A2 U • • • U A/_i (ify > 2) (or X7r = 1 
for all x G (Ao) (ify = 1)) and yix = y for all y G (hn) U (fy). Briefly, H = (hn) * (A,-) is a 
retract of £. Hence, by Lemma 2.7, E*H Fis 7rc. Note that the 5, Tare finite. It follows 
that Po = ((£ *// F) *5 Ao) *r A7 is irc by Corollary 2.1. 

CASE 2. The A^ are not necessarily finite. Note that each Bk = (hk-\,hk) is finite, 
and note that the polygonal product P, of the subgroups Bk, of the Ak, amalgamating the 
(hk), is 7TC by the above case, where the subscripts k are taken modulo n + 1. It follows 
that Po is 7TC, since Po = P *s0 A0 ^ Ai *#2 • • • *#„ A„, and since each Z?£ is finite. • 

PROOF OF THEOREM 1.8. Let A = (a,b), B = (b,c), C = (c,d) and D = (d,a). 

Then P = E*HF, where £ = A *<fc) B, F = D*(J) C and / / = (a) * (c). Note that 
(a)A n(b) = 1 = (c)B H (b). It follows that (fe) is a retract of both A and B. Hence, £ is 
7TC by Corollary 2.4. Similarly F is TTC. Since (&)A P (a) = 1 = (£)5 P (c), / / is a retract 
of E. Similarly H is a retract of F. Hence, the theorem follows from Corollary 2.4. 
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