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Classical Sobolev Spaces

2.1 Basic Definitions

Let p ∈ [1,∞] and k, n ∈ N; suppose that � is a non-empty open subset of Rn.
Then

Wk
p (�) := {

u : Dαu ∈ Lp (�) for all α ∈ Nn
0 with |α| ≤ k

}

(2.1.1)

is the classical Sobolev space of order k, based on Lp (�); the derivatives Dαu
are taken in the sense of distributions. It is a linear space when endowed with
addition and multiplication by scalars in the natural way; provided with the
norm ‖·‖k,p,� (written as ‖·‖k,p if there is no ambiguity) defined by

‖u‖k,p,� =
⎛

⎝
∑

|α|≤k

‖Dαu‖p
p,�

⎞

⎠

1/p

if p < ∞, (2.1.2)

and

‖u‖k,∞,� =
∑

|α|≤k

‖Dαu‖∞,� (2.1.3)

when p = ∞, it is a Banach space that is uniformly convex if p ∈ (1,∞).
Moreover, Wk

2 (�) is a Hilbert space, with inner product (·, ·)k,2,� (or (·, ·)k,2)

given by

(u, v)k,2,� :=
∫

�

∑

|α|≤k

(Dαu)
(

Dαv
)

dx. (2.1.4)

First suppose that � = R
n. In this case, characterisations of these spaces by

means of the Fourier transform F are possible and desirable. To explain this,
first define the function ws : Rn → R by

ws(x) = (

1 + |x|2)s/2
for all x ∈ Rn and s ∈ R, (2.1.5)
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2.2 Fundamental Results 19

and introduce the space

Hs
p (R

n) := {

u ∈ S ′ (Rn) : F−1 (wsFu) ∈ Lp (R
n)
}

, (2.1.6)

where S = S (Rn) is the Schwartz space of rapidly decreasing functions and
S ′ (Rn) is its dual, the space of tempered distributions. Endowed with the norm

∥
∥u|Hs

p (R
n)
∥
∥ := ∥

∥F−1 (wsFu)
∥
∥

p,Rn , (2.1.7)

it is a Banach space. In fact,

Hs
p (R

n) = Ws
p (R

n) when p ∈ (1,∞) and s ∈ N, (2.1.8)

with equivalent norms. When p = 2 this assertion is an immediate consequence
of the fact that the Fourier transform F and its inverse are unitary operators in
L2 (R

n); for other values of p appeal to the Michlin–Hörmander Fourier multi-
plier theorem gives the result. We refer to [95], 3.6.1 for further details of the
argument.

Now let � be a non-empty open subset of Rn. In addition to the ‘intrinsic’
definition of Wk

p (�) described above it would be natural to define this space as
{

u ∈ Lp (�) : there exists v ∈ Wk
p (R

n) with v|� = u
}

and give it the norm

inf
{‖v‖k,p,Rn : v ∈ Wk

p(R
n), v|� = u

}

,

where v|� = u is meant in the sense of D′(�), so that v(φ) = u(φ) for all
φ ∈ D (�). This space, defined by restriction, coincides with Wk

p (�) if � is
bounded and has a Lipschitz boundary; without some condition on the bound-
ary the spaces may be different. Similarly, Hk

p (�) may be defined by restric-
tion of elements of Hk

p (R
n), and coincides with Wk

p (�) when p ∈ (1,∞) and
k ∈ N, if � is bounded and has sufficiently smooth boundary. It is common
to denote Hk

2 (�) by Hk (�). More information on this topic is given in [95],
Chapters 3 and 4.

2.2 Fundamental Results

Here we list, for ease of reference, some of the most useful results concerning
Sobolev spaces. In what follows the closure of C∞

0 (�) in Wk
p (�) will be de-

noted by
0

Wk
p (�). Proofs may be found in [64] and [61]; see also [32] and [141].

We begin with embeddings.

Theorem 2.1 Let � be a bounded open subset of Rn, let k ∈ N and suppose
that p ∈ [1,∞).
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20 Classical Sobolev Spaces

(i) Assume that � has Lipschitz boundary and that kp < n. Then

Wk
p (�) ↪→ Ls(�) if s ∈ [p, np/(n − kp)

]

,

and this embedding is compact if s ∈ [p, np/(n − kp)). If for some l ∈ N0

and γ ∈ (0, 1] the inequality (k − l − γ ) p ≥ n holds, then

Wk
p (�) ↪→ Cl,γ (�

)

,

and the embedding is compact if (k − l − γ ) p > n. These results hold

without any condition on ∂� if Wk
p (�) is replaced by

0
Wk

p (�).
(ii) If k, l ∈ N0, l > k and ∂� is of class C, then Wl

p (�) ↪→↪→ Wk
p(�); the

condition on ∂� may be dropped if Wl
p (�) and Wk

p(�) are replaced by
0

Wl
p (�) and

0
Wk

p (�), respectively.
(iii) If p ∈ (1,∞), then Wk

p (�) ↪→↪→ Wk−1
q (�) whenever q ∈ [1, p). Note

that no condition on ∂� is required.

The theorem shows that the embedding Ip,q of W1
p (�) in Lq(�) is compact

whenever p ∈ (1,∞) and q ∈ [1, p), no matter how unpleasant ∂� may be.
There is a dramatic change when q = p, for while Ip,p is compact when ∂�

is of class C, the ‘rooms and passages’ example (see Theorem V.4.18 of [64])
shows that in the absence of any condition on the boundary of �, Ip,p may be
noncompact. Indeed, [68] contains an example in which Ip,p is not even strictly
singular.

It turns out that these results may be refined by use of the Lorentz spaces
introduced in Section 1.3.3. For example, as regards (i), it can be shown that

when 1 ≤ p < n, the smallest r.i. space X(�) such that
0

W1
p (�) ↪→ X(�) is

Lp∗,p (�), where p∗ = np/(n − p), so that the embedding
0

W1
p (�) ↪→ Lp∗,p (�)

is optimal in the class of r.i. spaces, so far as the target space is concerned. The
more complicated question of optimality of the domain space in such embed-
dings is briefly discussed in p. 23 of [65], where references to further work on
this topic can be found.

Next we list some very useful inequalities. We say that an open set � ⊂ R
n

supports the p-Friedrichs inequality if there is a constant c > 0 such that for all
u ∈ C∞

0 (�),

‖u‖p,� ≤ c ‖|∇u|‖p,� .

An example of such a set is given in the next result: note that the set � need not
be bounded.
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Theorem 2.2 Let � be an open subset of Rn that lies between two parallel
co-ordinate hyperplanes at a distance l apart, and suppose that p ∈ [1,∞).

Then for all u ∈ 0
W1

p (�),

‖u‖p,� ≤ l ‖|∇u|‖p,� .

If the parallel hyperplanes are not parallel to co-ordinate hyperplanes the
inequality still holds but with l replaced by Cl for some constant C independent
of u. When � is bounded we have the following.

Theorem 2.3 Let � be a bounded open subset of Rn and suppose that p ∈
[1,∞]. Then for all u ∈ 0

W1
p (�),

‖u‖p,� ≤ (|�| /ωn)
1/n ‖|∇u|‖p,� .

If p ∈ [1, n) and q ∈ [p, np/(n − p)
]

, then there is a constant C such that for

all u ∈ 0
W1

p (�),

‖u‖q,� ≤ C |�|1/n+1/q−1/p ‖|∇u|‖p,� .

It is sometimes convenient to use the homogeneous Sobolev space
0
D1

p (�),

where
0
D1

p (�) := completion of C∞
0 (�) with respect to the norm u �−→ ‖|∇u|‖p,� .

This coincides with
0

W1
p (�) when � supports the p-Friedrichs inequality, in

which case
0

D1
p (�) ⊂ {

u ∈ W1
p (R

n) : u = 0 a.e. in Rn\�} ,
with equality when ∂� is of class C (see [90], Theorem 1.4.2.2).
For elements of the whole space W1

p (�) there is

Theorem 2.4 (The Poincaré inequality) Let � be a bounded, convex open
subset of Rn with diameter d and let p ∈ [1,∞]. Then for all u ∈ W1

p (�),

‖u − u�‖p,� ≤ (ωn/ |�|)1−1/n dn ‖|∇u|‖p,�,

where u� = |�|−1 ∫

�
u(x) dx.

The following results concerning
0

W1
p (�) are useful.

Theorem 2.5 Let � be an open subset of Rn and let p ∈ (1,∞).

(i) If u ∈ W1
p (�) and supp u is a compact subset of �, then u ∈ 0

W1
p (�).
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22 Classical Sobolev Spaces

(ii) Suppose that u ∈ W1
p (�)∩C

(

�
)

. If u = 0 on ∂�, u ∈ 0
W1

p (�); if ∂� ∈ C1

and u ∈ 0
W1

p (�) , then u = 0 on ∂�.

Next we give some details of the behaviour under translation of functions in
W1

p (�) that will be used extensively later on.

Proposition 2.6 Let � be an open subset of Rn, let p ∈ (1,∞) and suppose
that u ∈ W1

p (�). Then for every open subset ω of Rn with compact closure
contained in �, and all h ∈ Rn with |h| < dist (ω, ∂�) ,

∫

ω

|u(x + h)− u(x)|p dx ≤ |h|p ‖|∇u|‖p
p,� . (2.2.1)

If � = R
n, then for all h ∈ Rn,

∫

Rn
|u(x + h)− u(x)|p dx ≤ |h|p ‖|∇u|‖p

p,Rn . (2.2.2)

Proof First suppose that u ∈ C∞
0 (Rn). Let h, x ∈ Rn and set v(t) = u(x + th)

(t ∈ R). Then v′(t) = h · ∇u(x + th) and

u(x + h)− u(x) = v(1)− v(0) =
∫ 1

0
h · ∇u(x + th) dt,

so that

|u(x + h)− u(x)|p ≤ |h|p
∫ 1

0
|∇u(x + th)|p dt. (2.2.3)

Thus
∫

ω

|u(x + h)− u(x)|p dx ≤ |h|p
∫

ω

dx
∫ 1

0
|∇u(x + th)|p dt

= |h|p
∫ 1

0
dt
∫

ω+th
|∇u(y)|p dy.

If |h| < dist (ω, ∂�), there is an open subset ω′ of Rn with compact closure
contained in � such that ω + th ⊂ ω′ for all t ∈ [0, 1]. Hence

∫

ω

|u(x + h)− u(x)|p dx ≤ |h|p
∫

ω′
|∇u(y)|p dy, (2.2.4)

which gives (2.2.1) when u ∈ C∞
0 (Rn). If u ∈ W1

p (�), then by Theorem 1.3.14
of [65], there is a sequence {uk} of functions in C∞

0 (Rn) such that as k → ∞,
uk → u in Lp(�) and ∇uk → ∇u in

(

Lp
(

ω′))n for all ω′ with compact closure
contained in �. Application of (2.2.4) to (uk) and letting k → ∞ gives (2.2.1)
for all u ∈ W1

p (�); and (2.2.2) follows immediately.
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To conclude this chapter, we give the result that the composition of a bounded
Sobolev embedding with an almost compact embedding is compact, following
the presentation of Slavíková [159]. Given an open subset � ofRn, suppose that
X is a Banach function space on (�,μn), where μn is a Lebesgue n-measure,
and let

W1X := {f ∈ X : |∇f | ∈ X} ,
where the functions involved are real-valued and weakly differentiable. We en-
dow W1X with the norm ‖·‖X + ‖|∇·|‖X . For example, when X = Lp(�) the
space just constructed is simply the usual Sobolev space W1

p (�).

Theorem 2.7 Let � be an open subset of Rn and suppose that X,Y,Z are
Banach function spaces over (�,μn) such that W1X ↪→ Y and Y

∗
↪→ Z. Then

W1X ↪→↪→ Z.

In Chapter 3 we give an adaptation of this result of Slavíková to deal with
fractional Sobolev spaces.

Further illustrations and consequences of this line of thought are given in
[145]. In [67], Theorem 2.7 is used to obtain concrete conditions sufficient to
ensure the compactness of embeddings of Sobolev spaces based on spaces with
variable exponent.
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