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Abstract

Let A be a complete local ring with a coefficient field k of characteristic zero, and let
Y be its spectrum. The de Rham homology and cohomology of Y have been defined
by R. Hartshorne using a choice of surjection R → A where R is a complete regular
local k-algebra: the resulting objects are independent of the chosen surjection. We
prove that the Hodge–de Rham spectral sequences abutting to the de Rham homology
and cohomology of Y , beginning with their E2-terms, are independent of the chosen
surjection (up to a degree shift in the homology case) and consist of finite-dimensional
k-spaces. These E2-terms therefore provide invariants of A analogous to the Lyubeznik
numbers. As part of our proofs we develop a theory of Matlis duality in relation to
D-modules that is of independent interest. Some of the highlights of this theory are
that if R is a complete regular local ring containing k and D = D(R, k) is the ring of
k-linear differential operators on R, then the Matlis dual D(M) of any left D-module M
can again be given a structure of left D-module, and if M is a holonomic D-module,
then the de Rham cohomology spaces of D(M) are k-dual to those of M .

1. Introduction

In [Har75], Hartshorne constructs local and global algebraic de Rham homology and cohomology
theories for schemes over a field k of characteristic zero. The global theories, defined for any
scheme Y of finite type over k, are defined using a choice of embedding Y ↪→ X into a smooth
scheme over k (or a local system of such embeddings if a global embedding does not exist): one
computes the hypercohomology of certain complexes of sheaves on X or on the formal completion
of Y in X. Hartshorne’s primary interest [Har75, Remark, p. 70] in constructing the local theories
is the case where Y is the spectrum of a complete local ring. For technical reasons, he defines
the local theories for a larger class of schemes (‘category C’: see [Har75, p. 65]), and proves the
corresponding finiteness and duality results by reducing to the global case and using resolution
of singularities.

There is a sketch in [Har75, pp. 70–71] of a failed attempt to prove that local algebraic
de Rham homology and cohomology are dual using Grothendieck’s local duality theorem. This
sketch is the inspiration for the present paper, as its ideas can now be profitably pursued using
Lyubeznik’s work on the D-module structure of local cohomology [Lyu93]. This structure allows
us to speak of the de Rham complex of a local cohomology module, and knowledge of such
complexes in turn enables us to better understand the early terms of the spectral sequences
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appearing in Hartshorne’s work. We are able to give a purely local proof for both the embedding-
independence and the finiteness of local de Rham homology and cohomology, replacing the global
methods of algebraic geometry (including resolution of singularities) with the theory of algebraic
D-modules over a formal power series ring in characteristic zero. Along the way, we will define
a new set of invariants for complete local rings, analogous to the Lyubeznik numbers. Our
proof shows more than is contained in [Har75], namely that the entire Hodge–de Rham spectral
sequences for homology and cohomology (with the exception of the first term) are embedding-
independent (up to a degree shift in the homology case) and consist of finite-dimensional k-spaces.

We now give more detail, recalling Hartshorne’s results and stating ours. Let A be a complete
local ring with coefficient field k of characteristic zero (that is, k is the residue field of A, and
A contains a field isomorphic to k). We view A as a k-algebra via this coefficient field. By
Cohen’s structure theorem, there exists a surjection of k-algebras π : R → A where R is a
complete regular local k-algebra, which must take the form R = k[[x1, . . . , xn]] for some n. Let
I ⊂ R be the kernel of this surjection. We have a corresponding closed immersion Y ↪→ X where
Y = Spec(A) and X = Spec(R). In [Har75], the de Rham homology of the local scheme Y is
defined as HdR

i (Y ) = H2n−i
Y (X,Ω•X), the hypercohomology (supported at Y ) of the complex of

continuous differential forms on X. The differentials in this complex are merely k-linear, so the
HdR
i (Y ) are k-spaces.

Now let X̂ be the formal completion of Y in X [Har77, § II.9], that is, the topological space
Y equipped with the structure of a locally ringed space via the sheaf of rings lim

←−OX/I
n where

I ⊂ OX is the quasi-coherent ideal sheaf defining the chosen embedding Y ↪→ X (every OX/In
is supported at Y and thus can be viewed as a sheaf of rings on Y ). The differentials in the
complex Ω•X are I-adically continuous and thus pass to I-adic completions. We obtain in this

way a complex Ω̂•X of sheaves on X̂, the formal completion of Ω•X , whose differentials are again
merely k-linear. In [Har75], the (local) de Rham cohomology of the local scheme Y is defined
as H i

P,dR(Y ) = Hi
P (X̂, Ω̂•X), where P is the closed point of Y . After making these definitions,

Hartshorne establishes the following properties.

Theorem 1.1 [Har75, Theorems III.1.1 and III.2.1]. Let A be a complete local ring with
coefficient field k of characteristic zero and Y = Spec(A).

(a) The de Rham homology spaces HdR
i (Y ) and cohomology spaces H i

P,dR(Y ) as defined above
are independent of the surjection of k-algebras R→ A used in their definitions.

(b) For all i, HdR
i (Y ) and H i

P,dR(Y ) are finite-dimensional k-spaces.

(c) For all i, the k-spaces HdR
i (Y ) and H i

P,dR(Y ) are k-dual to each other.

The de Rham homology and cohomology of Y = Spec(A) are both defined using
hypercohomology. As is well known, there are in general two spectral sequences converging
to the hypercohomology of a complex ([GD61, 11.4.3]; also see § 2.2). If K• is a complex of
sheaves of Abelian groups on a topological space Z, the first of these spectral sequences begins
Ep,q1 = Hq(Z,Kp) and has abutment Hp+q(Z,K•). In our case, this takes the form of the
Hodge–de Rham homology spectral sequence, which begins En−p,n−q1 = Hn−q

Y (X,Ωn−p
X ) and

has abutment HdR
p+q(Y ), as well as the Hodge–de Rham cohomology spectral sequence,

which begins Ẽp,q1 = Hq
P (X̂, Ω̂p

X) and has abutment Hp+q
P,dR(Y ). A priori, these spectral sequences

depend on the choice of surjection R → A from a complete regular local k-algebra. We prove
stronger versions of Hartshorne’s results for these spectral sequences. Our theorem for de Rham
homology is the following.
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Theorem A. Let A be a complete local ring with coefficient field k of characteristic zero.
Viewing A as a k-algebra via this coefficient field, let R→ A be a choice of k-algebra surjection
from a complete regular local k-algebra. Associated with this surjection we have a Hodge–de
Rham spectral sequence for homology as above.

(a) Beginning with the E2-term, the isomorphism class of the homology spectral sequence with
its abutment is independent of the choice of regular k-algebra and surjection R→ A, up to
a degree shift.

(b) The k-spaces Ep,q2 appearing in the E2-term of the homology spectral sequence are finite-
dimensional.

The meaning of ‘up to a degree shift’ in the statement of part (a) is the following: given
two surjections R→ A and R′ → A from complete regular local k-algebras, where dim(R) = n
and dim(R′) = n′, we obtain two Hodge–de Rham spectral sequences E•,••,R and E•,••,R′ . Part (a)

asserts that there is a morphism E•,••,R→ E•,••,R′ of bidegree (n′−n, n′−n) between these spectral
sequences which is an isomorphism on the objects of the E2- (and later) terms (see § 2.2 for the
precise definitions of the terms used here).

We also have the analogue (without a degree shift) for de Rham cohomology, as follows.

Theorem B. Let A and R be as in Theorem A. Associated with this surjection we also have a
local Hodge–de Rham spectral sequence for cohomology.

(a) Beginning with the E2-term, the isomorphism class of the cohomology spectral sequence
with its abutment is independent of the choice of regular k-algebra and surjection R→ A.

(b) The k-spaces Ẽpq2 appearing in the E2-term of the cohomology spectral sequence are finite-
dimensional.

Remark 1.2. In § 2.2, the notion of an isomorphism of spectral sequences is defined. As described
in this subsection, the ingredients of a spectral sequence are the objects and differentials in the
Er-term for all r, the abutment objects, and the filtrations on the abutment objects, together with
the isomorphisms relating the terms with their successors and with the abutment. The assertion
of Theorems A and B is that all of these ingredients (except for the E1-terms) are independent
of the chosen regular k-algebra and surjection. Therefore parts (a) and (b) of Theorem 1.1 are
subsumed by Theorems A and B, which provide more information: the isomorphism classes of
HdR
p+q(Y ) and Hp+q

P,dR(Y ) as filtered objects are independent of the surjection. We obtain many
numerical invariants of (A, k) from the spectral sequence: the (finite) dimensions of the kernels
and cokernels of the differentials dr for all r > 2, together with the dimensions of the filtered
pieces of the abutment.

The proof of Theorem B requires the development of a theory of Matlis duality forD-modules.
This theory is worked out in §§ 3, 4, and 5, which form a unit of independent interest. If R is a
complete local ring with coefficient field k of characteristic zero, we can consider the ring D(R, k)
of k-linear differential operators on R. Given any left module over this ring, we can define its de
Rham complex and speak of its de Rham cohomology spaces. We prove that the Matlis dual of a
left D(R, k)-module has a natural structure of right D(R, k)-module. Specializing to the case of
a complete regular local ring, we are able to obtain information about the de Rham cohomology
of a Matlis dual. In this case, the dual of a left D(R, k)-module can again be viewed as a left
D(R, k)-module. The following is the main result of our theory of Matlis duality for D-modules
(its two assertions are proved separately below as Proposition 4.17 and Theorem 5.1).
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Theorem C. Let k be a field of characteristic zero, let R = k[[x1, . . . xn]] be a formal power
series ring over k, and let D = D(R, k) be the ring of k-linear differential operators on R. If M
is a left D-module, the Matlis dual D(M) of M with respect to R can also be given a natural
structure of left D-module. We write H∗dR(M) for the de Rham cohomology of a left D-module.
If M is a holonomic left D-module, then for every i, we have an isomorphism of k-spaces

(H i
dR(M))∨ ' Hn−i

dR (D(M))

where ∨ denotes k-linear dual.

Remark 1.3. If M is holonomic, its de Rham cohomology spaces are known to be finite-
dimensional (see Theorem 2.2), and so it follows from Theorem C that D(M) also has
finite-dimensional de Rham cohomology. Since D(M) is not, in general, a holonomic D-module
(see Remark 1.4 below), this is not clear a priori.

When applied to the E1- and E2-terms of the homology and cohomology spectral sequences,
Theorem C has the following consequence.

Theorem D. Let A, k, and R be as in the statement of Theorem A. The objects in the E2-terms
of the homology and cohomology spectral sequences are k-dual to each other: for all p and q,
En−p,n−q2 ' (Ẽpq2 )∨.

We conjecture that the entire spectral sequences, beginning with E2, should be k-dual to
each other (see § 8), but at present we are able only to prove the preceding statement.

As was already clear to Hartshorne [Har75, p. 71], the Matlis duals of the objects appearing
in the E1-term of the homology spectral sequence are exactly the corresponding E1-objects for
de Rham cohomology. What is much less clear is the relationship between the differentials. The
E1-differentials for de Rham homology are merely k-linear, so the usual definition of Matlis
duality over R cannot be applied to them. A large part of this paper is devoted to the problem
of applying Matlis duality to these k-linear maps and establishing that, in our setting, Matlis
duality at the E1-term gives rise to k-duality at the E2-term.

In more detail, the outline of the paper is as follows. In § 2, after reviewing some preliminary
material on differential operators, de Rham complexes, and spectral sequences, we prove
Theorem A using local algebra. In the course of this proof, we define a new set of invariants
for complete local rings with coefficient fields of characteristic zero. In § 3, Matlis duality for
local rings containing a field k is interpreted in terms of k-linear maps, after SGA2 [GR05]. This
allows us to dualize continuous maps between finitely generated modules over such rings. We pass
to direct limits in order to dualize k-linear maps between arbitrary modules that satisfy certain
finiteness and continuity conditions. In § 4, we consider the case of D-modules for complete local
rings containing k; we describe a natural right D-module structure on the Matlis dual D(M) of
a left D-module M . In the special case of a formal power series ring, we can regard D(M) as a
left D-module as well using a simple ‘transpose’ operation, and thus define its de Rham complex.
We determine the cohomology of this complex in § 5 in the case of holonomic M , completing the
proof of Theorem C. The specific case of local cohomology is considered next. In § 6, we work
out precisely what happens to the action of derivations on a local cohomology module. Finally,
in § 7, we give a self-contained proof of Theorem B(a) and combine the results of §§ 2, 5, and 6
to prove Theorems B(b) and D.
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Remark 1.4. After we identify the objects in the E2-term of the homology spectral sequence
with de Rham cohomology spaces of local cohomology modules in § 2, part (b) of Theorem A
follows from Lyubeznik’s result ([Lyu93, 2.2(d)]; cf. [Meb77]) that local cohomology modules
are holonomic D-modules, as it is known that holonomic D-modules have finite-dimensional de
Rham cohomology. However, the objects in the E2-term of the cohomology spectral sequence
are not de Rham cohomology spaces of holonomic D-modules: as shown in § 6, they are de
Rham cohomology spaces of Matlis duals of local cohomology modules. Hellus has shown [Hel07,
Corollary 2.6] that Matlis duals of local cohomology modules have, in general, infinitely many
associated primes, implying that they need not be holonomic D-modules (which always have
finitely many associated primes [Lyu93, Corollary 3.6(c)]). It is therefore surprising that the
cohomology E2-objects, which are, in general, de Rham cohomology spaces of non-holonomic
D-modules, are still finite-dimensional. For this reason, the proof of Theorem B(b) is significantly
more difficult than the proofs of the other parts of our main theorems.

2. The de Rham homology of a complete local ring

In this section, after reviewing some preliminary material on modules over rings of differential
operators and spectral sequences, we recall Hartshorne’s definition of algebraic de Rham
homology [Har75, ch. III] in the case of the spectrum of a complete local ring in equicharacteristic
zero, and examine the associated Hodge–de Rham spectral sequence. We give proofs that this
de Rham homology is intrinsically defined and finite-dimensional which are purely local; in fact,
we prove more, namely that up to a degree shift, the entire Hodge–de Rham spectral sequence
(with the exception of the first term) is intrinsically defined and has finite-dimensional objects.
As a byproduct of our proof, we obtain a new set of invariants for complete local rings analogous
to the Lyubeznik numbers [Lyu93, Theorem–Definition 4.1].

2.1 Preliminaries on D-modules
Let R be a commutative ring and k ⊂ R a commutative subring. The ring D(R, k) of k-linear
differential operators on R, a subring of Endk(R), is defined recursively as follows [GD67, § 16].
A differential operator R→ R of order zero is multiplication by an element of R. Supposing that
differential operators of order less than or equal to j − 1 have been defined, d ∈ Endk(R) is said
to be a differential operator of order less than or equal to j if, for all r ∈ R, the commutator
[d, r] ∈ Endk(R) is a differential operator of order less than or equal to j−1, where [d, r] = dr−rd
(the products being taken in Endk(R)). We write Dj(R) for the set of differential operators on
R of order less than or equal to j and set D(R, k) =

⋃
j Dj(R). Every Dj(R) is naturally a

left R-module. If d ∈ Dj(R) and d′ ∈ Dl(R), it is easy to prove by induction on j + l that
d′ ◦ d ∈ Dj+l(R), so D(R, k) is a ring.

We consider now the special case in which k is a field of characteristic zero and R = k[[x1, . . . ,
xn]] is a formal power series ring over k. A standard reference for facts about the ring D = D(R, k)
and left modules over D in this case is [Bjö79, ch. 3]; we summarize some of these facts now. The
ring D, viewed as a left R-module, is freely generated by monomials in the partial differentiation
operators ∂1 = ∂/∂x1, . . . , ∂n = ∂/∂xn ([GD67, Theorem 16.11.2]: here the characteristic-zero
assumption is necessary). This ring has an increasing filtration {D(ν)}, called the order filtration,
where D(ν) consists of those differential operators of order less than or equal to ν (the order
of an element of D is the maximum of the orders of its summands, and the order of a single
summand ρ∂a11 · · · ∂ann with ρ ∈ R is

∑
ai: this notion of order coincides with the one defined in

the previous paragraph). The associated graded object gr(D) = ⊕D(ν)/D(ν− 1) with respect to
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this filtration is isomorphic to R[ζ1, . . . , ζn] (a commutative ring), where ζi is the image of ∂i in
D(1)/D(0) ⊂ gr(D).

If M is a finitely generated left D-module, there exists a good filtration {M(ν)} on M ,
meaning that M becomes a filtered left D-module with respect to the order filtration on D
and gr(M) = ⊕M(ν)/M(ν − 1) is a finitely generated gr(D)-module. We let J be the radical of
Anngr(D) gr(M) ⊂ gr(D) and set d(M) = dim gr(D)/J (Krull dimension). The ideal J , and hence
the number d(M), is independent of the choice of good filtration on M . By Bernstein’s theorem,
if M 6= 0 is a finitely generated left D-module, we have n 6 d(M) 6 2n. In the case d(M) = n we
say that M is holonomic. It is known that submodules and quotients of holonomic D-modules are
holonomic, an extension of a holonomic D-module by another holonomic D-module is holonomic,
holonomic D-modules are of finite length over D, and holonomic D-modules are cyclic (generated
over D by a single element).

Given any left D(R, k)-module M , we can define its de Rham complex. This is a complex of
length n, denoted M ⊗ Ω•R (or simply Ω•R in the case M = R), whose objects are R-modules
but whose differentials are merely k-linear. It is defined as follows [Bjö79, § 1.6]: for 0 6 i 6 n,
M ⊗ Ωi

R is a direct sum of
(
n
i

)
copies of M , indexed by i-tuples 1 6 j1 < · · · < ji 6 n. The

summand corresponding to such an i-tuple will be written M dxj1 ∧ · · · ∧ dxji .

Convention 2.1. The subscript R in Ω•R indicates over which ring the tensor products of objects
are being taken. To simplify notation, we will follow this convention when de Rham complexes
over different rings are being simultaneously considered.

The k-linear differentials di : M ⊗ Ωi
R→M ⊗ Ωi+1

R are defined by

di(mdxj1 ∧ · · · ∧ dxji) =

n∑
s=1

∂s(m) dxs ∧ dxj1 ∧ · · · ∧ dxji ,

with the usual exterior algebra conventions for rearranging the wedge terms, and extended by
linearity to the direct sum. The cohomology objects hi(M ⊗Ω•R), which are k-spaces, are called
the de Rham cohomology spaces of the left D-module M , and are denoted H i

dR(M). In the case
of a holonomic module, van den Essen proved that these spaces are finite-dimensional.

Theorem 2.2 [vdE85, Proposition 2.2]. If M is a holonomic left D-module, its de Rham
cohomology H i

dR(M) is a finite-dimensional k-space for all i.

Remark 2.3. An important family of examples of holonomic D-modules is that of local
cohomology modules. Our basic references for facts about local cohomology modules are
Brodmann and Sharp [BS13] and SGA2 [GR05]. If R is a commutative ring and I ⊂ R is an ideal,
the functor ΓI of sections with support at I is a left-exact functor on the category of R-modules
(for an R-module M , ΓI(M) consists of those m ∈M annihilated by some power of I). The local
cohomology modules H i

I(M) are the right derived functors of ΓI = H0
I evaluated at M . There is

a more general sheaf-theoretic formulation, given in [GR05]: if X is a topological space, Y ⊂ X
is a locally closed subset, and F is a sheaf of Abelian groups on X, the local cohomology groups
H i
Y (X,F) are obtained by evaluating at F the right derived functors of ΓY , the functor of global

sections supported at Y . The relationship between these two definitions in the case of an affine
scheme X is given below in Lemma 2.16. In the case of the ring R = k[[x1, . . . , xn]], Lyubeznik
proved that for any ideal I, the local cohomology modules H i

I(R) have a natural structure of left
D-module [Lyu93]; cf. [Meb77]. Indeed, they are holonomic D-modules [Lyu93, 2.2(d)], a fact
which will repeatedly prove crucial for us.
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In addition to the standard long exact cohomology sequence for derived functors, there is
another useful long exact sequence for local cohomology: the Mayer–Vietoris sequence with
respect to two ideals.

Proposition 2.4 [BS13, Theorem 3.2.3]. Let I and J be ideals of a commutative ring R. There
is a long exact sequence of R-modules

· · ·→ H i−1
I∩J(M)→ H i

I+J(M)→ H i
I(M)⊕H i

J(M)→ H i
I∩J(M)→ H i+1

I+J(M)→ · · ·
for every R-module M , functorial in M .

Finally, we recall the well-known fact that the de Rham complex of aD-module is independent
of the coordinates x1, . . . , xn for R. (See [Swi16, Proposition 2.5] for a proof.)

Proposition 2.5. If R = k[[x1, . . . , xn]] and D = D(R, k), the de Rham complex of any left
D-module M is independent of the chosen regular system of parameters x1, . . . , xn for R.

2.2 Preliminaries on spectral sequences
As we will be working with morphisms of spectral sequences, we collect some basic facts and
definitions in this subsection concerning them. References for this material include Weibel [Wei94,
ch. 5] and EGA [GD61, § 11]. We will not need to consider convergence issues for unbounded
spectral sequences and hence make no mention of such issues here.

Definition 2.6. Let C be an Abelian category. A (cohomological) spectral sequence consists of
the following data: a family {Ep,qr } of objects of C (where p, q ∈ Z and r > 1 or > 2; with
r fixed and p, q varying, we obtain the Er-term of the spectral sequence), and morphisms
(the differentials) dp,qr : Ep,qr → Ep+r,q−r+1

r for all p, q, r such that dp,qr ◦ dp−r,q+r−1
r = 0 and

ker(dp,qr )/im(dp−r,q+r−1
r )

∼−→ Ep,qr+1: a family of such isomorphisms, denoted αp,qr , is part of the
data of the spectral sequence.

Let E be a spectral sequence in an Abelian category C, and suppose that for all l and for all
r, there are only finitely many non-zero objects Ep,qr with p+ q = l. Such a spectral sequence is
called bounded. (For example, this occurs if Ep,qr = 0 whenever p or q is negative, in which case E
is called a first-quadrant spectral sequence.) If E is a bounded spectral sequence, for every pair
(p, q), there exists r0 such that for all r > r0, dp,qr has zero target, dp−r,q+r−1

r has zero source,
and so Ep,qr+1 ' Ep,qr . We denote this stable object by Ep,q∞ . We can now define the abutment of
such a spectral sequence.

Definition 2.7. Let E be a bounded spectral sequence in an Abelian category C. Suppose we
are given a family Em of objects of C, all endowed with a finite decreasing filtration Em = Ems ⊃
Ems+1 ⊃ · · · ⊃ Emt = 0, and for all p, an isomorphism βp,m−p : Ep,m−p∞

∼−→ Emp /E
m
p+1. Then we say

that the spectral sequence abuts or converges to {Em} (the abutment), and write Ep,q1 ⇒ Em or
Ep,q2 ⇒ Em.

For example, if E is a first-quadrant spectral sequence with abutment {Em}, every Em

has a filtration of length m + 1 (we take s = 0 and t = m + 1 in the definition above), with
Em/Em1 ' E0,m

∞ and Emm ' Em,0∞ .
Given two spectral sequences, there is a natural notion of a morphism between them, which

consists of morphisms between the objects in the Er-terms for all r, each of which induces its
successor on cohomology. There is also a natural notion of morphisms between bounded spectral
sequences with given abutments.
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Definition 2.8. Let E and E′ be two spectral sequences in C with respective differentials d

and d′. A morphism u : E → E′ is a family of morphisms up,qr : Ep,qr → E′p,qr such that the

up,qr are compatible with the differentials (d′p,qr ◦ up,qr = up+r,q−r+1
r ◦ dp,qr for all p, q, r) and the

morphisms

up,qr : ker(dp,qr )/im(dp−r,q+r−1
r )→ ker(d′p,qr )/im(d′p−r,q+r−1

r )

induced by up,qr commute with the given isomorphisms αp,qr (that is, α′p,qr ◦ up,qr = up,qr+1 ◦ αp,qr ) so

that, in the appropriate sense, up,qr+1 is the morphism induced by up,qr . If E and E′ are bounded

spectral sequences with abutments {Em} and {E′m}, a morphism with abutments between the

spectral sequences is a morphism u : E→ E′ as just defined together with a family of morphisms

um : Em→ E′m compatible with the filtrations on Em and E′m such that, if we denote by up,q∞ the

map induced by up,q1 (or up,q2 ) between the stable objects Ep,q∞ and E′p,q∞ , this map must commute

with the isomorphisms βp,q: if we denote by ump the morphism Emp /E
m
p+1 → E′mp /E′mp+1 induced

by um, which is required to be filtration-compatible, we must have β′p,q ◦ up,q∞ = up+qp ◦ βp,q.

Convention 2.9. For the remainder of this paper, every spectral sequence will be a bounded

spectral sequence with abutment, and every morphism of spectral sequences will be a morphism

with abutments. Consequently, we suppress the phrase ‘with abutment’.

To show that two spectral sequences are isomorphic, it suffices to construct a morphism

between them which is an isomorphism on the objects of the initial (r = 1 or r = 2) terms. This

result is crucial to our work in both this section and in § 7, so we record a version here.

Proposition 2.10 [Wei94, Theorem 5.2.12]. Let C be an Abelian category, and let u= (up,qr , un)

be a morphism between two spectral sequences E, E′ in C. If there exists r such that up,qr is an

isomorphism for all p and q, then up,qs is an isomorphism for all p and q and all s > r, and um is

an isomorphism for all m. It follows that the abutments of E and E′ are isomorphic as filtered

objects.

There is also a notion of a degree-shifted morphism of spectral sequences and a degree-shifted

analogue of Proposition 2.10, which we will make use of in this paper. Again, for us, all spectral

sequences will be bounded and all morphisms will be morphisms with abutments.

Definition 2.11. Let E and E′ be two spectral sequences in C with respective differentials d

and d′. If a, b ∈ Z, a morphism u : E → E′ of bidegree (a, b) is a family of morphisms up,qr :

Ep,qr → E′p+a,q+br such that the up,qr are compatible with the differentials (d′p+a,q+br ◦ up,qr =

up+r,q−r+1
r ◦dp,qr for all p, q, r) and up,qr+1 is induced on cohomology by up,qr . If E and E′ are bounded

spectral sequences with abutments {Em} and {E′m}, a morphism with abutments between the

spectral sequences of bidegree (a, b) is a morphism u : E → E′ of bidegree (a, b) as just defined

together with a family of morphisms um : Em→ E′m+a+b such that um(Emp ) ⊂ E′m+a+b
p+a for all p

and satisfying the obvious compatibility conditions analogous to those in the non-degree-shifted

definition.

The degree-shifted analogue of Proposition 2.10 is proved in exactly the same way, but in the

conclusion (that the abutments are isomorphic as filtered objects), it is worth recording precisely

which filtrations are being compared and what the corresponding degree shifts are.
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Proposition 2.12. Let C be an Abelian category, and let u = (up,qr , un) be a morphism of
bidegree (a, b) between two spectral sequences E, E′ in C. If there exists r such that up,qr
is an isomorphism for all p and q, then up,qs is an isomorphism for all p and q and all
s > r, and um is an isomorphism for all m. This has the following consequence for the
abutments: for all m, Em, endowed with the filtration {Emp }m+1

p=0 where Emp /E
m
p+1 ' Ep,m−p∞ , is

isomorphic (as a filtered object) to E′m+a+b, endowed with the filtration {E′m+a+b
p+a }m+1

p=0 , where

E′m+a+b
p+a /E′m+a+b

p+a+1 ' E′p+a,m+b−p
∞ .

Double complexes are a common source of spectral sequences: the cohomology of the
totalization of a double complex can be approximated, and in some cases even computed, by
the objects in the early terms of either of two spectral sequences associated with the double
complex. To be precise, let K•,• be a double complex in an Abelian category C, which we
think of abusively as the ‘E0-term’ of a spectral sequence, and let T • be its totalization. Our
conventions for double complexes are those of EGA: the horizontal (d•,•h ) and vertical (d•,•v )
differentials of K•,• commute, we define T i =

⊕
p+q=iK

p,q, and the differentials of T • require
signs, namely d(x) = dh(x) + (−1)pdv(x) for x ∈ Kp,q. The two spectral sequences associated
with K•,• [GD61, § 11.3] are the column-filtered (‘vertical differentials first’) spectral sequence,
for which Ep,q1 = hqv(Kp,•) (and the differentials are those induced on vertical cohomology by
the maps dp,qh ), and the row-filtered (‘horizontal differentials first’) spectral sequence, for which
Ep,q1 = hph(K•,q) (and the differentials are those induced on horizontal cohomology by the maps
dp,qv ). Both have hp+q(T •), the cohomology of the totalization, for their abutment. A morphism
K•,• → K ′•,• of double complexes induces morphisms between their column-filtered spectral
sequences as well as between their row-filtered spectral sequences [GD61, p. 30].

The spectral sequences of a double complex are useful for computing hyperderived functors
of left-exact functors between Abelian categories. Suppose A,B are Abelian categories, A has
enough injective objects, and F : A → B is a left-exact additive functor. If K• is a complex
with differential d in A, the (right) hyperderived functors of F evaluated at K• are defined
as follows [GD61, § 11.4]: if K• → I• is a quasi-isomorphism and I• is a complex of injective
objects in A, then RiF (K•) = hi(F (I•)), and the objects of B thus obtained are independent of
the choice of I•. Such a complex I• can be produced as the totalization of a Cartan–Eilenberg
resolution of K•, which is a double complex J•,• with differentials dh, dv such that every Jp,q

is an injective object of A and, for all p, Jp,• (respectively ker(dp,•v ), im(dp,•v ), h•v(J
p,•)) is an

injective resolution of Kp (respectively ker(dp), im(dp), hp(K•)). It follows that RiF (K•) is
the cohomology of the totalization of the double complex F (J•,•), and so, by the previous
paragraph, we have two spectral sequences whose abutment is this cohomology. For example,
the column-filtered spectral sequence begins Ep,q1 = hqv(F (Jp,•)) and has abutment Rp+qF (K•).
But since Jp,• is an injective resolution of Kp, we see that hqv(F (Jp,•)) = RqF (Kp), the ordinary
qth right derived functor of F applied to Kp; this is the form in which the ‘first’ hyperderived
functor spectral sequence is usually given [GD61, 11.4.3.1].

Now suppose K•, K ′• are complexes in A with respective Cartan–Eilenberg resolutions J•,•,
J ′•,•. A morphism of complexes f : K•→ K ′• induces a morphism of double complexes J•,•→
J ′•,• which is unique up to homotopy [GD61, p. 33]. This implies that f induces a well-defined
morphism between the spectral sequences for the hyperderived functors of F evaluated at K•

and at K ′• [GD61, p. 30], since two double complex morphisms that are chain homotopic induce
the same morphisms on horizontal and vertical cohomology, hence the same spectral sequence
morphisms. By taking K ′• = K• and f to be the identity, we see that the isomorphism class of
the spectral sequence for F evaluated at K• is independent of the Cartan–Eilenberg resolution.
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Later in this section, we will need to build a spectral sequence for hyperderived functors

using a double complex that is not a Cartan–Eilenberg resolution of the original complex, and

for this purpose, the following comparison lemma will be useful.

Lemma 2.13. Let A be an Abelian category with enough injective objects, B another Abelian

category, and F : A → B a left-exact additive functor. Suppose that K• is a complex in A,

concentrated in degrees p > 0, and that L•,• is a double complex in A whose objects Lp,q are

all F -acyclic and such that, for all p > 0, Lp,• is a resolution of Kp. Then the first spectral

sequence for the hyperderived functors of F applied to K•, which begins Ep,q1 = RqF (Kp) and

has Rp+qF (K•) for its abutment, is isomorphic to the column-filtered spectral sequence of the

double complex F (L•,•).

Proof. By definition, the first spectral sequence is the column-filtered spectral sequence of the

double complex F (J•,•), where J•,• is a choice of Cartan–Eilenberg resolution of K• in A. The

assertion of the lemma is that we can replace J•,• with the resolution L•,•, which is generally

not a Cartan–Eilenberg resolution and whose objects may not even be injective.

Our strategy will be to compare both of these double complexes to a third one. Let C+ denote

the category of complexes in A that are concentrated in degrees p > 0. Then C+ is an Abelian

category with enough injective objects, and if I• ∈ C+ is injective, then Ip is an injective object

of A for all p [Rot09, Theorems 10.42, 10.43; Remark, p. 652].

We return now to the complex K•. Choose an injective resolution 0 → K• → I•,• of K•

in C+. In particular, I•,• is a double complex of injective objects in A. Now note that the two

double complex resolutions J•,• and L•,• can also be regarded as resolutions of K• in the category

C+. Any resolution in C+ can be compared with an injective one by [Lan02, Lemma XX.5.2]:

there exist morphisms J•,•→ I•,• and L•,•→ I•,• extending the identity on K• and unique up

to homotopy as maps in C+. These morphisms of double complexes induce morphisms between

the column-filtered spectral sequences corresponding to the double complexes after applying the

functor F . To finish the proof, by Proposition 2.10, it is enough to check that these morphisms of

spectral sequences are isomorphisms at the E1-level. We first consider the morphism F (J•,•)→

F (I•,•). For all p, Jp,• → Ip,• is a morphism between two injective resolutions of Kp extending

the identity on Kp, which induces an isomorphism hq(F (Jp,•))
∼−→ hq(F (Ip,•)), both sides being

equal to RqF (Kp) by definition and being the Ep,q1 -terms of the respective spectral sequences.

In the case of the morphism F (L•,•) → F (I•,•), we do not have injective resolutions of Kp

(only F -acyclic ones) on the left-hand side, but by [Lan02, Theorem XX.6.2], this is enough: the

Lp,•→ Ip,• also give rise to isomorphisms after applying F and taking cohomology. We conclude

that the three column-filtered spectral sequences corresponding to the double complexes F (J•,•),

F (I•,•), and F (L•,•) are isomorphic beginning with their E1-terms, completing the proof. 2

We will need one more type of spectral sequence, the Grothendieck composite-functor spectral

sequence.

Proposition 2.14 [Wei94, Theorem 5.8.3]. Let A, B, and C be Abelian categories, and suppose

A and B have enough injective objects. Let F : A → B and G : B → C be left-exact additive

functors. Suppose that for every injective object I of A, the object F (I) of B is acyclic for G.

Then for every object A of A, there is a spectral sequence which begins Ep,q2 = (RpG)((RqF )(A))

and abuts to Rp+q(G ◦ F )(A).
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Example 2.15. For our purposes, the most important example of a composite-functor spectral
sequence is the spectral sequence for iterated local cohomology. Let R be a Noetherian ring, and
let I and J be ideals of R. If I is an injective R-module, then ΓJ(I) is again injective [Har77,
Lemma III.3.2], hence acyclic for the functor ΓI . It follows that the left-exact functors F = ΓJ
and G = ΓI satisfy the conditions of Proposition 2.14. Since R is Noetherian, ΓI ◦ ΓJ = ΓI+J .
For any R-module M , the corresponding spectral sequence for the derived (local cohomology)
functors begins Ep,q2 = Hp

I (Hq
J(M)) and abuts to Hp+q

I+J(M).

2.3 The proof of Theorem A
We now recall from [Har75] Hartshorne’s definition of de Rham homology for a complete local
ring. Let k be a field of characteristic zero and A be a complete local ring with coefficient
field k. By Cohen’s structure theorem, there exists a surjection of k-algebras π : R→ A where
R = k[[x1, . . . , xn]] for some n. Let I ⊂ R be the kernel of this surjection. We have a corresponding
closed immersion Y ↪→ X where Y = Spec(A) and X = Spec(R). The de Rham homology of
the local scheme Y is defined as HdR

i (Y ) = H2n−i
Y (X,Ω•X), the hypercohomology (with support

at Y ) of the continuous de Rham complex of sheaves of k-spaces on X. Here, the sheaf Ω1
X is free

of rank n with basis dx1, . . . , dxn, and the other sheaves in the complex are its corresponding
exterior powers. In fact, the complex Ω•X is the sheafified version of the de Rham complex Ω•R
of the left D(R, k)-module R as defined in § 2.1.

The de Rham homology spaces defined above are known to be independent of the choice of R
and π [Har75, Proposition III.1.1] and to be finite-dimensional k-spaces [Har75, Theorem III.2.1].
In this section we give arguments for the embedding-independence and the finiteness which are
purely local and provide new information. Recall from § 1 that the Hodge–de Rham spectral
sequence for homology has E1-term given by En−p,n−q1 = Hn−q

Y (X,Ωn−p
X ) and abuts to HdR

p+q(Y ).

(When needed, we will write {En−p,n−qr,R } for this spectral sequence, recording the dependence on
the base ring R.) The assertion of Theorem A is that, beginning with the E2-term, this spectral
sequence consists of finite-dimensional k-spaces and its isomorphism class is independent (up to a
bidegree shift) of R and π; this immediately recovers the embedding-independence and finiteness
for the abutment HdR

∗ (Y ). To make the line of argument clearer, we give the proof first for the
E2-term only (Proposition 2.17), then explain the additional steps needed to make the basic
strategy work for the rest of the spectral sequence.

Lemma 2.16. Let the surjection π : R = k[[x1, . . . , xn]]→ A (and the associated objects I,X, Y )
be as above, and {Ep,qr } the corresponding Hodge–de Rham spectral sequence for homology.

(a) For all q, Hq
Y (X,OX) ' Hq

I (R) as R-modules; indeed, if M is any R-module and F the
associated quasi-coherent sheaf on X, we have Hq

Y (X,F) ' Hq
I (M).

(b) For all p and q, we have

Ep,q2 ' Hp
dR(Hq

Y (X,OX)) ' Hp
dR(Hq

I (R))

as k-spaces, where the D-module structure on Hq
I (R) ' Hq

Y (X,OX) is defined as in
Remark 2.3.

Proof. As X is affine, part (a) is well known (e.g. [GR05, Exp. II, Proposition 5]). Now consider
the E1-term of the spectral sequence. Its differentials are horizontal and so its E2-objects
are the cohomology objects of its rows. Fix such a row, say the qth row, which takes the
form E•,q1 = Hq

Y (X,Ω•X). The Ωp
X are finite free sheaves on X and local cohomology Hq

Y
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commutes with direct sums, so for all p, Ep,q1 ' Hq
Y (X,OX) ⊗ Ωp

R. As p varies, we obtain the
complex Hq

Y (X,OX)⊗ Ω•R, whose k-linear maps are the de Rham differentials of the D-module
Hq
Y (X,OX). Therefore its cohomology objects, the E2-objects of the spectral sequence, are of

the stated form. 2

Proposition 2.17. Let the surjection π : R = k[[x1, . . . , xn]]→ A (and the associated objects
I,X, Y ) be as above.

(a) For all p and q, the k-space Ep,q2 = Hp
dR(Hq

I (R)) is finite-dimensional.

(b) Suppose we have another surjection of k-algebras π′ : R′ = k[[x1, . . . , xn′ ]] → A with
kernel I ′. Write {Ep,qr,R} (respectively {Ep,q

r,R′}) for the Hodge–de Rham spectral sequence

for homology defined using π (respectively π′). Then for all p and q, the k-spaces Ep,q2,R and

Ep+n′−n,q+n−n′
2,R′ are isomorphic. (That is, the E2-term is independent of R and π, up to a

bidegree shift.)

Proof of part (a). For all q, the D-module Hq
I (R) is holonomic [Lyu93, 2.2(d)], so its de Rham

cohomology spaces are finite-dimensional by Theorem 2.2. This proves part (a). 2

A proof of part (b) is considerably longer. We first reduce it to Lemma 2.18 below and then
prove Lemma 2.18.

Write X ′ for the spectrum of R′. The surjection π′ induces a closed immersion Y ↪→X ′. Form
the complete tensor product R′′ = R ⊗̂k R′ [Ser00, V.B.2], again a complete regular k-algebra,
and let π′′ : R′′ → A be the induced surjection π ⊗̂k π′ of k-algebras, which gives rise to a
third closed immersion Y ↪→ X ′′ = Spec(R′′) and a third Hodge–de Rham spectral sequence

{Ep,qr,R′′}. It suffices to show that both Ep,q2,R and Ep+n′−n,q+n−n′
2,R′ are isomorphic to Ep+n

′,q+n′

2,R′′ .

Replacing R′ with R′′ and using symmetry, we reduce to the case in which the two surjections
π : R → A and π′ : R′ → A satisfy π′ = π ◦ g for some surjection g : R′ → R of k-algebras.
Let I = kerπ, I ′ = kerπ′, and I ′′ = ker g, and suppose the dimensions of R and R′ are n
and n′ respectively. As R′/I ′′ ' R is regular, I ′′ is generated by n′ − n elements that form
part of a regular system of parameters for R′. By induction on n′ − n, we reduce further to
the case n′ − n = 1, since we can factor the closed immersion X ↪→ X ′ into a sequence of
codimension-one immersions, and the isomorphisms on E2-terms compose while the bidegree
shifts add. Therefore we assume ker g is a principal ideal, of the form (f) where x1, . . . , xn, f
is a regular system of parameters for R′. By Cohen’s structure theorem, the complete regular
local k-algebra R′ takes the form k[[x1, . . . , xn, z]]; making a change of variables if necessary,
we may assume f = z. By Proposition 2.5, this change of variables does not affect de Rham
cohomology. Thus R = k[[x1, . . . , xn]], R′ = R[[z]], and g is the surjection carrying z to 0, so that
I ′ = IR′+ (z). We state this special case, to which we have reduced the proposition, in the form
of the following lemma. Because of the amount of new notation needed to define them, we have
not specified the isomorphisms in the statement of Lemma 2.18, only asserted their existence.
However, the maps themselves will be needed later, and so we will refer not only to Lemma 2.18
but also to its proof.

Lemma 2.18. Let R = k[[x1, . . . , xn]] and let I be an ideal of R. Let R′ = R[[z]] and I ′ = IR′+(z).
Then for all p and q, we have an isomorphism

Hp
dR(Hq

I (R)) ' Hp+1
dR (Hq+1

I′ (R′))
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of k-spaces, where the de Rham cohomology is computed by regarding Hq
I (R) as a D(R, k)-

module and Hq+1
I′ (R′) as a D(R′, k)-module.

We first give a definition.

Definition 2.19. Let M be any k-space. Then M+ =
⊕

i>0M · z−i, a D(k[[z]], k)-module,
whose elements are finite sums

∑
i (mi/z

i) where mi ∈ M . If M is an R-module (respectively
a D(R, k)-module), then M+ defined in this way is an R′-module (respectively a D(R′, k)-
module), with ∂z-action defined by the quotient rule: ∂z(m/z

α) = −αm/zα+1.

We will frequently refer to this functor as the ‘+-operation’ on R-modules or k-spaces. In the
case of an R-module M , this definition coincides with the ‘key functor’ G(M) = M ⊗RR′z/R′ of
Núñez–Betancourt and Witt [NBW14, § 3]. A special case of one of their results will be useful
for us.

Proposition 2.20 [NBW14, Lemma 3.9]. With R, R′, I, and I ′ as in the statement of
Lemma 2.18, we have isomorphisms

(Hp
I (R))+ ' Hp+1

I′ (R′)

of R′-modules, for all p (these isomorphisms are functorial in R).

We need one final ingredient before giving the proof of Lemma 2.18: a short exact sequence
relating the ‘full’ de Rham complex Ω•R′ of R′ with its ‘partial’ de Rham complex R′⊗Ω•R defined
using the derivations ∂1, . . . , ∂n but omitting ∂z = ∂/∂z.

Definition 2.21. With R and R′ as in the statement of Lemma 2.18, we define a short exact
sequence of complexes

0→ R′ ⊗ Ω•R[−1]
ι−→ Ω•R′

π−→ R′ ⊗ Ω•R→ 0,

where the map ι is simply the wedge product with dz, and so its image is precisely the direct sum
of those summands of Ω•R′ with a dz wedge factor (thus π corresponds to setting dz = 0). The
sheaf-theoretic analogue, a short exact sequence of complexes of sheaves on X ′, is constructed
similarly.

This short exact sequence of complexes gives rise to a long exact sequence of cohomology:

· · ·→ hp−1(R′ ⊗ Ω•R)
cp−1

−−→ hp(R′ ⊗ Ω•R[−1])→ hp(Ω•R′)

→ hp(R′ ⊗ Ω•R)
cp−→ hp+1(R′ ⊗ Ω•R[−1])→ · · · ,

where c denotes the connecting homomorphism. After accounting for the shift of −1, we see that
cp is a map from the D(k[[z]], k)-module hp(R′⊗Ω•R) to itself. We will need precisely to identify
the maps cp.

Lemma 2.22. With the notation of the previous paragraph, we have cp = (−1)p∂z as maps
from the D(k[[z]], k)-module hp(R′ ⊗ Ω•R) to itself. (The same holds if R′ is replaced with any
D(R′, k)-module.)
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Proof. We use the explicit construction of the connecting homomorphism given, for example, in
[Rot09, Proposition 6.9]. Denote by d•R′ the differentials in the de Rham complex Ω•R′ . Given an
element of hp(R′ ⊗ Ω•R), which is the cohomology class of some cocycle ω ∈ R′ ⊗ Ωp

R, the image
under cp of this class is taken to be the class of the cocycle (ιp+1)−1(dpR′((π

p)−1(ω))), where the
superscript −1 means ‘choose any preimage’: this definition is independent of all choices made.
We proceed to calculate this composite, making convenient choices for the preimages.

We can write ω as a sum

ω =
∑
i1,...,ip

ρi1···ip dxi1 ∧ · · · ∧ dxip ,

where all ρi1···ip ∈ R′. One choice of preimage (πp)−1(ω) is ω itself, since none of its terms contain
dz wedge factors and hence all are left fixed by πp. Therefore dpR′((π

p)−1(ω)) = dpR′(ω). Since ω
is a cocycle in R′⊗Ωp

R, its image under the pth de Rham differential with respect to dx1, . . . , dxn
is zero, and so the only terms in the definition of dpR′(ω) that survive are those involving dz.
That is, we have

dpR′(ω) =
∑
i1,...,ip

∂z(ρi1···ip) dz ∧ dxi1 ∧ · · · ∧ dxip ,

which, by rearranging the wedge terms, is equal to∑
i1,...,ip

(−1)p∂z(ρi1···ip) dxi1 ∧ · · · ∧ dxip ∧ dz.

Finally, a choice of preimage under ιp+1 (which is simply the map ∧ dz) for the above sum is

(ιp+1)−1(dpR′((π
p)−1(ω))) =

∑
i1,...,ip

(−1)p∂z(ρi1···ip) dxi1 ∧ · · · ∧ dxip = (−1)p∂z(ω),

from which the lemma follows. (The same calculation works for arbitrary D(R′, k)-modules M ,
replacing each ρi1···ip with an element mi1···ip of M .) 2

We can now prove Lemma 2.18.

Proof of Lemma 2.18. The differentials in the complexes of Definition 2.21 are merely k-linear,
but in every degree p, the short exact sequence

0→ R′ ⊗ Ωp−1
R

ιp−→ Ωp
R′ → R′ ⊗ Ωp

R→ 0

is a split exact sequence of finite free R′-modules. As local cohomology commutes with direct
sums, this sequence remains split exact after applying the functor Hq

I′ for any q:

0→ Hq
I′(R

′ ⊗ Ωp−1
R )

ιpq−→ Hq
I′(Ω

p
R′)→ Hq

I′(R
′ ⊗ Ωp

R)→ 0.

Fixing q but varying p, we obtain a short exact sequence of complexes of k-spaces

0→ Hq
I′(R

′ ⊗ Ω•R[−1])
ι•q−→ Hq

I′(Ω
•
R′)→ Hq

I′(R
′ ⊗ Ω•R)→ 0

which we can rewrite (replacing q with q + 1) as

0→ Hq+1
I′ (R′)⊗ Ω•R[−1]

ι•q+1−−→ Hq+1
I′ (R′)⊗ Ω•R′ → Hq+1

I′ (R′)⊗ Ω•R→ 0
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since Ωi
R (respectively Ωi

R′) is a finite free R- (respectively R′-) module. This short exact sequence
of complexes gives rise to a long exact sequence of cohomology which (accounting for the shift
of −1) takes the form

· · ·→ hp(Hq+1
I′ (R′)⊗ Ω•R)

∂z−→ hp(Hq+1
I′ (R′)⊗ Ω•R)

ιpq+1−−→ hp+1(Hq+1
I′ (R′)⊗ Ω•R′)

→ hp+1(Hq+1
I′ (R′)⊗ Ω•R)

∂z−→ hp+1(Hq+1
I′ (R′)⊗ Ω•R)→ · · · ,

where we know by Lemma 2.22 that, up to a sign, the connecting homomorphism is ∂z. Now
by Lemma 2.20, we know that Hq+1

I′ (R′) ' (Hq
I (R))+ as R′-modules. The differentials in the

complex Hq+1
I′ (R′)⊗Ω•R do not involve z or dz, and so the +-operation passes to its cohomology,

since cohomology commutes with direct sums: we have

hp(Hq+1
I′ (R′)⊗ Ω•R) ' (hp(Hq

I (R)⊗ Ω•R))+

as k-spaces for all p. For any k-space M , the action of ∂z on M+ is given in Definition 2.19,
and it is clear from this definition (since char(k) = 0) that ker(∂z : M+ → M+) = 0 and
coker(∂z : M+ → M+) ' M , the latter corresponding to the 1/z-component of M+. Returning
to the displayed portion of the long exact sequence (with M = hp(Hq

I (R)⊗Ω•R)), the second ∂z
is injective, and so by exactness the unlabeled arrow is the zero map; this implies that ιpq+1 is

surjective, inducing an isomorphism between hp+1(Hq+1
I′ (R′)⊗Ω•R′) = Hp+1

dR (Hq+1
I′ (R′)) and the

cokernel of the first ∂z. Since this cokernel is isomorphic to hp(Hq
I (R) ⊗ Ω•R) = Hp

dR(Hq
I (R)),

the proof of Lemma 2.18, and hence of Proposition 2.17(b), is complete. 2

Proposition 2.17 gives a new set of invariants for complete local rings in equicharacteristic
zero, namely, the (finite) dimensions of the E2-objects, with the bidegree shift taken into account.

Definition 2.23. For all p, q > 0, let ρp,q = dimk(H
n−p
dR (Hn−q

I (R))).

By Proposition 2.17, ρp,q is finite and depends only on A and a choice of coefficient field
k ⊂ A. We note the similarity of the definition of the invariants ρp,q to the Lyubeznik numbers
λp,q [Lyu93, Theorem–Definition 4.1], although our ρp,q appear to be well defined only in the
characteristic zero case. One way to define λp,q is as the dimension of the socle of Hp

m(Hn−q
I (R)),

where m ⊂ R is the maximal ideal [Lyu06, Lemma 2.2]. To define the ρp,q, we use de Rham
cohomology instead of iterated local cohomology; furthermore, note the difference in the indices.

Remark 2.24. If Hn−q
I (R) is supported only at m, so that Hn−q

I (R) ' E⊕λ0,q for some λ0,q > 0
([Lyu93, Theorem 3.4]; here E is the Matlis dualizing module), then the de Rham cohomology
of Hn−q

I (R) is easy to calculate: we have ρp,q = λ0,q if p = 0, and ρp,q = 0 otherwise. Therefore,
in this case, ρp,q = λp,q for all p and q.

We now prove the full statement of Theorem A(a) (we have already proved part (b) above).
Our goal is to construct a bidegree-shifted morphism between the Hodge–de Rham spectral
sequences arising from two surjections R→ A and R′ → A of k-algebras which, at the level of
E2-objects, consists of the isomorphisms of Lemma 2.18: by Proposition 2.12, this is enough. The
preliminary reductions given in the paragraph before Lemma 2.18 remain valid when considering
the spectral sequences, so we need only address the case in which R, R′, I, and I ′ are as in the
statement of that lemma. The basic strategy is the same: we use the short exact sequence
Definition 2.21 of complexes as well as the +-operation, which will now be applied to double
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complex resolutions of the de Rham complexes Ω•X and Ω•X′ . Our first task is to construct these;
we work first at the level of R- (respectively R′-) modules and k-linear maps, and then sheafify
the results.

Lemma 2.25. Let I• be the minimal injective resolution of R as an R-module. For all p, Ip has
a structure of D(R, k)-module, and R→ I• is a complex in the category of D(R, k)-modules.

Proof. We use the Cousin complex, for which [Har66, IV.2] is the original reference. Recall that
the Cousin complex C•(R) of R is constructed recursively in the following way: C−2(R) = 0,
C−1(R) =R, and for i> 0, Ci(R) =⊕(coker di−2)p, the direct sum extending over all p ∈ Spec(R)
such that ht p = i. The differentials in the complex are simply the natural localization maps. It
is immediate from the definition of the Cousin complex that it is a complex of D(R, k)-modules,
since localizations of D(R, k)-modules are again D(R, k)-modules and natural localization maps
are D(R, k)-linear [Lyu93, Example 2.1]. However, since R is a Gorenstein local ring, its minimal
injective resolution and its Cousin complex coincide [Sha69, Theorem 5.4]. 2

Likewise, if we let J • be the minimal injective resolution of R′ as an R′-module, Lemma 2.25
implies that R′ → J • is a complex in the category of D(R′, k)-modules. By taking finite direct
sums of the resolutions I• and J •, we construct three double complexes.

Definition 2.26. Let I•,• be the double complex Ip,q = Iq ⊗R Ωp
R whose vertical differentials

are induced by the differentials in the complex I• and whose horizontal differentials are those in
the de Rham complexes Iq ⊗R Ω•R of the D(R, k)-modules Iq. Similarly, let J •,•0 be the double
complex J p,q0 = J q ⊗R Ωp

R and let J •,• be the double complex J p,q = J q ⊗R′ Ωp
R′ .

Note that these double complexes have exact sequences of R- (or R′-) modules for columns,
but merely complexes in the category of k-spaces for rows. In the case of I•,•, the rows are the
de Rham complexes of the D(R, k)-modules Iq; in the case of J •,•0 , the rows are the de Rham
complexes of the J q regarded as D(R, k)-modules; and in the case of J •,•, the rows are the de
Rham complexes of the J q regarded as D(R′, k)-modules. (We recall again Convention 2.1: if
we write ⊗Ω•R, the tensor products of objects are being taken over R, but if we write ⊗Ω•R′ , the
tensor products of objects are being taken over R′.)

Each of these three double complexes can be sheafified. Consider first the double complex
I•,•. For all p and q, let Ĩp,q denote the associated quasi-coherent sheaf on X. The vertical
differentials of I•,• are R-linear, and so induce OX -linear morphisms between the associated
sheaves, and the horizontal differentials induce k-linear morphisms on the associated sheaves in
the same way that the de Rham complex of OX is constructed. For all p and q, Ip,q is an injective
R-module, and so the sheaf Ĩp,q is flasque [Har77, Proposition III.3.4], and hence acyclic for the
functor ΓY on the category of sheaves of k-spaces on X [Har67, Proposition 1.10]. Therefore

we have a double complex Ĩ•,• whose objects are all ΓY -acyclic sheaves of k-spaces on X and
whose columns are acyclic resolutions of the Ωp

X (because the associated sheaf functor is exact
when applied to complexes of R-modules). In the same way, we sheafify the double complexes

J •,•0 and J •,•, obtaining double complexes J̃ •,•0 and J̃ •,• of sheaves of k-spaces on X ′ which are
ΓY -acyclic.

Definition 2.27. Let E•,••,R be the column-filtered spectral sequence associated with the double

complex ΓY (X, Ĩ•,•) of k-spaces. Similarly, let E•,••,R′ be the column-filtered spectral sequence

associated with the double complex ΓY (X ′, J̃ •,•), and let E•,•• be the column-filtered spectral

sequence associated with the double complex ΓY (X ′, J̃ •,•0 ).
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By Lemma 2.13, we know that E•,••,R coincides with the Hodge–de Rham spectral sequence

for the complex Ω•X , and that E•,••,R′ coincides with the Hodge–de Rham spectral sequence for

the complex Ω•X′ , so there is no ambiguity of notation. The ‘intermediate’ spectral sequence E•,•• ,
which by Lemma 2.13 coincides with the hypercohomology spectral sequence for the complex
OX′ ⊗ Ω•X , will be used to relate the Hodge–de Rham spectral sequences for X and X ′ via the
+-operation. The first step in this process is the following lemma.

Lemma 2.28. Let R, R′, I, and I ′ be as in the statement of Lemma 2.18, and let I• (respectively
J •) be the minimal injective resolution of R (respectively R′) in the category of R-modules
(respectively R′-modules) as above. Then for all q, we have an isomorphism

(ΓI(Iq−1))+ ' ΓI′(J q)

of D(R′, k)-modules.

Proof. Fix q > 0. As R′ is a Gorenstein local ring, the structure of its minimal injective resolution
J • is well known [Mat86, Theorem 18.8]: J q =

⊕
ht p=qE(R′/p), where E(R′/p) is theR′-injective

hull of R′/p. In particular, J q = 0 for q > n+ 1 and J n+1 is the Matlis dualizing module ER′ .
Applying the functor ΓI′ amounts to discarding those summands corresponding to prime ideals
outside the closed subscheme V (I ′) ⊂ X ′ [BS13, Example 10.1.11]: that is, we have the equality

ΓI′(J q) =
⊕

ht p=q,I′⊂p
ER′(R

′/p),

where again only prime ideals of height q appear in the decomposition, since J q =⊕
ht p=qE(R′/p). Since I ′ = IR′ + (z), there is a one-to-one correspondence between prime

ideals p of R′ containing I ′ and prime ideals q of R = R′/(z) containing I (indeed, any such p
takes the form qR′ + (z)). If ht p = q, then ht q = q − 1, so we have the decomposition

ΓI′(J q) =
⊕

I⊂q∈Spec(R),ht q=q−1

ER′(R
′/(qR′ + (z)))

as R′-modules. Note that we have R′-module isomorphisms

R′/(qR′ + (z)) ' (R′/(z))/((qR′ + (z))/(z)) ' R/q,

where R/q is viewed as an R-module upon which z ∈ R′ acts trivially. But by [NBW14,
Proposition 3.11], the R′-module ER′(R

′/(qR′ + (z))) is obtained from the R-module ER(R/q)
by the +-operation. (This identification holds at the level of D(R′, k)-modules.) We then have
isomorphisms

ΓI′(J q) '
⊕

I⊂q∈Spec(R),ht q=q−1

(ER(R/q))+ = (ΓI(Iq−1))+,

of D(R′, k)-modules, where we have again used [BS13, Example 10.1.11]. 2

Lemma 2.29. Let E•,••,R and E•,•• be the spectral sequences of Definition 2.27. There is an
isomorphism

(E•,••,R)+
∼−→ E•,•• [(0, 1)],

where the object on the left-hand side is obtained by applying the +-operation to all the objects
and differentials of the spectral sequence E•,••,R (this notation means that the morphism of spectral
sequences has bidegree (0, 1), as in Definition 2.11).
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Proof. We consider the objects of the double complexes giving rise to these spectral sequences.
For all p and q, we have

ΓY (X ′, J̃ p,q+1
0 ) ' ΓI′(J p,q+1

0 ) = ΓI′(J q+1 ⊗ Ωp
R) ' ΓI′(J q+1)⊗ Ωp

R

and similarly

(ΓY (X, Ĩp,q))+ ' (ΓI(Ip,q))+ = (ΓI(Iq ⊗ Ωp
R))+ ' (ΓI(Iq)⊗ Ωp

R)+

by Lemma 2.16 and the fact that ΓI = H0
I and ΓI′ = H0

I′ commute with direct sums. By
Lemma 2.28, we have ΓI′(J q+1) ' (ΓI(Iq))+ for all q. Therefore, for all p and q, we have

ΓI′(J q+1)⊗ Ωp
R ' (ΓI(Iq))+ ⊗ Ωp

R ' (ΓI(Iq)⊗ Ωp
R)+,

so the objects of the double complexes are isomorphic with the indicated bidegree shift. Finally,
we observe that the differentials in the complex Ω•R do not involve z or dz, so the isomorphisms
(ΓI(Iq))+⊗Ωp

R ' (ΓI(Iq)⊗Ωp
R)+ commute with the differentials of the double complex and thus

assemble to an isomorphism of double complexes. An isomorphism of double complexes induces
an isomorphism between the corresponding column-filtered spectral sequences, and the lemma
follows. 2

We are now ready to complete the proof of Theorem A.

Proof of Theorem A(a). As already described, we need only prove the result in the special case
of Lemma 2.18. We retain the notation of that lemma. Consider again the short exact sequence
of Definition 2.21 and its sheafified version

0→ OX′ ⊗ Ω•X [−1]
ι−→ Ω•X′ → OX′ ⊗ Ω•X → 0.

As described in § 2.2, the morphism of complexes ι induces a morphism between the
corresponding spectral sequences for hypercohomology supported at Y . These spectral sequences
were identified as E•,•• [(−1, 0)] (respectively, E•,••,R′) in the paragraph following Definition 2.27.
Accounting for the shift of −1, we see that this induced morphism has the following form:

ι•,•• : E•,•• → E•,••,R′ [(1, 0)].

Identifying first E•,•• [(0, 1)] with (E•,••,R)+ (by Lemma 2.29) and then E•,••,R with the 1/z-component

of (E•,••,R)+, we see that this further induces a morphism

φ•,•• : E•,••,R→ E•,••,R′ [(1, 1)],

given in every degree by the inclusion of E•,•r,R as the 1/z-component of (E•,•r,R)+ ' E•,•r [(0, 1)]

followed by ι•,•• . If r = 2, the maps φp,q2 are precisely the isomorphisms Hp
dR(Hq

I (R))
∼−→

Hp+1
dR (Hq+1

I′ (R′)) appearing in the proof of Lemma 2.18, which were induced by the morphism of
complexes ι and the inclusion of Ep,q2,R = Hp

dR(Hq
I (R)) as the 1/z-component of (Ep,q2,R)+. Therefore

the morphism φ•,•• of spectral sequences is an isomorphism at the E2-level. By Proposition 2.12,
it follows that φ is an isomorphism at all later levels, including the abutments. The proof is
complete. 2
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3. Matlis duality and Σ-continuous maps

In this section, we describe formulations of Matlis duality for local rings containing a field k in

terms of continuous k-linear maps to k. Many of these results are not new; some of them are

stated without proof in SGA2 [GR05, Exp. IV]. For lack of adequate references for the proofs,

we provide their full details here. We also define the class of k-linear maps (the ‘Σ-continuous’

maps) between arbitrary modules over such rings that admit Matlis duals.

Let (R,m) be a (Noetherian) local ring with coefficient field k. Let E = E(R/m) denote a

choice of injective hull of R/m ' k as an R-module. The Matlis duality functor D is defined by

D(M) = HomR(M,E) for all R-modules M . Since E is injective, D is an exact, contravariant

functor. (See [Mat86, § 18] for a standard treatment of this duality theory, or [Mat58] for

its original statement by Matlis.) If f : M → N is an R-linear homomorphism of R-modules, its

Matlis dual is the R-linear homomorphism f∗ : D(N)→ D(M) defined by pre-composition with

f : f∗(φ) = φ ◦ f for R-linear maps φ : N → E. Using this definition, it does not make sense a

priori to speak of the Matlis dual of a map δ : M →N that is not R-linear. However, we will show

that a more general class of maps can be dualized. We will make use of functorial identifications

of the Matlis dual of a finite-length (respectively finitely generated) R-module with the set of

k-linear (respectively k-linear and m-adically continuous) maps from the module to k; from

these identifications, we will see that any k-linear map between finite-length R-modules, and any

m-adically continuous k-linear map between finitely generated R-modules, has a Matlis dual. We

will also explain how this theory can be extended to the case of arbitrary modules.

Remark 3.1. In [GR05] the following results are stated in a slightly more general setting: (R,m)

is a (Noetherian) local ring containing a field k0 such that the residue field k = R/m is a finite

extension of k0. Since we need only the case where k = k0, we make this assumption throughout

to simplify the discussion. However, with only minor modifications to the arguments, all of what

follows in this section is true at the level of generality of [GR05].

Let R be as above, and let N be any R-module (a fortiori, N is a k-space). We can define

an R-module structure on the k-space Homk(N, k) as follows. Given a k-linear homomorphism

λ : N → k, we define r · λ : N → k by (r · λ)(n) = λ(rn), which is again k-linear since, if α ∈ k,

we have

(r · λ)(αn) = λ(r(αn)) = αλ(rn) = α(r · λ)(n)

by the k-linearity of λ. (We will use the dot · throughout this section to denote an R-action on

maps which is defined by multiplication on the input of the map when multiplying the output

by r ∈ R may not make sense.)

The socle Soc(E) = (0 :E m) of E is a one-dimensional k-space. We fix, once and for all, a

k-linear projection E → Soc(E) which we identify with a k-linear map σ : E → k.

Remark 3.2. The various functorial identifications made throughout this section will depend on

the choices of E and σ made here. At the end of this section, we will specify the choices of E

and σ in the case where R is complete and regular that will be used in the rest of the paper.

Now define, for any R-module N , a map ΦN : HomR(N,E)→ Homk(N, k) by ΦN (g) = σ ◦g.

Clearly, if g is R-linear (and hence k-linear), the composition σ ◦ g is k-linear.
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Lemma 3.3. The map ΦN defined above is an R-linear homomorphism.

Proof. Let g ∈ HomR(N,E) and r ∈ R be given. Then for any n ∈ N , we have

ΦN (rg)(n) = σ((rg)(n)) = σ(rg(n)) = σ(g(rn)) = (σ ◦ g)(rn) = (r · ΦN (g))(n),

so that ΦN (rg) = r · ΦN (g). 2

We list some more elementary properties of the maps ΦN . Suppose we have an R-
linear homomorphism f : M → N of R-modules. The Matlis dual of f , which is the map
f∗ : HomR(N,E)→ HomR(M,E), is clearly R-linear.

Lemma 3.4. The map f∨ : Homk(N, k)→ Homk(M,k) defined by pre-composition with f (i.e.,
f∨(λ) = λ ◦ f for a k-linear λ : N → k) is R-linear.

Proof. Let r ∈ R and λ ∈ Homk(N, k) be given. Then

f∨(r · λ)(m) = (r · λ)(f(m)) = λ(rf(m)) = λ(f(rm)) = f∨(λ)(rm) = (r · f∨(λ))(m)

for any m ∈M , as desired. 2

Moreover, we note that given any g ∈ HomR(N,E), both ΦM (f∗(g)) and f∨(ΦN (g)) are
equal to the composite σ ◦ g ◦ f : M → k. Therefore, the diagram below is commutative and all
its arrows are R-linear maps.

HomR(N,E)
f∗ //

ΦN
��

HomR(M,E)

ΦM
��

Homk(N, k)
f∨ // Homk(M,k)

We have now established enough preliminaries to prove the following.

Proposition 3.5. The map ΦN : HomR(N,E)→ Homk(N, k) defined by ΦN (φ) = σ ◦ φ is an
isomorphism of R-modules whenever N is of finite length.

Proof. We proceed by induction on the length l(N) in the category of R-modules, remarking
that any finite-length N is a k-space of dimension l(N). The base case, l(N) = 1, is
the case N ' k; here ΦN is an isomorphism identifying Homk(k, k) ' k with the socle
Soc(E) ' HomR(k,E) = HomR(R/m, E) of E. Now suppose l(N) > 2, in which case there
is a short exact sequence 0→ k→ N → N ′→ 0 of R-modules where l(N ′) = l(N)− 1. As E is
an injective R-module, the functor HomR(−, E) is exact. Moreover, Homk(−, k) is also an exact
functor on the category of k-spaces (all k-spaces are injective objects). We therefore obtain a
commutative diagram with exact rows.

0 // HomR(N ′, E) //

ΦN′
��

HomR(N,E) //

ΦN
��

HomR(k,E) //

Φk
��

0

0 // Homk(N
′, k) // Homk(N, k) // Homk(k, k) // 0

All maps in this diagram are R-linear, and the bottom row is exact as a sequence of R-modules,
since it is exact as a sequence of k-spaces. The map Φk is an isomorphism by our base case, and
ΦN ′ is an isomorphism by the induction hypothesis, so ΦN is an isomorphism by the five-lemma
and the proof is complete. 2
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We next consider the case of R-modules that are not of finite length, for which we need
to restrict attention to m-adically continuous homomorphisms. We recall the general definition
here.

Definition 3.6. Let R be a commutative ring, I ⊂ R an ideal, and M,N two finitely generated
R-modules. The I-adic topology on M (respectively N) is defined by stipulating that {InM}
(respectively {InN}) be a fundamental system of neighborhoods of 0. An Abelian group
homomorphism f : M → N is I-adically continuous if it is continuous with respect to these
topologies on M and N : that is, if for all t there exists an s such that f(IsM) ⊂ ItN .

Remark 3.7. Note that any R-linear map is automatically I-adically continuous. Also note that
this definition makes sense for arbitrary R-modules, not necessarily finitely generated. We insist
on finite generation here because we will make use of a different notion of continuity in the case
of arbitrary modules.

In the case of the local ring (R,m), the only fundamental neighborhood of 0 ∈ k = R/m in the
m-adic topology on k is {0} itself. Therefore, if M is a finitely generated R-module, a m-adically
continuous map M → k is one that annihilates mtM for some t > 0. Let Homcont,k(M,k) be the
k-space of k-linear maps M → k that are m-adically continuous.

Now note that if M is a finitely generated R-module and φ : M → E is an R-linear map,
φ annihilates mtM for some t. Indeed, let m1, . . . ,mn be generators for M over R. Since E =
E(R/m) is m-power torsion (every element of E is annihilated by some power of m [Mat86,
Theorem 18.4(v)]), there exist ti for i = 1, . . . , n such that φ(mi) is annihilated by mti ; but
then, setting t = max{t1, . . . , tn}, we have φ(mtM) = 0. Therefore every such φ factors through
M/mtM for some t, that is, HomR(M,E) = lim−→HomR(M/mtM,E). The R-module M/mtM is of

finite length for all t. Since HomR(M/mtM,E) is isomorphic via ΦM/mtM to Homk(M/mtM,k),
and these isomorphisms form a compatible system as t varies, we deduce the existence of an
isomorphism

ΦM : HomR(M,E)
∼−→ lim−→Homk(M/mtM,k) = Homcont,k(M,k),

again defined by ΦM (φ) = σ ◦ φ. Our definition of the action of an element r ∈ R on a k-linear
map λ : M → k by pre-composition by multiplication with r preserves the property of m-adic
continuity, so Homcont,k(M,k) is indeed an R-module. As in the finite-length case, we see that
ΦM is functorial in the R-module M . Note that if M is of finite length, every k-linear map
M → k is m-adically continuous, so that the isomorphism ΦM just defined coincides with the
ΦM defined earlier. We summarize the above discussion in the following theorem.

Theorem 3.8. Let (R,m) be a local ring with coefficient field k. Let E be an R-injective hull of
k, and let σ : E→ k be a fixed k-linear projection of E onto its socle. For every finitely generated
R-module M , post-composition with σ defines an isomorphism

ΦM : HomR(M,E)
∼−→ Homcont,k(M,k)

of R-modules, functorial in the R-module M . (As a special case, if M is of finite length,
HomR(M,E) ' Homk(M,k).)

For the rest of this section, the assumptions on R and k are as in Theorem 3.8. A consequence
of this theorem is that we can define the Matlis dual of a map between finitely generated
(respectively finite-length) R-modules as long as the map is k-linear and m-adically continuous
(respectively k-linear). The definition is simply pre-composition.
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Definition 3.9. Let δ : M → N be a k-linear map between finitely generated R-modules that

is continuous with respect to the m-adic topologies on M and N . Then pre-composition with δ

is k-linear and carries m-adically continuous k-linear maps λ : N → k to m-adically continuous

k-linear maps λ ◦ δ : M → k, so we can define the Matlis dual δ∗ : D(N) → D(M) to be the

composite

HomR(N,E)
ΦN
// Homcont,k(N, k)

δ∨
// Homcont,k(M,k)

Φ−1
M

// HomR(M,E).

Remark 3.10. If M and N are of finite length, δ∗ can be defined in the same way as above for any

k-linear δ. (More generally, we will see below that any k-linear map between Artinian modules

can be dualized.)

Our dual construction behaves well with respect to composition.

Proposition 3.11. If M,N,P are finitely generated R-modules and δ : M → N , δ′ : N → P

are m-adically continuous k-linear maps, then (δ′ ◦ δ)∗ = δ∗ ◦ δ′∗ as maps D(P )→ D(M).

Proof. We calculate using the definition,

(δ′ ◦ δ)∗ = Φ−1
M ◦ (δ′ ◦ δ)∨ ◦ΦP = Φ−1

M ◦ δ∨ ◦ δ′∨ ◦ΦP = (Φ−1
M ◦ δ∨ ◦ΦN ) ◦ (Φ−1

N ◦ δ′∨ ◦ΦP ) = δ∗ ◦ δ′∗,

as desired. 2

In the case of an R-linear map (which is automatically k-linear and m-adically continuous)

between finitely generated R-modules, our definition of the Matlis dual of this map agrees with

the usual one, so our notation is unambiguous and our definition is in fact a generalization of

the usual one. We make this precise in the following nearly tautological lemma.

Lemma 3.12. Let M and N be finitely generated R-modules. If f : M → N is an R-linear

homomorphism, then f∗ = Φ−1
M ◦f∨ ◦ΦN , so the usual definition of the Matlis dual of f coincides

with ours.

Proof. Suppose φ : N → E is R-linear. Then (f∨ ◦ΦN )(φ) = σ ◦φ◦f . As ΦM is an isomorphism,

(Φ−1
M ◦f∨◦ΦN )(φ) is the unique R-linear map M → E which gives σ◦φ◦f upon post-composition

with σ; by the unicity, it cannot be anything but φ◦f = f∗(φ). Therefore the left- and right-hand

sides of the asserted equality agree upon evaluation at every φ ∈ D(N). 2

What can be said in the case of arbitrary (not necessarily finitely generated) modules?

An arbitrary R-module M can be regarded as the filtered direct limit of its finitely generated

R-submodules Mλ. The Matlis dual functor (indeed, any contravariant Hom functor) converts

direct limits into inverse limits [Rot09, Proposition 5.26], so D(M) = lim
←−D(Mλ). If φ : M → E

is R-linear (an element of D(M)), the restriction of φ to a fixed Mλ corresponds by Theorem 3.8

to an m-adically continuous map Mλ → k. Therefore, we will be able to repeat our earlier

constructions in the case of arbitrary modules if we impose some conditions on how the maps

we are studying behave under restriction to finitely generated submodules. We make this precise

with the following definition.
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Definition 3.13. Let M and N be R-modules, and let δ : M → N be a k-linear map. We say
that δ is Σ-continuous if for every finitely generated R-submodule Mλ ⊂ M , the R-submodule
〈δ(Mλ)〉 ⊂ N generated by the image of Mλ under δ is finitely generated and the restriction
δ|Mλ

: Mλ → 〈δ(Mλ)〉 is m-adically continuous in the sense of Definition 3.6. We write
HomΣ

k (M,N) for the set (indeed, R-module) of Σ-continuous k-linear maps M → N , and refer
to such maps simply as ‘Σ-continuous’, the k-linearity being understood.

A Σ-continuous map is not, in general, m-adically continuous, but is built from m-adically
continuous maps in ‘small’ (finitely generated) stages. (The terminology ‘Σ-continuous’ is meant
to reflect this, by analogy with the σ-finite measure spaces of real analysis and the σ-compact
spaces of topology.)

Lemma 3.14. Let M , N , and P be R-modules.

(a) Every R-linear map φ : M → N is Σ-continuous.

(b) If δ : M → N and δ′ : N → P are Σ-continuous, then δ′ ◦ δ : M → P is Σ-continuous.
In particular, for every Σ-continuous map δ′ : N → k, the composite δ′ ◦ δ : M → k is
Σ-continuous.

(c) A k-linear map δ : M → k is Σ-continuous if and only if, for every finitely generated
R-submodule Mλ ⊂M , there exists tλ > 0 such that δ(mtλMλ) = 0.

Proof. Since R-linear maps carry finitely generated submodules to finitely generated submodules,
part (a) is immediate. Part (b) holds because both parts of the definition of Σ-continuity are
preserved under composition. Finally, since k is a finitely generated R-module, the first part
of the definition of Σ-continuity is automatic when the target of the map is k, and therefore
a Σ-continuous map δ : M → k is a map whose restrictions to all finitely generated R-submodules
of M are m-adically continuous. By the paragraph following Remark 3.7, such maps are exactly
those described in part (c). 2

By restricting attention to Σ-continuous maps to k, we obtain a generalization of Theorem 3.8
to the case of an arbitrary module (cf. [GR05, Exp. IV, Remarque 5.5]).

Theorem 3.15. Let M be an R-module, and let σ : E → k be a fixed k-linear projection of E
onto its socle. There is an isomorphism of R-modules

ΦM : D(M) = HomR(M,E)
∼−→ HomΣ

k (M,k)

defined by post-composition with σ and functorial in the R-module M .

Proof. Consider the family {Mλ} of finitely generated R-submodules of M . We view M as the
filtered direct limit of the Mλ. As the Matlis dual functor converts direct limits into inverse limits,
we see that D(M) = lim

←−D(Mλ), the transition maps being pre-composition with inclusions
Mλ ↪→ Mλ′ of finitely generated submodules. For all Mλ, post-composition with σ defines an
isomorphism ΦMλ

: D(Mλ) → Homcont,k(Mλ, k) by Theorem 3.8. Since this isomorphism is
functorial in Mλ, the {ΦMλ

} form a compatible system of R-linear isomorphisms, inducing an
R-linear isomorphism

Φ′M : D(M) = lim
←−D(Mλ)

∼−→ lim
←− Homcont,k(Mλ, k);
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but the right-hand side of this isomorphism can be identified with HomΣ
k (M,k), essentially by

definition. The natural isomorphism

θ : lim
←− Homcont,k(Mλ, k)→ HomΣ

k (M,k)

is defined on a compatible system {fλ ∈ Homcont,k(Mλ, k)} by taking θ({fλ}) to be the unique

k-linear map M → k whose restriction to every Mλ is fλ (this map is Σ-continuous by definition),

and the composition ΦM = θ ◦ Φ′M is nothing but post-composition with σ, completing the

proof. 2

Definition 3.16. Let M be an R-module. The Σ-continuous dual DΣ(M) of M is the R-module

HomΣ
k (M,k). By Theorem 3.15, we have D(M) ' DΣ(M) as R-modules.

Remark 3.17. If M is a finitely generated R-module, then clearly

DΣ(M) = Homcont,k(M,k),

so in this case the ΦM of Theorem 3.15 is the same as the ΦM of Theorem 3.8.

Theorem 3.15 allows us to identify the Matlis dual with the full k-linear dual in the case of

an Artinian module.

Corollary 3.18. IfM is anR-module such that Supp(M) = {m} (for instance ifM is Artinian),

then D(M) ' Homk(M,k) as R-modules.

Proof. Let Mλ be a finitely generated R-submodule of M . The hypothesis on M implies that

Mλ is annihilated by a power of m and consequently is of finite length. Given any k-linear map

M → k, its restriction to Mλ is therefore m-adically continuous. We conclude that DΣ(M) =

Homk(M,k): the corollary now follows from Theorem 3.15. 2

We can now extend the definition of the Matlis dual of an m-adically continuous map

between finitely generated R-modules to a definition of the Matlis dual of a Σ-continuous

map between arbitrary modules as follows.

Proposition 3.19 (Proposition–Definition). Let M and N be R-modules, and let δ : M → N

be a Σ-continuous map. Define the Matlis dual δ∗ : D(N)→ D(M) to be the composite

D(N)
ΦN
// DΣ(N)

δ∨
// DΣ(M)

Φ−1
M

// D(M),

where again δ∨ is pre-composition with δ. This construction satisfies the following properties:

given another R-module P and a Σ-continuous map δ′ : N → P , we have (δ′ ◦ δ)∗ = δ∗ ◦ δ′∗ as

k-linear maps D(P )→ D(M), and δ∗ is the usual Matlis dual in the case in which δ is R-linear.

Proof. By Lemma 3.14(b), δ∨ is a well-defined k-linear map DΣ(N)→ DΣ(M). The final two

assertions follow immediately since both Proposition 3.11 and Lemma 3.12 hold for the restriction

of δ to any finitely generated R-submodule of M . 2
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Remark 3.20. Suppose M , N , and δ are as above, and suppose we are given cofinal families {Mλ}
(respectively {Nµ}) of R-submodules of M (respectively N), meaning that every R-submodule of
M (respectively N) is contained in some Mλ (respectively some Nµ), with the further condition
that for all λ, there exists µ such that δ(Mλ) ⊂ Nµ. Since M = lim−→Mλ and N = lim−→Nµ, it follows
that D(M) ' lim

←−D(Mλ) and D(N) ' lim
←−D(Nµ) as R-modules. If we write δλµ for δ|Mλ

: Mλ→

Nµ, then it is clear from the construction of Proposition 3.19 that δ∗ : D(N)→ D(M) can be
identified with lim

←−µ(δ∗λµ : D(Nµ)→ D(Mλ)).

We next show that over a complete local ring, the Matlis dual of a Σ-continuous map is
again Σ-continuous in some important special cases. At present, we do not know an example of a
Σ-continuous map for which this is false. (It would be interesting to find necessary and sufficient
conditions on M and N for any Σ-continuous map M → N to have Σ-continuous dual.)

Proposition 3.21. Let R be a complete local ring with coefficient field k. Let M and N be
R-modules, and let δ : M → N be a k-linear map.

(a) If M is Artinian, then δ is Σ-continuous.

(b) If M and N are finitely generated, then δ is m-adically continuous if and only if it is
Σ-continuous.

(c) If M and N are Artinian, then δ∗, which is defined by part (a), is Σ-continuous.

(d) If N is finitely generated and δ is Σ-continuous, then δ∗ is Σ-continuous.

Proof. Suppose that M is Artinian. Any finitely generated R-submodule Mλ ⊂ M is of finite
length and hence is annihilated by ml for some l, so in particular δ(mlMλ) = 0. Since Mλ is
of finite length (hence is a finite-dimensional k-space) and δ is k-linear, δ(Mλ) is also a finite-
dimensional k-space, so the R-submodule of N that it generates is finitely generated over R. We
conclude that δ is Σ-continuous, proving part (a).

If M and N are finitely generated, the image under δ of any submodule of M is contained
in a finitely generated R-module, namely N itself. This proves the forward direction of part (b),
and the converse is obvious.

Suppose that M and N are Artinian. Let t be a natural number, and let Mt = (0 :M mt), a
finite-length R-submodule of M . As N is Artinian, every element of N is annihilated by some
power of m, so there exists some s such that δ(Mt) ⊂ Ns = (0 :N ms). Now apply Matlis duality.
The containment δ(Mt) ⊂ Ns implies that the kernel of the map D(N) → D(Ns) is carried
by δ∗ into the kernel of D(M) → D(Mt). This kernel (which we may identify with D(M/Mt)
by the exactness of D) is mtD(M); this means that δ∗(msD(N)) ⊂ mtD(M), that is, that δ∗

is continuous with respect to the m-adic topologies on D(N) and D(M). Since M and N are
Artinian and R is complete, D(N) and D(M) are finitely generated [Mat86, Theorem 18.6(v)],
so by part (b), δ∗ is Σ-continuous. This proves part (c).

If N is finitely generated, then since R is complete, D(N) is Artinian [Mat86,
Theorem 18.6(v)]. The map δ∗ : D(N) → D(M) is k-linear, hence Σ-continuous by part (a).
This completes the proof of part (d) and the proposition. 2

If M is any R-module, there is a natural map ι : M →D(D(M)) defined by evaluation: we set
ι(m)(φ) = φ(m) for all m ∈M and φ ∈ D(M). If R is complete and M is a finitely generated or
Artinian R-module, ι is an isomorphism by the main theorem of classical Matlis duality [Mat86,
Theorem 18.6(v)]; in fact, ι is injective even for arbitrary M [Mat86, Theorem 18.6(i)]. Moreover,
if f : M → N is an R-linear homomorphism between finitely generated or Artinian R-modules,
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f∗∗ : D(D(M))→ D(D(N)) can be naturally identified with f via the evaluation isomorphisms.
Having verified that δ∗∗ is well defined whenever δ is a Σ-continuous map between Artinian or
finitely generated R-modules (Proposition 3.21(c,d)), we now show that the same is true of the
double Matlis dual of a Σ-continuous map between such modules.

Proposition 3.22. Let R be a complete local ring with coefficient field k.

(a) Let M be a finitely generated or Artinian R-module. The evaluation map

ι′ : M → DΣ(DΣ(M)),

analogous to ι : M → D(D(M)) and defined by ι′(m)(δ) = δ(m) for all m ∈M and δ ∈ DΣ(M),
is an isomorphism of R-modules.

(b) If M and N are R-modules that are either both finitely generated or both Artinian, and
δ : M → N is a Σ-continuous map, then

δ∨∨ : DΣ(DΣ(M))→ DΣ(DΣ(N))

can be naturally identified with δ via the evaluation isomorphisms of part (a); consequently,
δ∗∗ : D(D(M)) → D(D(N)) can be identified with δ via the isomorphisms of classical Matlis
duality and Theorem 3.15. (See Proposition 3.19 for the definitions of δ∗ and δ∨.)

(c) With the hypotheses of part (b), the Matlis dual operation defines an isomorphism

HomΣ
k (M,N) ' HomΣ

k (D(N), D(M))

of k-spaces. (In particular, every Σ-continuous map D(N) → D(M) is the Matlis dual of a
Σ-continuous map M → N .)

Proof. If M is any R-module, we obtain an isomorphism

Ψ : D(D(M))
∼−→ DΣ(DΣ(M))

of R-modules by applying Theorem 3.15 twice. This map is defined by the formula

Ψ(ψ)(δ) = σ(ψ(Φ−1
M (δ)))

for ψ ∈ D(D(M)) and δ ∈ DΣ(M). We claim that the evaluation maps ι and ι′ satisfy the
identity Ψ ◦ ι = ι′. If we set ψ = ι(m) for some m ∈M , we find

Ψ(ι(m))(δ) = σ(Φ−1
M (δ)(m)) = δ(m),

so that Ψ ◦ ι agrees with ι′ upon evaluation at every δ ∈ DΣ(M), as claimed. If M is finitely
generated or Artinian, ι is an isomorphism by classical Matlis duality, so ι′ is the composite of
two R-module isomorphisms, proving part (a).

Suppose now that M and N are finitely generated R-modules and δ : M → N is a Σ-
continuous map (the proof of part (b) in the Artinian case is the same). Using the evaluation
map ι′, we identify M with DΣ(DΣ(M)), and likewise with N . Consider the double dual

δ∨∨ : DΣ(DΣ(M))→ DΣ(DΣ(N)).

Every element of the source takes the form ι′(m) for some m ∈ M , and by definition we have
δ∨∨(ι′(m)) = ι′(δ(m)); therefore δ∨∨ coincides with δ upon identifying M andN with their double
Σ-continuous duals. The second statement of part (b) follows from the first by Proposition 3.19.
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In particular, with the hypotheses of part (b), it is clear that the map δ 7→ δ∗ is a bijection,
which already implies the parenthetical remark in part (c). It remains to show that the map
δ 7→ δ∗ is k-linear. Let λ ∈ k be given. Then we have

(λ · δ)∗ = (δ ◦ λ)∗ = λ∗ ◦ δ∗ = λ ◦ δ∗ = δ∗ ◦ λ = λ · δ∗,

where we have used Proposition 3.11 and Lemma 3.12, as well as the k-linearity of δ∗ (since δ∗

need not be R-linear, it is not true that the Matlis dual operation defines an isomorphism of
R-modules). This completes the proof. 2

Finally, consider the special case where R = k[[x1, . . . , xn]] (for k a field) and m is the
maximal ideal of R. Since R is Gorenstein, the local cohomology module Hn

m(R) is isomorphic
to E [BS13, Lemma 11.2.3]. We pick one such isomorphism and think of E as Hn

m(R) via this
isomorphism. If we compute Hn

m(R) using the Čech complex of R with respect to x1, . . . , xn
[BS13, Theorem 5.1.20], the resulting R-module consists of all k-linear combinations of ‘inverse
monomials’ xs11 · · ·xsnn where s1, . . . , sn < 0. The R-action is defined by the usual exponential
rules with the caveat that non-negative powers of the variables are set equal to zero, so the
product of a formal power series in R with such an ‘inverse polynomial’ has only finitely many
non-zero terms. We may define a k-linear projection σ : E→ k of E onto its socle by the formula

σ
(∑

αs1,...,snx
s1
1 · · ·xsnn

)
= α−1,...,−1 ∈ k,

which we think of as ‘taking the (−1, . . . ,−1)-coefficient’ of such an ‘inverse polynomial’ [Kun08,
ch. 5].

The map σ can be thought of as a realization of the residue map in coordinates {xi},
and we will sometimes abusively refer to σ as ‘the residue map’, the chosen coordinates being
understood. The residue map is a canonical map Hn

m(Ωn
R) → k. The original reference for the

theory of the residue map is [Har66]: see also [GR05, Exp. IV, Remarque 5.5] and [Kun08, ch. 5]
for concrete descriptions in our special case. A choice of a regular system of parameters x1,
. . . , xn for R induces a non-canonical R-module isomorphism Hn

m(R) ' Hn
m(Ωn

R) (defined by
η 7→ η dx1 ∧ · · · ∧ dxn), and σ is the composite of this isomorphism with the residue map. One
could instead take E = Hn

m(Ωn
R) and the canonical residue map for σ, but we will have to use

coordinates in examples later in the paper.

4. Matlis duality for D-modules

We now specialize to the case where (R,m) is a complete local ring with coefficient field k. This
assumption is in force throughout the section unless otherwise indicated.

We show that if D = D(R, k) is the non-commutative ring of k-linear differential operators
on R and M is a left D-module, then elements of D act on M via Σ-continuous maps. This
fact allows us immediately to apply the formalism of the previous section to define the Matlis
dual of the action of an element of D; in this way, D(M) becomes a right D-module. In the
case of a complete regular local ring with coefficient field k of characteristic zero, we describe a
‘transposition’ operation allowing us to regard these Matlis duals as left D-modules.

Let D = D(R, k) be the ring of k-linear differential operators on R. Suppose M is a left
D-module, and let δ ∈ D(R, k) be a differential operator. The map δ : M → M defined by the
action of δ (that is, δ(m) = δ ·m) is a k-linear map (we abusively use the same letter δ to simplify
notation).

We need a lemma on the continuity of differential operators’ action.
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Lemma 4.1. Let M be a left D(R, k)-module (here R is any commutative ring, and k ⊂ R any
commutative subring), and let I ⊂ R be any ideal. For any δ ∈ Dj(R) and s > 0, we have
δ(Is+jM) ⊂ IsM .

Proof. We proceed by induction on s + j. If s + j = 0, there is nothing to prove. Now suppose
s + j > 0 and the containment established for smaller values of s + j. Since δ ∈ Dj(R), it
follows that [δ, r] ∈ Dj−1(R) for any r ∈ R, and so [δ, r](Is+j−1M) ⊂ IsM by the induction
hypothesis for s and j−1. That is, [δ, r](tm) = δ(rtm)−rδ(tm) ∈ IsM for any r ∈ R, t ∈ Is+j−1

and m ∈ M . If we further suppose that r ∈ I and put x = rt ∈ Is+j−1I = Is+j , we see that
δ(xm) = rδ(tm) + [δ, r](tm). By the induction hypothesis for s− 1 and j, δ(Is+j−1M) ⊂ Is−1M ,
so δ(tm) ∈ Is−1M and rδ(tm) ∈ IsM . Thus both terms on the right-hand side (and their sum
δ(xm)) belong to IsM . As any element of Is+jM can be expressed as a finite sum

∑
α rαtαmα

with rα ∈ I and tα ∈ Is+j−1, the result follows. 2

If a left D-module M is finitely generated as an R-module, then given any δ ∈ D, the lemma
shows that the corresponding map δ : M →M is m-adically continuous. Therefore the formalism
of the previous section applies, and we can define the k-linear Matlis dual δ∗ : D(M)→ D(M) in
such a way that if δ′ ∈ D is another differential operator, we have (δ′ ◦ δ)∗ = δ∗ ◦ (δ′)∗ (note that,
by Proposition 3.11, the order of composition is reversed). This allows us to define a structure
of right D-module on D(M) by φ · δ = δ∗(φ). Here is an example of this dual construction.

Example 4.2. Let R = k[[x]], where k is a field, equipped with the k-linear derivation δ = d/dx.
Denote by m its maximal ideal (x). Take M = R, a finitely generated R-module, and take for E
the local cohomology module H1

(x)(R), which is the module of finite sums
∑

s>0 (αs/x
s) where

αs ∈ k. We define Matlis duals of k-linear maps between R-modules using the residue map
σ : E → k given by σ(

∑
s>0 (αs/x

s)) = α1.
We determine explicitly the Matlis dual δ∗ : D(R) → D(R). Note that E is naturally

isomorphic as R-module to D(R) = HomR(R,E): an element µ ∈ E corresponds to the map
r 7→ rµ (and, in the other direction, a map R → E corresponds to the image of 1 in E).
Let µ =

∑
s>0 (αs/x

s) be such an element of E and suppose that t is the greatest integer
such that αt 6= 0. The R-linear map R → E corresponding to µ is defined as follows: given
an element

∑∞
i=0 βix

i of R, its image in E is the product (
∑∞

i=0 βix
i)(
∑

s>0 (αs/x
s)), which is

carried by σ to
∑

s>0 αsβs−1. Therefore the corresponding k-linear map σ ◦µ : R→ k is given by∑∞
i=0 βix

i 7→∑
s>0 αsβs−1. The map µ annihilates mt; write µ for the R-linear map R/mt

→ E
induced on the quotient.

The derivation δ induces a k-linear map R/mt+1
→ R/mt by the Leibniz rule, and the k-linear

composite R/mt+1
→ R/mt σ◦µ−−→ k is defined by

t∑
i=0

λix
i 7→

t−1∑
i=0

(i+ 1)λi+1x
i 7→

∑
s>0

sαsλs,

where the scalars αs are the numerators in the expansion of µ. Since R/mt+1 is of finite length
as an R-module, this composite corresponds to a unique R-linear map R/mt+1

→ E, that is,
a map R→ E defined by multiplication by an element of E that is annihilated by mt+1. This
map R → E is the image of µ under δ∗, and examining the formula above, we see that the
corresponding element of E (the image of 1) cannot be anything but

∑
s>0 (sαs/x

s+1). Therefore,
viewed at the level of a map E → E, the map δ∗ is defined by

δ∗
(

1

xs

)
=

s

xs+1
,
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which differs from the standard (‘quotient rule’) differentiation map on E only by a minus sign.
(Our discussion of ‘transposition’ at the end of this section will indicate the reason for this sign.)
This concludes Example 4.2.

In order to extend this definition of Matlis dual to arbitrary D-modules, removing the finite
generation hypothesis, we need to show that differential operators act on D-modules via Σ-
continuous maps. We prove this now using the alternate characterization of differential operators
given in EGA [GD67].

Definition 4.3. Suppose that R is any commutative ring and k ⊂ R a commutative subring.
We denote by B the ring R ⊗k R, by µ : B → R the multiplication map µ(r ⊗ s) = rs, and by
J ⊂ B the kernel of µ. We identify the subring R⊗k 1 = {r ⊗ 1 | r ∈ R} of B with R, and view
B as an R-algebra using this identification. In this way, B and all ideals of B can be regarded
as R-modules. Finally, for any j > 0, we denote by P jR/k (or P j) the quotient B/J j+1.

In [GD67], differential operators are described in terms of R-linear maps via the following
correspondence.

Proposition 4.4 [GD67, Proposition 16.8.4]. For any commutative ring R and commutative
subring k ⊂ R, there is an isomorphism

HomR(P j , R) ' Dj(R)

of R-modules, where the differential operators on the right-hand side are understood to be
k-linear.

In our case, where R is a complete local ring and k a coefficient field, both sides of the
isomorphism of Proposition 4.4 are finitely generated R-modules.

Proposition 4.5. Let (R,m) be a (Noetherian) complete local ring with coefficient field k. For
all j, the R-module Dj(R) ⊂ D(R, k) is finitely generated.

The following definition will be used in the proof of Proposition 4.5.

Definition 4.6. Let (R,m) be a local ring. For any R-module L, the maximal m-adically
separated quotient of L is Lsep = L/(

⋂
sm

sL). Note that Lsep is m-adically separated, and
L/mL ' Lsep/mLsep.

Proof of Proposition 4.5. Let j be given. By Proposition 4.4, it suffices to show that
HomR(P j , R) is a finitely generated R-module. As R is m-adically separated, every
f ∈ HomR(P j , R) factors uniquely through (P j)sep. Therefore HomR((P j)sep, R) ' HomR(P j , R)
as R-modules. We claim that (P j)sep is itself a finitely generated R-module, from which it will
follow at once that

HomR((P j)sep, R) ' HomR(P j , R) ' Dj(R)

is finitely generated as well. We have

(P j)sep/m(P j)sep ' P j/mP j = B/(mB + J j+1)

as k-spaces. Since (P j)sep is m-adically separated and R is m-adically complete, (P j)sep is a
finitely generated R-module if (P j)sep/m(P j)sep is a finite-dimensional k-space, by a form of
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Nakayama’s lemma [Eis95, Example 7.2]. Therefore we have reduced the proof of the proposition
to the proof that for all j, the k-space B/(mB + J j+1) is finite-dimensional, which we give now.

The elements r⊗ 1− 1⊗ r with r ∈ R generate J as an R-module: given b =
∑

i r
′
i⊗ ri ∈ B,

we have b ∈ J if and only if
∑

i r
′
iri = 0, and in this case we see that

b =
∑
i

(r′i ⊗ ri − r′iri ⊗ 1) = −
∑
i

(r′i ⊗ 1)(ri ⊗ 1− 1⊗ ri) =
∑
i

(−r′i) · (ri ⊗ 1− 1⊗ ri)

is an R-linear combination of elements of the form described. The equation

r ⊗ r′ = rr′ ⊗ 1− r · (r′ ⊗ 1− 1⊗ r′)
for r, r′ ∈ R also shows that we have an R-module direct sum decomposition B = (R⊗k 1)⊕ J .
Since R is Noetherian, we can fix a finite set of generators x1, . . . , xs for m. Moreover, since R
contains its residue field k, we have a direct sum decomposition (as k-spaces) R = k ⊕ m, so
given any r ∈ R, we can write r = c+ x1y1 + · · ·+ xsys where c ∈ k and yi ∈ R. We then have
r ⊗ 1 − 1 ⊗ r =

∑
i(xiyi ⊗ 1 − 1 ⊗ xiyi), since c ⊗ 1 = 1 ⊗ c for c ∈ k. For all i, we can express

xiyi ⊗ 1− 1⊗ xiyi as

(yi ⊗ 1)(xi ⊗ 1− 1⊗ xi)− (xi ⊗ 1− 1⊗ xi)(yi ⊗ 1− 1⊗ yi) + (xi ⊗ 1)(yi ⊗ 1− 1⊗ yi)
where the second summand belongs to J2 and the third summand belongs to mJ . We conclude
that r⊗1−1⊗ r− (

∑
yi · (xi⊗1−1⊗xi)) ∈ J2 +mJ . Therefore, if we write bi = xi⊗1−1⊗xi,

the classes of the bi generate J/(J2 + mJ) as an R-module. Since m annihilates J/(J2 + mJ),
and R = k ⊕ m as k-spaces, we see that moreover the classes of the bi span J/(J2 + mJ) as a
k-space. Let Lj be the k-span of the monomials of degree at most j in the bi, and let L′j be the

k-span of such monomials of degree precisely j, so that Lj =
⋃j
l=0 L

′
l: clearly all Lj and L′j are

finite-dimensional k-spaces. With this notation, what we have just shown is that J = L′1+J2+mJ .
Now let b ∈ B be arbitrary. Using the R-module direct sum decomposition B = (R⊗k 1)⊕J ,

we write b = (r ⊗ 1) + x where x ∈ J . Using the k-space direct sum decomposition R = k ⊕ m,
we write r = c+ y where c ∈ k and y ∈ m, so that y⊗ 1 ∈ mB. Our work above shows that there
exist β ∈ J2 and γ ∈ mJ such that x− β− γ lies in L′1. We have (y⊗ 1) + γ ∈ mB. We conclude
from the decomposition

b = (c⊗ 1) + (x− β − γ) + β + (γ + (y ⊗ 1))

that B ⊂ L1 + J2 + mB (since c ⊗ 1 = c · (1 ⊗ 1) ∈ L0 ⊂ L1), and hence that B/(mB + J2)
is spanned as a k-space by L1. Moreover, it follows by induction that for all j, B/(mB+J j+1) is
spanned as a k-space by Lj . Assume the conclusion for j− 1, that is, that B ⊂ Lj−1 +mB+ J j .
We have already shown J = L′1 + mJ + J2. Taking the jth power of both sides, we find J j ⊂
mJ +

∑j
l=0 L

′
j−lJ

2l ⊂ mB + L′j + J j+1, since bi ∈ J and for any l > 0, 2l + (j − l) > j + 1.
Therefore

B ⊂ (Lj−1 + L′j) + mB + J j+1.

Since Lj−1 + L′j = Lj , we have shown B/(mB + J j+1) is spanned over k by Lj , completing the

induction. It follows that every B/(mB + J j+1) is a finite-dimensional k-space, completing
the proof. 2

Remark 4.7. Our proof of Proposition 4.5 above, together with [Eis95, Example 7.2], has the
following consequence which we record separately for reference: if we fix generators x1, . . . , xs for
the maximal ideal m, then (P j)sep is generated over R by the classes of monomials in b0, b1, . . . , bn
of degree at most j, where b0 = 1⊗ 1 and bi = xi ⊗ 1− 1⊗ xi for i = 1, . . . , n.

2104

https://doi.org/10.1112/S0010437X17007345 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007345


De Rham homology and cohomology

We have now assembled enough preliminaries to prove the Σ-continuity of differential

operators over a complete local ring.

Proposition 4.8. Let (R,m) be a (Noetherian) complete local ring with coefficient field k, and

let D = D(R, k). If M is a left D-module and δ ∈ D(R, k), then δ : M → M is Σ-continuous.

(The analogous statement is also true if M is a right D-module.)

Proof. We verify the conditions of Definition 3.13. Let Mλ be a finitely generated R-submodule

of M and let δ ∈ D(R, k). We assert that the R-submodule 〈δ(Mλ)〉 of M generated by the

image of Mλ under δ is finitely generated over R. (By Lemma 4.1, we already know the restriction

of δ to Mλ will be m-adically continuous, so this is all that must be proved.) With λ fixed, we

proceed by induction on the order j of δ. Fix a finite set of generators m1, . . . ,mn for Mλ. If

j = 0, then δ is R-linear, so δ(m1), . . . , δ(mn) generate 〈δ(Mλ)〉. Now suppose j > 0 and the

statement proved for smaller values of j. By Proposition 4.5, we can find a finite set of R-module

generators d1, . . . , ds for Dj−1(R). Then we claim

{δ(mi)}i ∪ {dl(mi)}l,i

is a finite set of generators for 〈δ(Mλ)〉. Indeed, given any element mλ ∈ Mλ, we can write it

as a linear combination r1m1 + · · · + rnmn, and δ(rimi) = riδ(mi) + [δ, ri](mi) for all i. Since

[δ, ri] ∈ Dj−1(R), we can write [δ, ri] = ρ1,id1 + · · ·+ ρs,ids for some ρ1,i, . . . , ρs,i ∈ R. Then

δ(rimi) = riδ(mi) + ρ1,id1(mi) + · · ·+ ρs,ids(mi)

for all i. The sum
∑
δ(rimi) = δ(mλ) thus belongs to the R-submodule of M generated by the

specified finite set, completing the proof. 2

Remark 4.9. More generally, if M and N are any two R-modules, there is a notion of k-linear

differential operators M → N [GD67, Déf. 16.8.1]. We do not know under what conditions

such differential operators are Σ-continuous.

Corollary 4.10 (Corollary–Definition). Let (R,m) be a complete local ring with coefficient

field k, and let D = D(R, k). Let M be a left D-module. Then the Matlis dual D(M) =

HomR(M,E) has a natural structure of right D-module. If M is a right D-module, D(M)

has a natural structure of left D-module.

Proof. By symmetry, it suffices to prove the statement when M is a left D-module. Given any

δ ∈ D(R, k), Propositions 4.8 and 3.19 imply that the Matlis dual δ∗ : D(M)→D(M) is defined.

We define a right D(R, k)-action on D(M) by φ·δ = δ∗(φ). This definition satisfies the axioms for

a right action since, given another differential operator δ′ ∈ D(R, k), we have (δ′ ◦δ)∗ = δ∗ ◦ (δ′)∗,

again by Proposition 3.19. 2

Proposition 4.11. Let φ : M → N be a homomorphism of left D-modules. The Matlis dual

φ∗ : D(N)→ D(M), as defined in Proposition 3.19, is a homomorphism of right D-modules. The

analogous statement for a homomorphism of right D-modules is true as well. Therefore, Matlis

duality defines contravariant functors from the category of left D-modules to the category of

right D-modules and vice versa.
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Proof. Again it suffices to prove the first statement. Note first that since φ is left D-linear,
it is R-linear and hence Σ-continuous by Lemma 3.14(a). Let δ ∈ D be given, and write
δM : M → M and δN : N → N for the actions of δ on M and N . As is clear from the proof of
Corollary 4.10, the right D-module structure on D(M) is defined by transport of structure from
that on DΣ(M) via the functorial isomorphism of Theorem 3.15. Therefore we need only check
that φ∨ : DΣ(N)→ DΣ(M) is right D-linear. Since φ is left D-linear, we have φ ◦ δM = δN ◦ φ.
Therefore, if λ ∈ DΣ(N), we have

φ∨(λ · δ) = φ∨(λ ◦ δN ) = λ ◦ δN ◦ φ = λ ◦ φ ◦ δM = φ∨(λ) ◦ δM = φ∨(λ) · δ,

so that φ∨ is right D-linear, completing the proof. 2

Recall from § 3 that if M is an R-module, we have the natural evaluation map ι : M →
D(D(M)) which is injective for arbitrary M and an isomorphism if M is finitely generated or
Artinian. If M is a left D-module, then D(D(M)) is also a left D-module (apply Corollary 4.10
twice). The following proposition justifies our use of the expression ‘Matlis duality for
D-modules’.

Proposition 4.12. Let M be a left D-module. The evaluation map ι : M ↪→ D(D(M)) is a
morphism of left D-modules. In particular, if M is finitely generated or Artinian as an R-module,
then ι is an isomorphism of left D-modules.

Proof. By the proof of Proposition 3.22(a), we have an isomorphism

Ψ : D(D(M))
∼−→ DΣ(DΣ(M))

of R-modules, and the left D-module structure on D(D(M)) is defined, by transport of structure,
using the left D-module structure on the right-hand side. We also have an evaluation map

ι′ : M → DΣ(DΣ(M))

defined by ι′(m)(δ) = δ(m) for all m ∈ M and δ ∈ DΣ(M). The proof of Proposition 3.22(a)
shows that Ψ ◦ ι = ι′. It therefore suffices to check that ι′ is left D-linear. We must show that
for any m ∈ M and d ∈ D, we have ι′(d · m) = d · ι′(m). The left-hand side is the evaluation
map at d ·m ∈M . The right-hand side is the same, because d acts on the evaluation map ι′ by
precomposition with d : M →M . This completes the proof. 2

We give some examples of Matlis duals with right D(R, k)-structures, mostly involving local
cohomology.

Example 4.13. Let (R,m) be a complete local ring with coefficient field k.

(a) Since R is a left D(R, k)-module and E = D(R), E has a natural structure of right
D(R, k)-module.

(b) If M is a left D(R, k)-module, so is MS for any multiplicatively closed subset S ⊂ R
[Lyu93, Example 5.1(a)]. If I ⊂ R is an ideal, the local cohomology modules H i

I(R) supported
at I have the structure of left D(R, k)-modules, because H i

I(R) is the ith cohomology object of a
complex whose objects are localizations of the left D(R, k)-module R and whose maps, sums of
natural localization maps, are D(R, k)-linear [Lyu93, Example 5.1(c)]. By the previous theorem,
the Matlis duals D(H i

I(R)) are right D(R, k)-modules.
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(c) Now suppose I = m. If R is Cohen–Macaulay, then H i
m(R) is zero unless i = dim(R).

The Matlis dual D(H
dim(R)
m (R)), which is the canonical module of R, therefore has a structure

of right D(R, k)-module. If R is not Cohen–Macaulay, there exists some i < dim(R) such

that H i
m(R) is non-zero. For such an i, the Matlis dual D(H i

m(R)) is a right D(R, k)-module that

is finitely generated (since H i
m(R) is Artinian) as an R-module and whose dimension is strictly

less than the dimension of R (in fact, its dimension is bounded above by i: [GR05, Exp. V,

Theorem 3.1(ii)]).

We give some more details related to Example 4.13(a). Since R is a finitely generated R-

module, we know by Theorem 3.8 that E = D(R) ' Homcont,k(R, k), and the right D-action

on Homcont,k(R, k) is defined by δ · d = δ ◦ d for d ∈ D and δ ∈ Homcont,k(R, k). If M is any

R-module, we have an isomorphism

DΣ(M)
∼−→ HomR(M,Homcont,k(R, k))

by combining Theorems 3.15 and 3.8. Concretely, this isomorphism carries a Σ-continuous map

δ : M → k to the R-linear map M → Homcont,k(R, k) defined by m 7→ (r 7→ δ(rm)), and its

inverse carries an R-linear map ψ : M → Homcont,k(R, k) to the Σ-continuous map M → k

defined by m 7→ ψ(m)(1).

By identifying E with Homcont,k(R, k) endowed with the right D-structure above, we

can give an alternate description of the right action of derivations (differential operators of

order precisely 1) on the Matlis dual of any left D-module, using the formulas of [HTT08,

Proposition 1.2.9]: if δ ∈ D is a derivation and M is a left D-module, then for any R-linear map

φ : M → E, we define an R-linear map φ · δ : M → E by (φ · δ)(m) = φ(δ ·m) + φ(m) · δ. This

formula extends to define a right action of the R-subalgebra of D generated by R together with

the derivations (e.g., if R is regular, this subalgebra is all of D). This right action coincides with

the right action we have defined in Corollary 4.10, as follows.

Proposition 4.14. With the hypotheses of Corollary 4.10, let M be a left D-module, and let

D(M) be its Matlis dual. If δ ∈ D is a derivation and φ : M → E is R-linear, we have δ∗(φ) = φ·δ,
where the right-hand side is defined as in [HTT08, Proposition 1.2.9].

Proof. We use the various identifications between equivalent forms of D(M). The map φ

corresponds, under the isomorphism D(M)
ΦM−−→ DΣ(M) of Theorem 3.15, to σ ◦ φ, and

δ∗(φ) = σ ◦ φ ◦ δ. Under the identification DΣ(M) ' HomR(M,Homcont,k(R, k)) given earlier,

σ ◦ φ ◦ δ corresponds to the map

m 7→ (r 7→ σ(φ(δ(rm)))).

On the other hand, for any m ∈M , we have (φ ·δ)(m) = φ(δ ·m)+φ(m) ·δ ∈ E, where we identify

E with the right D-module Homcont,k(R, k) in order to define φ(m) · δ. Under this identification,

φ(m) · δ is the map r 7→ σ(rφ(δ ·m)), and φ(δ ·m) is the map r 7→ σ(δ(r)φ(m)). It is therefore

enough to show that

σ(φ(δ(rm))) = σ(rφ(δ ·m)) + σ(δ(r)φ(m))

for all r ∈ R and m ∈M , which follows immediately from the relations δ(rm) = δ(r)m+ rδ(m)

holding in any left D-module M . 2
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We now specialize further to the case in which R = k[[x1, . . . , xn]] is a formal power series ring
over a field of characteristic zero. In this case, there is a transposition operation that converts
left modules over D(R, k) to right modules and conversely. We recall its definition (see [HTT08,
p. 19 and Lemma 1.2.6] for the case of a polynomial ring, or more generally, a smooth variety
over k; the formal power series definition is essentially the same). Since k is of characteristic zero,
the ring D(R, k) is a free left R-module generated by monomials in ∂1 = ∂/∂x1, . . . , ∂n = ∂/∂xn.

Definition 4.15. Let R = k[[x1, . . . , xn]] where k is a field of characteristic zero, and let M be
a left D(R, k)-module. Let ρ∂a11 · · · ∂ann be an element of D(R, k), where ρ ∈ R. If · denotes the
given left action of D(R, k), then for any m ∈M , the formula

m ∗ (ρ∂a11 · · · ∂ann ) = ((−1)a1+···+an∂ann · · · ∂a11 ρ) ·m

defines the transpose action, a right D(R, k)-action ∗ on M .

There is, of course, a symmetric notion of the transpose of a right D-module, which is
a left D-module. To see that the right action given above is well defined, we view it in the
following way. LetD(R, k)◦ be the opposite algebra ofD(R, k). There exists a unique isomorphism
φ : D(R, k)◦ → D(R, k) such that φ(ρ) = ρ for all ρ ∈ R and φ(∂i) = −∂i for all i, which when
viewed as a map φ : D(R, k) → D(R, k) is called the principal anti-automorphism of D(R, k).
To see that this is an isomorphism, note that since all elements of R commute with each other
and all ∂i commute with each other, the only non-trivial relations among elements of D(R, k)
are the relations ∂iρ = ρ∂i + ∂i(ρ). The map φ, which is clearly bijective, carries ∂iρ to −ρ∂i
and ρ∂i + ∂i(ρ) to −∂iρ + ∂i(ρ); since −ρ∂i = −∂iρ + ∂i(ρ), the relations are respected. The
transposed action ∗ is then simply defined by m ∗ δ = φ(δ) ·m for δ ∈ D(R, k).

Remark 4.16. As defined in the previous paragraph, the anti-automorphism φ (and therefore the
transposition operation) depends on the choice of variables x1, . . . , xn.

Proposition 4.17. Let R = k[[x1, . . . , xn]] with k a field of characteristic zero, D = D(R, k),
and M any left D-module. There is a natural structure of left D-module on the Matlis dual
D(M) = HomR(M,E).

Proof. Apply the right-to-left version of the transposition operation described above to the right
D-module D(M) with structure defined in Corollary 4.10. 2

Therefore, in this case, Matlis duality provides a (contravariant) functor from left D-modules
to left D-modules. We recall here Remark 1.4: even if M is holonomic, the Matlis dual D(M)
need not be holonomic.

5. The de Rham complex of a Matlis dual

Let R = k[[x1, . . . , xn]] where k is a field of characteristic zero, and let D = D(R, k). For any
left D-module M , we can define its de Rham complex M ⊗ Ω•R (see § 2 for definitions and
notation concerning de Rham complexes). The Matlis dual D(M) is also a left D-module by
Proposition 4.17, so we can consider the de Rham complex D(M) ⊗ Ω•R. (Every D-module we
consider in this section will be a left D-module, so we no longer say so explicitly.)

Our goal in this section is to compare the cohomology of these two complexes. Specifically,
we will show the following.
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Theorem 5.1. Let R and D be as above. If M is a holonomic D-module, then for all i, we have
isomorphisms

(H i
dR(M))∨ ' Hn−i

dR (D(M))

where ∨ denotes k-linear dual, i.e. Homk(−, k).

By Proposition 4.8, the differentials in the complex M ⊗Ω•R are Σ-continuous, so the entire
complex can be Matlis dualized. Since the functor D is contravariant, the ith object in this
dualized complex D(M ⊗ Ω•R) is D(M ⊗ Ωn−i

R ). Theorem 5.1 is a trivial consequence of the
following pair of propositions.

Proposition 5.2. Let R and D be as above. If M is a holonomic D-module, then for all i, we
have isomorphisms

(hi(M ⊗ Ω•R))∨ ' hn−i(D(M ⊗ Ω•R)).

Proposition 5.3. Let R and D be as above. If M is any D-module, then for all i, we have
isomorphisms

hi(D(M ⊗ Ω•R)) ' hi(D(M)⊗ Ω•R).

Proposition 5.3 is relatively straightforward, and we prove it first. The proof of
Proposition 5.2, which is the longest and most involved proof in this paper, will take up the
remainder of this section.

Before giving the proof of Proposition 5.3, we recall the definition of the Koszul complex, for
which a reference is [Wei94, § 4.5].

Definition 5.4. Let R be a commutative ring, let x = (x1, . . . , xn) be a sequence of elements
of R, and let M be an R-module. The Koszul complex K•(x) of R with respect to x is the
homologically indexed complex of length n whose ith object Ki(x) is a direct sum of

(
n
i

)
copies

of R (indexed by i-tuples ej1 ∧ · · · ∧ eji where 1 6 j1 < · · · < ji 6 n) and where the differential
di : Ki(x)→ Ki−1(x) carries the basis element ej1 ∧ · · · ∧ eji to

i∑
s=1

(−1)s−1xjs ej1 ∧ · · · ∧ êjs ∧ · · · ∧ eji ,

where the êjs means that symbol is omitted. The homological Koszul complex K•(M ; x) of M
with respect to x is the complex K•(x)⊗RM , and the cohomological Koszul complex K•(M ; x)
of M with respect to x is the complex HomR(K•(x),M).

Proposition 5.5 [Wei94, Example 4.5.2]. Let R be a commutative ring, let x = (x1, . . . , xn) be
a sequence of elements of R, and let M be an R-module. For all i, we have hi(K•(M ; x)) '
hn−i(K•(M ; x)) as R-modules.

We can now prove Proposition 5.3.

Proof of Proposition 5.3. We first compute the differentials in the complex D(M ⊗ Ω•R). Let i
be given, and consider the differential di : M ⊗ Ωi

R → M ⊗ Ωi+1
R . An element of M ⊗ Ωi

R is a
sum of terms of the form mj1···ji dxj1 ∧ · · · ∧ dxji where 1 6 j1 < · · · < ji 6 n, and the formula
for di is

di(mdxj1 ∧ · · · ∧ dxji) =

n∑
s=1

∂s(m) dxs ∧ dxj1 ∧ · · · ∧ dxji .
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Now consider the Matlis dual of this differential. Since the Matlis dual functor commutes with
finite direct sums, we can identify D(M ⊗ Ωi

R) with a direct sum of
(
n
i

)
copies of D(M), again

indexed by the dxj1 ∧ · · · ∧ dxji . If φ ∈ D(M), we have the formula

(di)∗(φdxj1 ∧ · · · ∧ dxji+1) =
i+1∑
s=1

(−1)s−1∂∗js(φ) dxj1 ∧ · · · ∧ d̂xjs ∧ · · · ∧ dxji+1 .

Consider the commutative subring ∆ = k[∂1, . . . , ∂n] ⊂ D. The D-module D(M) is a fortiori a ∆-
module, and the de Rham complexD(M)⊗Ω•R is the cohomological Koszul complexK•(D(M); ∂)
of the ∆-module D(M) with respect to ∂ = (∂1, . . . , ∂n), where the ∂i act on D(M) via the maps
−∂∗i (according to Definition 4.15). On the other hand, by the formula above, it is clear that
D(M⊗Ω•R) is the homological Koszul complex K•(D(M); ∂) (up to a sign, which does not affect
cohomology). We have

hi(K•(D(M); ∂)) ' hn−i(K•(D(M); ∂))

by Proposition 5.5; regarding the complex on the right as being cohomologically indexed (as we
do when considering it as the Matlis dual of M ⊗Ω•R), we see that the right-hand side is its ith
cohomology object, completing the proof. 2

The remainder of this section is long and contains a great deal of preliminary material
necessary for the proof of Proposition 5.2. Before giving this preliminary material, we first outline
it for the reader’s benefit, then introduce some notation that we will use repeatedly.

– First, we prove some lemmas concerning direct and inverse systems of modules. The key
definition here, Definition 5.10 (strong-sense stability), is a dual version of the Mittag-Leffler
condition.

– We then introduce some definitions and results due to van den Essen, who in a series of
papers studied the kernels and cokernels of differential operators. Not only his results, but
also some of the ideas in his proofs, will be of necessary use to us. We discuss changes of
variable and prove a technical lemma, Lemma 5.28, that relies on van den Essen’s work.

– We next describe how to ‘stratify’ the de Rham complex M ⊗ Ω•R, writing it as a direct
limit of ‘de Rham-like’ complexes whose objects are finitely generated R-modules. The
crucial result concerning this direct system is Proposition 5.30, which asserts that the
cohomology objects of these complexes satisfy strong-sense stability with finite-dimensional
stable images. We also give a more general version of this result, Corollary 5.31, which will
be of no use to us in this section but to which we will need to appeal in § 7.

– Finally, we give the proof of Proposition 5.2, using our work in § 3 on Matlis duality.

We need to work not only with the rings R and D, but also with subrings defined using
proper subsets of {x1, . . . , xn}.

Definition 5.6. Let j > 0 be given. We denote by Rj the subring k[[x1, . . . , xj ]] ⊂ R, and by Rj

the subring k[[xn−j+1, . . . , xn]] ⊂ R. (Thus, R = Rn = Rn and k = R0 = R0.) We denote by
Dj = D(Rj , k) and Dj = D(Rj , k) the corresponding rings of differential operators, which are
subrings of D.

This notation will be in force throughout the section, and will not be repeated in the
statements of results.
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Remark 5.7. If M is any D-module, it is also a module over Dj and Dj for all j, and we have
short exact sequences relating its ‘partial’ and ‘full’ de Rham complexes analogous to the short
exact sequence of Definition 2.21. These sequences take the form

0→M ⊗ Ω•Rj [−1]→M ⊗ Ω•Rj+1 →M ⊗ Ω•Rj → 0

where the first map is given by ∧ dxn−j . The maps in the complex M ⊗Ω•
Rj

are Dn−j-linear, and
hence its cohomology objects are Dn−j-modules; by the same argument as in Lemma 2.22, if we
consider the associated long exact cohomology sequence, its connecting homomorphisms (up to
a sign) are simply ∂n−j . Of course, there is also a version of this sequence involving de Rham
complexes over Rj and Rj+1 instead of Rj and Rj+1.

In the proof of Proposition 5.2, we will consider various direct and inverse systems of
complexes of R-modules and k-spaces. (All our direct and inverse systems will be indexed by the
natural numbers, but the following discussion applies to any filtered index set.) The interaction
of cohomology with direct limits in these categories is not complicated: the direct limit is an
exact functor [Wei94, Theorem 2.6.15], and so it commutes with cohomology. For inverse limits,
more caution is required, as the inverse limit is, in general, only left exact. In order to ensure that
cohomology commutes with inverse limits, we will need to verify the Mittag-Leffler condition for
the inverse systems we consider (see Proposition 5.9 below).

Definition 5.8 [GD61, 13.1.2]. Let {Mi} be an inverse system (indexed by N) of modules over a
commutative ring R, with inverse limit M = lim

←−Mi and transition maps fji : Mj →Mi for i 6 j.
We say that the system {Mi} satisfies the Mittag-Leffler condition if for all l, the descending
chain {fl+s,l(Ml+s)}s>0 of submodules of Ml becomes stationary: there exists some s such that
for all t > s, fl+s,l(Ml+s) = fl+t,l(Ml+t).

The utility of the Mittag-Leffler condition for us is contained in the following proposition,
which is an immediate consequence of [GD61, Proposition 13.2.3] (the result is stated in [GD61]
only for complexes of Abelian groups, but the proof given there is valid more generally).

Proposition 5.9 [GD61, Proposition 13.2.3]. Let {M•i } be an inverse system (indexed by N) of
complexes of modules over a commutative ring R. For every j, there is a canonical homomorphism

ηj : hj
(

lim
←−
i

M•i

)
→ lim
←−
i

hj(M•i )

of R-modules. Suppose that for every j, the inverse systems {M j
i }i and {hj(M•i )}i of R-

modules both satisfy the Mittag-Leffler condition. Then for every j, ηj is an isomorphism of
R-modules.

The following condition on direct systems can be thought of as a sort of dual to the Mittag-
Leffler condition.

Definition 5.10. Let {Mi} be a direct system (indexed by N) of modules over a commutative
ring R, with direct limit M = lim−→Mi, R-linear transition maps fij : Mi → Mj for i 6 j, and
R-linear insertion maps fi : Mi →M . Fix j and let Nj ⊂Mj be an R-submodule. We say that
the images of Nj under the transition maps stabilize in the strong sense if there exists l such
that fj+l : Mj+l →M induces an isomorphism

fj,j+l(Nj)
∼−→ fj(Nj);
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equivalently, fj,j+l(Nj) ∩ ker fj+l = 0. (If we say that the images of some object stabilize in
the strong sense, it will be clear from context with respect to which transition maps and direct
system we mean.)

Note that since ker fj+l,j+l′ ⊂ ker fj+l for any l′ > l, it follows at once from Definition 5.10

that there are also isomorphisms fj,j+l(Nj)
∼−→ fj,j+l′(Nj) induced by the transition maps.

This condition is automatic if R is Noetherian and Nj is finitely generated.

Lemma 5.11. Let R be a commutative Noetherian ring. If {Mi} is a direct system of R-modules
as in Definition 5.10, and Nj ⊂ Mj is a finitely generated R-submodule, then the images of Nj

stabilize in the strong sense.

Proof. Since R is Noetherian, ker fj ∩Nj is also a finitely generated R-module. Fix R-generators
x1, . . . , xs for ker fj ∩ Nj . For all i ∈ {1, . . . , s}, we have fj(xi) = 0, and so there exists li > 0
such that fj,j+li(xi) = 0 ∈Mj+li . If we put l = max {li}, then fj,j+l annihilates ker fj ∩Nj . We
claim that

fj,j+l(Nj) ∩ ker fj+l = 0.

Suppose that x ∈Mj+l belongs to this intersection. Then we have fj+l(x) = 0 and x = fj,j+l(y)
for some y ∈ Nj . From fj(y) = fj+l(fj,j+l(y)) = fj+l(x) = 0, we conclude y ∈ ker fj ; but y ∈ Nj

as well, and since fj,j+l annihilates ker fj ∩Nj , it follows that x = fj,j+l(y) = 0, completing the
proof. 2

In the case of vector spaces over a field, the connection between the Mittag-Leffler condition
and strong-sense stability can be made more precise. First, we need a basic lemma concerning
the interaction of images and dual spaces. (Recall that ∨ denotes k-linear dual.)

Lemma 5.12. Let k be a field.

(a) If V and W are vector spaces over k, and f : V → W is a k-linear map, we can identify
(im f)∨ with a subspace of V ∨ in such a way that (im f)∨ = im(f∨).

(b) If {Ui}i∈N is an inverse system of k-spaces (with transition maps fji : Uj → Ui for i 6 j)
which satisfies the Mittag-Leffler condition, then the inverse system {U∨∨i } also satisfies the
Mittag-Leffler condition.

Proof. Factor f as V � im f ⊂W , and dualize this factorization to obtain W∨� (im f)∨ ↪→ V ∨.
The image of the last map is im(f∨), and the injectivity allows us to identify this image with
(im f)∨. This proves part (a).

We now prove part (b). Fix i. By the Mittag-Leffler condition, the descending chain
{fji(Uj)}j>i of subspaces of Ui stabilizes, say at j = l. Therefore fli(Ul) = fsi(Us) for all s > l,
and consequently (fli(Ul))

∨∨ = (fsi(Us))
∨∨ as subspaces of U∨∨i for all s > l. After applying

part (a) twice, it follows that f∨∨li (U∨∨l ) = f∨∨si (U∨∨s ) as subspaces of U∨∨i for all s > l, that is,
that the descending chain {f∨∨ji (U∨∨j )} of subspaces of U∨∨i stabilizes at j = l. We conclude that
{U∨∨i } also satisfies the Mittag-Leffler condition, completing the proof. 2

Lemma 5.13. Let {Ui} be an inverse system (indexed by N) of vector spaces over a field k, with
transition maps fji. For all i, let Vi = U∨i be the k-space dual of Ui, and regard {Vi} as a direct
system with transition maps λij = f∨ji for i 6 j. Suppose that for all l, the images of Vl under
the transition maps λl,l+s stabilize in the strong sense. Then {Ui} satisfies the Mittag-Leffler
condition.
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Proof. We prove the contrapositive. Suppose that the system {Ui} does not satisfy Mittag-Leffler.
Then there is an l such that for all s, there exists t > s such that fl+t,l(Ul+t) ( fl+s,l(Ul+s).
Since k-space dual is an exact functor, proper injections dualize to surjections with non-
trivial kernels, so the surjection (fl+s,l(Ul+s))

∨ � (fl+t,l(Ul+t))
∨ is not an isomorphism. By

Lemma 5.12(a), we can identify (fl+s,l(Ul+s))
∨ with λl,l+s(Vl) (respectively (fl+t,l(Ul+t))

∨ with
λl,l+t(Vl)) as a subspace of Vl+s (respectively Vl+t), and under these identifications, the surjection
(fl+s,l(Ul+s))

∨ � (fl+t,l(Ul+t))
∨ is nothing but λl+s,l+t restricted to λl,l+s(Vl). We conclude that

the images of Vl cannot stabilize in the strong sense. 2

We will also need a technical lemma concerning double duals.

Lemma 5.14. Let k be a field, and let {Ui}i∈N be an inverse system of k-spaces, indexed by N,
with transition maps fji : Uj → Ui for i 6 j, and inverse limit U = lim

←−Ui. Suppose that the

inverse system {Ui} satisfies the Mittag-Leffler condition and that the inverse limit lim
←− (U∨∨i ) is

a finite-dimensional k-space. Then lim
←−Ui ' lim

←− (U∨∨i ).

Proof. The canonical map from a k-space Ui to its double dual U∨∨i is always injective, and the
inverse limit is left exact [AM69, Proposition 10.2], so there is a natural injection U = lim

←−Ui ↪→
lim
←−U

∨∨
i . Therefore U is also finite-dimensional. For all i, let U ′i =

⋂
i6j fji(Uj) be the stable

image of the transition maps inside Ui (this descending chain stabilizes by the Mittag-Leffler
hypothesis). Then [Har77, p. 191] {U ′i} is also an inverse system, now with surjective transition
maps, such that lim

←−U
′
i = U and U maps surjectively to all U ′i . In particular, all U ′i are finite-

dimensional k-spaces and hence isomorphic to their double duals (U ′i)
∨∨. By Lemma 5.12(b), the

inverse system {U∨∨i } also satisfies the Mittag-Leffler condition, and moreover, we can identify
the double dual of a stable image, (U ′i)

∨∨, with the stable image of the double dual, (U∨∨i )′ ⊂ U∨∨i .
Since for all i, U ′i is canonically isomorphic to its double dual, the corresponding inverse limits
are also isomorphic. Thus we have isomorphisms

lim
←−Ui ' lim

←−U
′
i ' lim
←− (U ′i)

∨∨ ' lim
←− (U∨∨i )′ ' lim

←−U
∨∨
i ,

completing the proof. 2

Remark 5.15. The Mittag-Leffler hypothesis in Lemma 5.14 is actually superfluous: Paul Garrett
(private communication) has given a proof assuming only that lim

←− (U∨∨i ) is finite-dimensional.
However, we will only need the statement in the Mittag-Leffler case, and the proof in general is
more difficult.

In a series of papers [vdE79a, vdE79b, vdE82, vdE83, vdE85], van den Essen examined the
effect of the operator ∂n acting on a holonomic D-module, culminating in a proof of Theorem 2.2.
(See also [Swi16] for an expository account of this proof.) Van den Essen’s first result was that
the kernel of ∂n behaves as well as we might hope.

Theorem 5.16 [vdE79b, Theorem]. If M is a holonomic D-module and M∗ is the kernel of
∂n : M →M , then M∗ is a holonomic Dn−1-module.

The key step in the proof of Theorem 5.16 is the following lemma, which we will use below
in the proof of Lemma 5.28.

Lemma 5.17 [vdE79b, Corollary 2]. Let M be a D-module and let M∗ be the kernel of
∂n : M →M . If M = R ·M∗, then M = M∗ ⊕ xnM as Dn−1-modules.
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Without some conditions, there is no analogous result for cokernels; van den Essen gives a
concrete example in [vdE82, Theorem] in which M is a holonomic D-module but M/∂n(M) is
not holonomic.

Proposition 5.18 [vdE82, Proposition 1]. Let M be a holonomic D-module. There exists an
element g ∈ R such that the localization Mg is a finitely generated Rg-module.

Definition 5.19. Let M be a D-module, let m ∈ M , and let τ ∈ D be a derivation. We write
Eτ (m) for the R-submodule of M generated by {τ i(m)}i>0.

Lemma 5.20 [vdE79a, ch. II, Proposition 1.16]. LetM be aD-module. Suppose that there exists
g ∈ R which is xn-regular (that is, such that g(0, 0, . . . , 0, xn) 6= 0) and such that Mg is a finitely
generated Rg-module. Then for all m ∈ M , there exists an xn-regular f ∈ R such that the
R-submodule Ef∂n(m) of M is finitely generated.

The source [vdE79a] remains unpublished; see also [Swi16, Lemma 4.2] for a proof of
Lemma 5.20. The conclusion of this lemma leads us to make the following definition.

Definition 5.21. If M is a D-module, an element m ∈ M is xn-regular if there exists an xn-
regular element f ∈ R such that Ef∂n(m) is a finitely generated R-module. A holonomic D-
module M is xn-regular if there exists an xn-regular m ∈M such that M = D ·m.

From the following proposition, it follows immediately that if a holonomic D-module M is
xn-regular, then every m ∈M such that M = D ·m is xn-regular.

Proposition 5.22 [vdE79a, Proposition II.1.3(2)]. Let M be a D-module, let m ∈ M , and let
τ ∈ D be a derivation. If the R-module Eτ (m) is finitely generated, so is the R-module Eτ (δ(m))
for any δ ∈ D.

Since [vdE79a] remains unpublished, we reproduce for the reader the proof of Proposition 5.22
given in [vdE79a].

Proof. Since D is generated over R by finite products of the derivations ∂i, it clearly suffices to
check that if Eτ (m) is finitely generated, so is Eτ (∂i(m)) for all i. Fix such an i. The hypothesis
that Eτ (m) is finitely generated implies that there exists p such that

τp(m) ∈ R ·m+R · τ(m) + · · ·+R · τp−1(m).

For every j, the commutator [τ, ∂j ] = τ∂j − ∂jτ ∈ D is again a derivation, hence is an R-linear
combination of ∂1, . . . , ∂n. That is, we have

τ∂j − ∂jτ ∈ R · ∂1 + · · ·+R · ∂n.
An induction argument using the two displayed statements shows that for every l, we have

τ l(∂i(m)) ∈
∑

06q6p−1,16j6n

R · ∂j(τ q(m)).

(We induce on l: the second displayed statement is used to move iterates of τ to the right past
partial derivatives, and the first displayed statement is used to limit the number of distinct powers
of τ that appear.) It follows that Eτ (∂i(m)) is contained in the R-submodule of M generated by
the finite set {∂j(τ q(m))}06q6p−1,16j6n, completing the proof. 2

More generally, a D-module M is said to be xn-regular if every m ∈M is xn-regular.
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Lemma 5.23 [vdE85, Corollary 1.8]. Let M be a holonomic D-module. There exists a change of
variables (that is, a replacement of x1, . . . , xn with another regular system of parameters for R)
after which M is xn-regular.

Proof. We claim that, in fact, there is such a change of variables which is linear in the xi. By
Proposition 5.18, there exists g ∈ R such that Mg is finitely generated over Rg. By Lemma 5.20,
if g is xn-regular, then M is xn-regular. Since k is of characteristic zero and hence infinite, there
is a linear change of variables after which g is xn-regular, completing the proof. 2

By Proposition 2.5, the de Rham cohomology H∗dR(M) is independent of this coordinate
change. Our next observation is that the xn-regularity condition is precisely what is required for
the holonomy of the cokernel of ∂n.

Theorem 5.24 [vdE83, Theorem]. If M is a holonomic D-module that is xn-regular, then M =
M/∂n(M) is a holonomic Dn−1-module.

The key step in the proof of Theorem 5.24 is the following lemma, which we will also use
below in the proof of Lemma 5.28.

Lemma 5.25 [vdE83, Corollary 2]. Let M be a D-module. Suppose that m ∈ M is xn-regular.
Then there exists a finitely generated Rn−1-submodule L of R ·m and a natural number p such
that R ·m ⊂ L+

∑p
i=1 ∂

i
n(R ·m) ⊂ L+ ∂n(

∑p−1
i=0 R · ∂in(m)).

Proof. The first containment is [vdE83, Corollary 2], and the second follows from the fact (easy
to check using the Leibniz rule) that for all i > 0 we have ∂in(R ·m) ⊂∑i

j=0R · ∂
j
n(m). 2

Our next two preliminary results (5.26) and (5.28) deal with the kernels and cokernels of the
operators ∂i. We are going to study the de Rham complex of a D-module M by isolating one ∂i
at a time, and these results guarantee that this process is well behaved.

Proposition 5.26. Let M be a holonomic D-module. There exists a change of variables (which,
by Proposition 2.5, does not alter the de Rham cohomology of M) after which, for all i and j,
hi(M ⊗ Ω•

Rj
) is a holonomic Dn−j-module which is xn−j-regular.

Proof. Let j be given, and consider the short exact sequence

0→M ⊗ Ω•Rj [−1]→M ⊗ Ω•Rj+1 →M ⊗ Ω•Rj → 0

of Remark 5.7. The corresponding long exact sequence in cohomology takes the form

· · ·→ hi(M ⊗ Ω•Rj+1)→ hi(M ⊗ Ω•Rj )
∂−→ hi+1(M ⊗ Ω•Rj [−1])(= hi(M ⊗ Ω•Rj ))

→ hi+1(M ⊗ Ω•Rj+1)→ hi+1(M ⊗ Ω•Rj )
∂−→ · · · ,

where the connecting homomorphisms ∂ are given, up to a sign, by ∂n−j . From this long sequence,
we obtain short exact sequences

0→ Ci−1
n−j → hi(M ⊗ Ω•Rj+1)→ Ki

n−j → 0

of Dn−j−1-modules, where Ci−1
n−j is the cokernel of ∂n−j acting on hi−1(M ⊗ Ω•

Rj
) and Ki

n−j
is the kernel of ∂n−j acting on hi(M ⊗ Ω•

Rj
). If the Dn−j-module hi(M ⊗ Ω•

Rj
) is holonomic,
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then the Dn−j−1-module Ki
n−j is holonomic by Theorem 5.16. If, moreover, the Dn−j-module

hi−1(M ⊗ Ω•
Rj

) is holonomic and xn−j-regular, then the Dn−j−1-module Ci−1
n−j is holonomic by

Theorem 5.24, from which it follows from the short exact sequence displayed above that the
Dn−j−1-module hi(M ⊗Ω•

Rj+1) is holonomic as well. Therefore, if hi(M ⊗Ω•
Rj

) is holonomic and
xn−j-regular for all i, then hi(M ⊗Ω•

Rj+1) is holonomic for all i. This fact will enable us to prove
the proposition by induction on j.

By hypothesis, M = h0(M ⊗ Ω•R0) is a holonomic D-module, and by Lemma 5.23, there
exists a change of variables after which M is xn-regular. It follows from the previous paragraph
that hi(M ⊗ Ω•R1) is a holonomic Dn−1-module for i = 0, 1. Now let j ∈ {0, . . . , n − 1} be
given, and assume that we have found a change of variables after which hi(M ⊗ Ω•

Rl
) is a

holonomic and xn−l-regular Dn−l-module for all i and all l 6 j (consequently, hi(M ⊗ Ω•
Rj+1)

is a holonomic Dn−j−1-module for all i). For every i, there exists (by Proposition 5.18) an
element gi of Rn−j−1 such that the localization hi(M ⊗ Ω•

Rj+1)[(gi)
−1] is a finitely generated

Rn−j−1[(gi)
−1]-module. Since there are only finitely many gi, and the field k is infinite, there is a

single change of variables after which every gi is xn−j−1-regular. Moreover, since gi only involves
the variables x1, . . . , xn−j−1, this change of variables leaves xn−j , . . . , xn fixed.

The complexes M ⊗ Ω•
Rl

for l 6 j are defined using only derivations from the set {∂n−j ,
. . . , ∂n}, and these derivations are unaffected by the change of variables; hence the isomorphism
classes of the cohomology objects hi(M ⊗ Ω•

Rl
) do not change. Furthermore, for every such

hi(M ⊗ Ω•
Rl

), there exists an xn−l-regular element g of Rn−l such that hi(M ⊗ Ω•
Rl

)[g−1] is a
finitely generated Rn−l[g

−1]-module. After the given change of variables, this localization is still
finitely generated, and g is still xn−l-regular: by the Weierstrass preparation theorem [Lan02,
Theorem IV.9.2], the xn−l-regularity of g is equivalent to the existence of an expression of
g as a monic polynomial in xn−l with coefficients in Rn−l−1, and after a change of variables
that fixes xn−j , . . . , xn and in which the new x1, . . . , xn−j−1 are linear combinations of the old
x1, . . . , xn−j−1 only, such a polynomial is still monic in xn−l. We conclude that the chosen
change of variables does not invalidate the inductive hypothesis. After this change of variables,
hi(M ⊗ Ω•

Rj+1) is xn−j−1-regular for all i by Lemma 5.20, and therefore hi(M ⊗ Ω•
Rj+2) is a

holonomic Dn−j−2-module for all i. This induction completes the proof: beginning with M and
repeating the inductive step n times, we end up with a single change of variables after which,
for all i and j, hi(M ⊗ Ω•

Rj
) is a holonomic Dn−j-module which is xn−j-regular. 2

Our next technical lemma makes crucial use of van den Essen’s results. The situation we
examine is that of a D-module expressible as a direct limit of R-modules, and a family of
Rn−1-linear maps between these modules whose direct limit is the Rn−1-linear map ∂n. We now
describe the situation more precisely. Let M be a D-module, and suppose that M = lim−→Mi as R-
modules, where {Mi} is a direct system (indexed by N) of R-submodules of M . Let fij : Mi→Mj

(respectively fi : Mi→M) be the transition (respectively insertion) maps for this direct system.
Suppose furthermore that there exist Rn−1-linear maps δi : Mi→Mi+1 for all i, compatible with
the transition maps, such that lim−→ δi = ∂n. (We will write ∂ for ∂n.) Given an element m ∈ M ,
there exists some j and mj ∈ Mj such that m = fj(mj), and we have ∂(m) = fj+1(δj(mj)),
independently of the choice of j and mj .

Example 5.27. One example of the preceding situation, which we will consider in our proof of
Proposition 5.2, is the following: let M = D ·m be a holonomic D-module, and for each i > 0,
let Mi = Di(R) ·m ⊂ M , where Di(R) denotes the R-submodule of D consisting of differential
operators of order at most i (so, for instance, M0 = R ·m). Then M = lim−→Mi (the transition
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maps here being inclusions), and for every i, the restriction of ∂ to Mi is an Rn−1-linear map
δi : Mi→Mi+1. Clearly ∂ = lim−→ δi.

We return now to the general case. The transition maps fij induce, by the compatibility, maps
on the kernels and cokernels of the δi: for all l and s, we see that fl,l+s(ker δl) ⊂ ker δl+s and
that fl(ker δl) ⊂ ker ∂. From this, it follows that fl,l+s (respectively fl) induces Rn−1-linear maps
f∗l,l+s : ker δl→ ker δl+s and f l,l+s : coker δl−1→ coker δl+s−1 (respectively f∗l : ker δl→ ker ∂ and

f l : coker δl−1→ coker ∂). We have, for all l and s, f∗l+s ◦ f∗l,l+s = f∗l , and a similar compatibility

for the f . We will use an overline to denote the class of an element modulo δl−1 (if the element
belongs to Ml) or modulo ∂ (if the element belongs to M). Since filtered direct limits are exact
functors [Wei94, Theorem 2.6.15], the direct limit of the ker δl with respect to the restricted
transition maps f∗l,l+s is M∗ = ker ∂, and the direct limit of the coker δl−1 with respect to the

induced transition maps f l,l+s is M = M/∂(M).
If M is holonomic and xn-regular, we have a stability property for the images of these induced

maps on kernels and cokernels (see Definition 5.10 for the notion of stability in the strong sense).

Lemma 5.28. Let M be a holonomic, xn-regular D-module. Let ∂ = ∂n ∈ D. Suppose that {Mi}
is a direct system of R-submodules of M with M = lim−→Mi, and that {δi : Mi→Mi+1} is a family
of Rn−1-linear maps, compatible with the transitions, such that ∂ = lim−→ δi. Let fij : Mi → Mj

(respectively fi : Mi→M) be the transition (respectively insertion) maps for this direct system,
and define the induced maps f∗ and f as in the previous paragraph. Fix l and let Nl be a finitely
generated R-submodule of Ml.

(a) Let N∗l = Nl ∩ ker δl. The images of N∗l under the f∗l,l+s stabilize in the strong sense, and
the stable image is a finitely generated Rn−1-submodule of M∗ = ker ∂.

(b) Let N l be the image Nl/(Nl ∩ δl−1(Ml−1)) of Nl in coker δl−1. The images of N l under
the f l,l+s stabilize in the strong sense, and the stable image is a finitely generated Rn−1-

submodule of M = coker ∂.

Proof. Let M∗ = ker ∂. The Leibniz rule implies that R ·M∗ is a D-submodule of M , and it is
clear that M∗ = (R·M∗)∗ as Dn−1-submodules of M , where (R·M∗)∗ = ker(∂ : R·M∗→ R·M∗).
Moreover, for all i, ker δi ⊂ f−1

i (M∗) (since ∂ = lim−→ δi), so the kernels of ∂ and of the δi, as well
as the maps between them, do not change if we replace M with M ′ = R ·M∗ and all Mi by
M ′i = f−1

i (M ′). Since M ′ = lim−→M ′i (the transition maps being the restrictions of fij to M ′i) and
∂|M ′ = lim−→ δi|M ′i , we reduce the proof of part (a) to the case M = M ′.

By Lemma 5.17, the hypothesis that M = M ′ implies that there is an Rn−1-module direct
sum decomposition M = M∗ ⊕ xnM . Let π be the Rn−1-linear projection M → M∗. Since
fl(N

∗
l ) ⊂M∗, π restricts to an isomorphism fl(N

∗
l )
∼−→ π(fl(N

∗
l )), and the composite

N∗l ↪→ Nl
fl−→M

π−→M∗

factors through the natural surjection Nl→ Nl/xnNl (since ker(π ◦ fl) contains xnNl). Since Nl

is a finitely generated R-module, Nl/xnNl is a finitely generated Rn−1-module. This implies that
π(fl(N

∗
l )) is contained in the Rn−1-linear image of the finitely generated Rn−1-module Nl/xnNl,

so it is a finitely generated Rn−1-module itself, and so is its isomorphic copy fl(N
∗
l ) = f∗l (N∗l ).

It follows that if the images of N∗l stabilize in the strong sense, the stable image is finitely
generated.
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As Nl is a finitely generated R-module, its images under the R-linear maps fl,l+s stabilize in
the strong sense by Lemma 5.11; since N∗l ⊂ Nl and f∗l,l+s is simply a restriction of fl,l+s for all s,
the fact that the images of N∗l under the f∗l,l+s stabilize in the strong sense as well is automatic.
This proves part (a).

In our proof of part (b) we cannot assume (but do not need) that M = M ′, so we drop this
assumption now. We now fix a set {n1, . . . , nαl} of R-generators for Nl. By assumption, M is
xn-regular, so by definition all fl(ni) ∈M are xn-regular. We can therefore apply Lemma 5.25 to
every fl(ni) in turn. Let i ∈ {1, . . . , αl} be fixed, and consider the R-submodule R · fl(ni) ⊂M
generated by fl(ni). By Lemma 5.25, there exist a positive natural number pi and a finitely
generated Rn−1-submodule Li of R · fl(ni) such that

R · fl(ni) ⊂ Li + ∂

(pi−1∑
j=0

R · ∂j(fl(ni))
)
.

If we let L′l be the finitely generated Rn−1-module L1 + · · ·+Lαl and Γl the R-submodule of M
generated by

{∂j(fl(ni))}16i6αl,06j6pi−1,

we see that

fl(Nl) =

αl∑
i=1

R · fl(ni) ⊂ L′l + ∂(Γl).

Let {fl(y1), . . . , fl(yηl)} be a set of Rn−1-generators for L′l ⊂ fl(Nl), and write L′′l for the Rn−1-
submodule of Nl generated by y1, . . . , yηl , so that fl(L

′′
l ) = L′l. Then the containment fl(Nl) ⊂

fl(L
′′
l ) + ∂(Γl) implies that

f l(N l) ⊂ f l(L′′l /(L′′l ∩ δl−1(Ml−1)))

inside M/∂(M): given any class nl ∈N l of an element nl ∈Nl, we can write fl(nl) = fl(λl)+∂(γl)
for some λl ∈ L′′l and γl ∈ Γl, so we have

f l(nl) = fl(nl) = fl(λl) + ∂(γl) = fl(λl) = f l(λl)

since the class of ∂(γl) in M = M/∂(M) is zero (the first and last equalities are simply
the definition of f l). We know that f l is Rn−1-linear and that L′′l , and hence its quotient
L′′l /(L

′′
l ∩ δl−1(Ml−1)), is a finitely generated Rn−1-module, so we can conclude that f l(N l)

is a finitely generated Rn−1-module. It follows that if the images of N l stabilize in the strong
sense, the stable image is finitely generated.

In order to conclude that the images of N l stabilize in the strong sense, we must prove
that there exists t with the property that whenever fl(nl) ∈ ∂(M) for some nl ∈ Nl, we have
fl,l+t(nl) ∈ δl+t−1(Ml+t−1); in other words, if the class of nl is carried to zero in coker ∂, it is
already zero in coker δl+t−1. (This implies that the images of N l stabilize at the (l+ t)th stage.)
Choose t so large that every ∂j(fl(ni)) has a representative in Ml+t−1, as follows: for all i and j,
there exists a natural number tij and an element ml+tij ∈ Ml+tij such that fl+tij (ml+tij ) =
∂j(fl(ni)). Put t = max {tij}+ 1. Then since the ∂j(fl(ni)) are R-generators for Γl, any element
of the Rn−1-module ∂(Γl) can be expressed as fl+t(δl+t−1(m)) for some m ∈ Ml+t−1. Consider
also the Rn−1-submodule L′l ∩ ∂(M) ⊂M , which is finitely generated since L′l is. Enlarging t if
necessary, we may assume (by the finite generation) that every element of L′l ∩ ∂(M) can also
be expressed as fl+t(δl+t−1(m′)) for some m′ ∈Ml+t−1.
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Now suppose that nl ∈ Nl is such that fl(nl) ∈ ∂(M). Since fl(Nl) ⊂ L′l + ∂(Γl), we have
fl(nl) ∈ (L′l ∩ ∂(M)) + ∂(Γl), so fl(nl) = fl+t(δl+t−1(m)) for some m ∈ Ml+t−1. Since fl =
fl+t ◦ fl,l+t, we see that

fl,l+t(nl)− δl+t−1(m) ∈ ker fl+t.

The kernel of the restriction of fl+t to fl,l+t(Nl) is a finitely generated R-module, so by
Lemma 5.11, its images stabilize in the strong sense, and the stable image is zero because
the image of this kernel in M is clearly zero. Therefore, enlarging t again if necessary (so that
the transition map from the old t to the new t annihilates this kernel; this new t depends only
on l, not on nl), we may assume that the difference fl,l+t(nl) − δl+t−1(m) is zero; that is, that
fl,l+t(nl) belongs to δl+t−1(Ml+t−1). We conclude that the images of N l stabilize in the strong
sense, completing the proof of part (b) and the lemma. 2

The strategy of the proof of Proposition 5.2 is to write the de Rham complex M ⊗ Ω•R of
a holonomic D-module M as a direct limit of complexes whose objects are finitely generated
R-modules (using the degree, or order, filtration on the ring D). Fix, once and for all, both a
holonomic D-module M and an element m ∈M such that M = D ·m. As in Example 5.27, let
Ml = Dl(R) ·m for l > 0. Note that M =

⋃
lMl; for any i, ∂i : M → M induces k-linear maps

∂i : Ml→Ml+1 for all l; and every Ml is a finitely generated R-module (a set of R-generators is
given by {δm} where δ runs through the monomials in ∂1, . . . , ∂n of total degree at most l).

Definition 5.29. Let M and m be as above. For all j ∈ {0, . . . , n} and l ∈ N, let Mj,•
l be the

subcomplex
0→Mj,0

l →M
j,1
l → · · ·→M

j,j
l → 0

of M ⊗Ω•
Rj

whose ith object Mj,i
l is a direct sum of

(
j
i

)
copies of the R-submodule Ml+i of M ,

indexed by dxk1 ∧ · · · ∧ dxki for i-tuples n − j + 1 6 k1 < · · · < ki 6 n, and whose differentials
are the restrictions of those in the complex M ⊗ Ω•

Rj
. (We simply write M•l for Mn,•

l .)

If we suppress the indexing wedge products, the complex Mj,•
l takes the form

0→Ml →

⊕
16i6n

Ml+1→ · · ·→Ml+j → 0;

its objects are finitely generated R-modules and its differentials are k-linear. We have short exact
sequences of complexes

0→Mj,•
l+1[−1]→Mj+1,•

l →Mj,•
l → 0

for all l, analogous to the sequence of Remark 5.7; the first non-zero morphism is given by ∧ dxn−j
and, in the induced long exact cohomology sequence, the connecting homomorphisms are given
by ∂n−j , up to a sign.

The complexesMj,•
l naturally form a filtered direct system as l varies. We have M ⊗Ω•

Rj
=

lim−→M
j,•
l , and as filtered direct limits commute with cohomology (they are exact functors, by

[Wei94, Theorem 2.6.15]), this implies

hi(M ⊗ Ω•Rj ) ' lim−→hi(Mj,•
l )

for all i. In particular, taking j = n, we have H i
dR(M) = lim−→hi(M•l ) as k-spaces. By Theorem 2.2,

the left-hand side is a finite-dimensional k-space for all i. Thus, for all l, the image of hi(M•l ) in
H i

dR(M) is a finite-dimensional k-space. The key technical result in the proof of Proposition 5.2
is the following.
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Proposition 5.30. Let M = D ·m be a holonomic D-module, and define the approximations
M•l to its de Rham complex as above. For all i and l, the images of hi(M•l ) stabilize in the
strong sense, with finite-dimensional stable image.

Proof of Proposition 5.30. We may assume, after possibly making a change of variables as in
Proposition 5.26, that for all i and j, hi(M ⊗ Ω•

Rj
) is a holonomic Dn−j-module which is xn−j-

regular. Let (∗j) be the following statement: for all i ∈ {0, . . . , j} and all l > 0, the images of

hi(Mj,•
l ) in the direct system

· · ·→ hi(Mj,•
l−1)→ hi(Mj,•

l )→ hi(Mj,•
l+1)→ · · · (∗)

stabilize in the strong sense, and the stable image is a finitely generated Rn−j-submodule of
hi(M ⊗ Ω•

Rj
). The statement of our proposition is (∗n), and we will prove (∗j) for j = 1, . . . , n

by induction on j.

In the base case, j = 1, the complex M ⊗Ω•R1 takes the form 0→M
∂n−→M → 0, and its lth

approximation M1,•
l takes the form 0→Ml

∂n−→Ml+1→ 0. By assumption, M is xn-regular, so
we may apply Lemma 5.28 to the direct system {Ml}: every Ml is already a finitely generated
R-module, so we simply take Nl = Ml in the statement of that lemma. The statement (∗1) follows
at once.

Now suppose j > 1 and (∗j) established. By assumption, the Dn−j-modules hi(M ⊗ Ω•
Rj

)

are holonomic and xn−j-regular. By the inductive hypothesis (∗j), the images of hi(Mj,•
l ) (for

any i and l) in the direct system (∗) stabilize in the strong sense, and the stable image is a
finitely generated Rn−j-module; applying this reasoning to all i at once, we see that given any l,

there exists s such that, for all i, hi(Mj,•
l+s) contains the stable image of hi(Mj,•

l ). (To keep the
notation as simple as possible, we will not always record the dependence on i of various objects
and maps. At each stage, we assume that constructions are being carried out for all i at once,
and that indices large enough to work for all i have been chosen.) Fix l and let N ⊂ hi(Mj,•

l+s)

be this stable image, which we can identify with an Rn−j-submodule of hi(M ⊗ Ω•
Rj

).

For all t, we have Rn−j−1-linear maps ∂tn−j : hi(Mj,•
t )→ hi(Mj,•

t+1), which are (up to a sign)
the connecting homomorphisms in the long exact cohomology sequence associated with the short
exact sequence of complexes

0→Mj,•
t+1[−1]→Mj+1,•

t →Mj,•
t → 0

described earlier. The direct limit lim−→ ∂tn−j is ∂n−j : hi(M ⊗ Ω•
Rj

)→ hi(M ⊗ Ω•
Rj

). The direct
system (∗) induces a direct system

· · ·→ ker ∂l+s−1
n−j → ker ∂l+sn−j → ker ∂l+s+1

n−j → · · · ; (∗∗)

by Lemma 5.28, the images of N ∩ ker ∂l+sn−j in the direct system (∗∗) stabilize in the strong
sense, and the stable image is a finitely generated Rn−j−1-submodule of ker ∂n−j . The image of
ker ∂ln−j in ker ∂l+sn−j is N∩ker ∂l+sn−j ; consequently, the images of ker ∂ln−j in the direct system (∗∗)
also stabilize in the strong sense, and the stable image is a finitely generated Rn−j−1-module.
Enlarging s if necessary, we may assume the images of ker ∂ln−j stabilize at the (l + s)th stage.
We fix this s for the rest of the proof.

We now extract more information from the long exact cohomology sequences, which take the
form

· · ·→ hi−1(Mj,•
t )

∂tn−j−−−→ hi−1(Mj,•
t+1)→ hi(Mj+1,•

t )
ψt−→ hi(Mj,•

t )
∂tn−j−−−→ hi(Mj,•

t+1)→ · · · ;
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by the exactness, we have surjections

hi(Mj+1,•
t )� ker ∂tn−j

for all t. We also have commutative diagrams

hi(Mj+1,•
l )

ψl
//

ιj+1
t
��

hi(Mj,•
l )

ιjt
��

hi(Mj+1,•
l+t )

ψl+t
// hi(Mj,•

l+t)

for all t (where the vertical arrow ιjt is the transition map from the lth to the (l + t)th stage in
the direct system (∗)), so the previous surjections induce surjections

ιj+1
t (hi(Mj+1,•

l ))� ιjt (ker ∂ln−j)

whose kernels we denote Kl+t. Consider, for any t > s, the commutative diagram

0 // Kl+s
//

��

ιj+1
s (hi(Mj+1,•

l )) //

��

ιjs(ker ∂ln−j)
//

��

0

0 // Kl+t
// ιj+1
t (hi(Mj+1,•

l )) // ιjt (ker ∂ln−j)
// 0

with exact rows. The right vertical arrow is an isomorphism, since the images of ker ∂ln−j in the
direct system (∗∗) have already stabilized at the (l + s)th stage, and the middle vertical arrow
is a surjection, since ιj+1

t factors through ιj+1
s by the compatibility of transition and insertion

maps in (∗). It follows by the snake lemma that the left vertical arrow is also a surjection, so for
t > s the image of Kl+s in Kl+t is all of Kl+t.

The direct system (∗) also induces a direct system

· · ·→ coker ∂l+s−1
n−j → coker ∂l+sn−j → coker ∂l+s+1

n−j → · · · , (∗∗∗)
and we claim next that the images of

coker(∂l+sn−j : hi−1(Mj,•
l+s)→ hi−1(Mj,•

l+s+1))

in the direct system (∗∗∗) stabilize in the strong sense. To this end, we repeat the reasoning
we gave for the kernels of ∂n−j at the beginning of the proof, this time for cokernels. We write

hi−1(Mj,•
l+s+1) for the cokernel displayed above, and more generally, if S is an Rn−j-submodule of

hi−1(Mj,•
l+t) for some t (respectively hi−1(M⊗Ω•

Rj
)), we write S for the image of S in the cokernel

of ∂l+tn−j (respectively ∂n−j). First, by the inductive hypothesis (∗j), the images of hi−1(Mj,•
l+s+1)

in the direct system (∗) stabilize in the strong sense, and the stable image is a finitely generated
Rn−j-submodule L of hi−1(M⊗Ω•

Rj
), realized as a submodule of hi−1(Mj,•

l+s+u+1) for sufficiently

large u. Consider the image L of L in the quotient hi−1(Mj,•
l+s+u+1). Lemma 5.28 implies that

the images of L in the direct system (∗∗∗) stabilize in the strong sense, and the stable image

is a finitely generated Rn−j−1-module. The image of hi−1(Mj,•
l+s+1) in hi−1(Mj,•

l+s+u+1) is L, so

the images of hi−1(Mj,•
l+s+1) in the direct system (∗∗∗) also stabilize in the strong sense, and

2121

https://doi.org/10.1112/S0010437X17007345 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007345


N. Switala

the stable image is a finitely generated Rn−j−1-submodule of hi−1(M ⊗ Ω•
Rj

). This stable image
occurs at the (l + s+ u+ 1 + v)th stage for some v: for simplicity, let w = u+ 1 + v.

We have Kl+s ⊂ kerψl+s, and by the exactness of the long cohomology sequence,

kerψl+s ' coker ∂l+sn−j (= hi−1(Mj,•
l+s+1))

as Rn−j−1-modules. These isomorphisms are functorial in s, so since the images of hi−1(Mj,•
l+s+1)

in the direct system (∗∗∗) stabilize in the strong sense (with stable image a finitely generated

Rn−j−1-submodule of hi−1(Mj,•
l+s+w)), we can conclude that the image of kerψl+s in kerψl+s+w

is also a finitely generated Rn−j−1-module. This module contains the image of Kl+s in Kl+s+w;
we have already seen that this image is all of Kl+s+w, which implies that Kl+s+w is itself a
finitely generated Rn−j−1-module. We have a short exact sequence

0→ Kl+s+w → ιj+1
s+w(hi(Mj+1,•

l ))→ ιjs+w(ker ∂ln−j)→ 0,

where the left and right terms are finitely generated Rn−j−1-modules, so the middle term is also

a finitely generated Rn−j−1-module. Hence, the images of hi(Mj+1,•
l ) in the direct system (∗) are

eventually finitely generated Rn−j−1-modules, and it therefore follows by Lemma 5.11 that these
images also stabilize in the strong sense. This completes the proof of (∗j+1), and, by induction,
Proposition 5.30 follows. 2

By reducing to the case of Proposition 5.30, it is possible to draw the same conclusion about
more general direct systems of complexes with the same limit. We record this conclusion now;
the reader is warned that the following statement will not be used until § 7.

Corollary 5.31. Let M be a holonomic D-module. Suppose that {N•l } is a direct system of
complexes with the following properties: the objects of the complexes are finitely generated
R-modules, the differentials are k-linear, the transition maps λ•l,l+s are R-linear in each degree,
lim−→N•l ' M ⊗ Ω•R in the category of complexes of k-spaces, and for all i, the isomorphism

lim−→N i
l ' M ⊗ Ωi

R is an isomorphism of R-modules. Then for all l and i, the images of hi(N•l )
stabilize in the strong sense, with finite-dimensional stable image.

Proof. We note first that it is harmless to assume the isomorphism lim−→N•l ' M ⊗ Ω•R is an

equality, and we do so. Fix l. For all i, the images of N i
l stabilize in the strong sense by

Lemma 5.11, since by assumption the N i
l are finitely generated and the transition maps are

R-linear. Choose s large enough that the transition maps λil,l+s realize the stable image for all
i at once. The stable images form a subcomplex λl,l+s(N

•
l ) of N•l+s which we can identify (via

the insertion map, which we denote λ•l+s) with the subcomplex λl(N
•
l ) of M ⊗ Ω•R. Since every

N i
l is a finitely generated R-module and the insertion maps are R-linear, this is a subcomplex of

M ⊗ Ω•R whose objects are finitely generated R-modules.
Now define M0 = λ0

l (N
0
l ), a finitely generated R-submodule of the holonomic D-module M ,

and for all j > 0, let Mj = Dj(R) · M0 where Dj(R) is the R-submodule of D consisting of
differential operators of order at most j. Define the complex M•j in exactly the same way as
in Definition 5.29. Since λl(N

•
l ) is a subcomplex of M ⊗ Ω•R, we see that in fact λl(N

•
l ) is a

subcomplex of M•0 (and hence of M•j for all j > 0). The proof of Proposition 5.30 still goes
through assuming only that M0 is a finitely generated R-submodule of the holonomic D-module
M and that M =

⋃
jMj (we do not need M0 to be cyclic). In our case, since lim−→N•l = M ⊗Ω•R,
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we also have lim−→M
•
j = M ⊗Ω•R, where this last direct limit is an ascending union of complexes.

(In particular, looking at the 0th term of this complex, we see that the ascending union
⋃
jMj is

indeed the whole of M .) Therefore we can invoke Proposition 5.30 (with this weaker hypothesis)
to conclude that the images of hi(M•j ) stabilize in the strong sense. In particular, there exists

t large enough that for all i, the images of hi(M•0) stabilize for j > t with a finite-dimensional
stable image.

The complexM•t is still a complex of finitely generated R-modules, since Dt(R) is a finitely
generated R-submodule of D. We now return to the stable image of the complex N•l , which is
λ•l,l+s(N

•
l ). Write sl for s to display its dependence on l. As this argument can be carried out

for any l, we obtain a direct system λ•l,l+sl(N
•
l ) of the stable images of N•l as l varies. We may

assume the sl have been chosen so that {l+sl} is strictly increasing; then the transition maps in
this direct system are the restrictions, for all pairs l 6 l′, of λ•l+sl,l′+sl′

. Because the source and
target complexes are complexes of stable images under the λs, these restricted transition maps
are injective, and the direct system so constructed also has M ⊗ Ω•R for its direct limit. Thus
M ⊗ Ω•R can be regarded as the ascending union of the complexes λ•l′,l′+sl′

(N•l′), all of which
have finitely generated R-modules as objects. Any subcomplex of M ⊗Ω•R whose objects are all
finitely generated R-modules is thus a subcomplex of some λ•l′,l′+sl′

(N•l′). Let l′ be so large that

M•t is a subcomplex of λ•l′,l′+sl′
(N•l′), and consider the composite morphism of complexes

N•l
λ•l,l+sl−−−−→ N•l,l+sl

λ•l+sl−−−→M•0 ↪→M•t ↪→ λ•l′,l′+sl′ (N
•
l′) ⊂ N•l′+sl′ ,

in which all morphisms but possibly the first are injections. Every step in this composite is a
morphism of complexes, hence induces a morphism on cohomology. If we choose l′′ 6 l′ such that
M•0 is a subcomplex of λ•l′′,l′′+sl′′

(N•l′′), the diagram

M•0 //

��

λ•l′′,l′′+sl′′
(N•l′′)

��
M•t // λ•l′,l′+sl′

(N•l′)

is commutative and all arrows are injections, so we can regard the vertical inclusionM•0 ↪→M•t
as a restriction of λl′′+sl′′ ,l′+sl′ . This compatibility implies that the composite morphism above
induces morphisms on cohomology through which the morphisms induced by λil,l′+sl′

factor for

all i. But we have seen already that partway through this composite morphism (at theM•0 ↪→M•t
stage) the cohomology has attained a finite-dimensional stable image. Therefore, for all i, the
images of hi(N•l ) stabilize, with finite-dimensional stable image, at the (l′ + sl′)th stage. 2

We now return to our original case, and prove Proposition 5.2 (and hence Theorem 5.1).

Proof of Proposition 5.2. For all l, the differentials in the complex M•l are Σ-continuous, and
therefore we can consider the Matlis dual D(M•l ), a complex whose ith object is the R-module
D(Mn−i

l ) (which is Artinian, since Mn−i
l is finitely generated [Mat86, Theorem 18.6(v)]) and

whose differentials are k-linear. By Propositions 3.18 and 3.21(a), the Matlis dual of this complex
coincides with its k-linear dual. Together with Proposition 3.22, this implies that for all l, the
complexesM•l and (D(M•l ))∨ are naturally isomorphic as complexes of k-spaces, where ∨ denotes
k-linear dual. Note that lim

←−D(M•l ) ' D(M ⊗ Ω•R) as complexes of k-spaces, by Remark 3.20.

For every i, the inverse system {D(Mi
l)}l of R-modules (a fortiori, of k-spaces) satisfies

the Mittag-Leffler condition, since the transition maps are surjective (they are the Matlis duals
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of the R-linear inclusions Mi
l ↪→ Mi

l+1). Furthermore, the inverse system {hi(D(M•l ))}l of
k-spaces also satisfies the Mittag-Leffler condition. To see this, note that for all i, we have

hn−i(M•l ) ' hn−i(D(M•l )∨) ' (hi(D(M•l )))∨;

the first isomorphism holds because M•l ' (D(M•l ))∨ as complexes of k-spaces, and the second
holds because k-linear dual is an exact contravariant functor. By Proposition 5.30, the images
of hn−i(M•l ) ' (hi(D(M•l )))∨ stabilize in the strong sense, so by Lemma 5.13, the original
system {hi(D(M•l ))} satisfies Mittag-Leffler. The Mittag-Leffler conditions for {D(Mi

l)} and
{hi(D(M•l ))} allow us to apply Proposition 5.9, which implies that there are isomorphisms

hi(lim
←−D(M•l ))

∼−→ lim
←−h

i(D(M•l )).

of k-spaces. Therefore, we have a chain of isomorphisms

hi(M ⊗ Ω•R) ' (hi(M ⊗ Ω•R))∨∨ (1)

' (hi(lim−→M
•
l ))
∨∨ (2)

' (lim−→hi(M•l ))∨∨ (3)

' (lim
←− (hi(M•l ))∨)∨ (4)

' (lim
←− (hi((D(M•l ))∨))∨)∨ (5)

' (lim
←− (hn−i(D(M•l )))∨∨)∨ (6)

' (lim
←−h

n−i(D(M•l )))∨ (7)

' (hn−i(lim
←−D(M•l )))∨ (8)

' (hn−i(D(M ⊗ Ω•R)))∨, (9)

where (1) holds because hi(M⊗Ω•R) is a finite-dimensional k-space, (3) since lim−→ is exact and thus
commutes with cohomology, (4) because taking k-dual converts direct limits into inverse limits
[Rot09, Proposition 5.26], (5) since M•l and (D(M•l ))∨ are isomorphic complexes of k-spaces,
(6) since k-dual is an exact contravariant functor, (7) by Lemma 5.14 applied to the inverse
system {hi(D(M•l ))}, (8) by Proposition 5.9, and (9) by Remark 3.20. Since hi(M ⊗ Ω•R) is a
finite-dimensional k-space, all of the k-spaces appearing in the chain of isomorphisms are finite-
dimensional as well. Therefore hn−i(D(M⊗Ω•R)) is canonically isomorphic to its own double dual,
so we can dualize the isomorphism obtained above to find hn−i(D(M ⊗Ω•R)) ' (hi(M ⊗Ω•R))∨,
as desired. 2

6. Local cohomology of formal schemes

In this section, we recall the description of the Matlis duals of local cohomology modules (over
any local Gorenstein ring) in terms of local cohomology on a formal scheme. (A reference for
this description is Ogus’s thesis [Ogu73].) Specializing to the case of a complete local ring with
a coefficient field, we obtain a right D-module structure on the local cohomology of a formal
scheme by applying the results of § 4 to dualize the left D-module structure on ordinary local
cohomology. We then recall a natural left D-module structure on the local cohomology of the
formal scheme: the structure implicitly used to define its de Rham complex in [Har75]. The
main result of this section is that in the case where the complete local ring is regular and of
characteristic zero, these left and right D-module structures are transposes of each other, so our
theory and that of [Har75] are compatible.
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Let (R,m) be a Gorenstein local ring. The key ingredient in the identification of the Matlis
duals of local cohomology modules over R with local cohomology of a formal scheme is the local
duality theorem of Grothendieck.

Theorem 6.1 [Har67, Theorem 6.3]. Let (R,m) be a Gorenstein local ring of dimension n, E an
injective hull of its residue field, and D(−) = HomR(−, E) the Matlis dual functor for R-modules.
If M is a finitely generated R-module, there are isomorphisms Hn−i

m (M) ' D(ExtiR(M,R)), for
all i, that are functorial in M .

Remark 6.2. If moreover R is complete, we also have Extn−iR (M,R) ' D(H i
m(M)), since the

double Matlis dual and the identity functor are naturally isomorphic when restricted to the full
subcategories of finitely generated or Artinian R-modules [Mat86, Theorem 18.6(v)].

Now recall the definition of local cohomology as a direct limit of Ext modules: for any
module M over any commutative Noetherian ring R, and any ideal I ⊂ R, we have isomorphisms
H i
I(M) ' lim−→ExtiR(R/It,M) [BS13, Theorem 1.3.8]. Now put M = R, a Gorenstein local ring of

dimension n with maximal ideal m. Taking Matlis duals (and using the fact that any contravariant
Hom functor converts direct limits into inverse limits) we have isomorphisms

D(H i
I(R)) ' D(lim−→ExtiR(R/It, R)) ' lim

←−D(ExtiR(R/It, R)) ' lim
←−H

n−i
m (R/It),

where in the last step we have used local duality for every t and passed to the inverse limit. If
we let X = Spec(R) and Y the closed subscheme V (I) ⊂ X defined by I, and if we write X̂
for the formal completion of Y in X (see §§ 1 and 7 for the definition of formal completion),
P for its closed point, and O

X̂
for its structure sheaf, then the last object in the sequence of

isomorphisms above is precisely the local cohomology Hn−i
P (X̂,O

X̂
) supported at the closed

point [Ogu73, Proposition 2.2]. (We may also write X/Y and OX/Y for X̂ and O
X̂

when we need

to record explicitly the dependence on Y .) It follows that for all i, the R-modules D(H i
I(R)) and

Hn−i
P (X̂,O

X̂
) are isomorphic. We record this conclusion separately for future reference.

Proposition 6.3 [Ogu73, Proposition 2.2]. Let R be a Gorenstein local ring of dimension n
with maximal ideal m. For all i, we have isomorphisms

D(H i
I(R)) ' lim

←−H
n−i
m (R/It) ' Hn−i

P (X̂,O
X̂

)

of R-modules, where the rightmost object is the formal local cohomology defined in the previous
paragraph.

For the remainder of the section, we identify the R-modules D(H i
I(R)) and Hn−i

P (X̂,O
X̂

)
using the proposition above, suppressing any explicit mention of this isomorphism.

Now suppose that (R,m) is a complete local ring with coefficient field k. By Example 4.13,
we know that if I ⊂ R is an ideal, every H i

I(R) is a left D(R, k)-module, and since R is
complete, D(H i

I(R)) is a right D(R, k)-module by Corollary 4.10. If moreover R is Gorenstein,

we have D(H i
I(R)) = Hn−i

P (X̂,O
X̂

) by Proposition 6.3, defining by transport of structure a right

D(R, k)-module structure on Hn−i
P (X̂,O

X̂
).

There is also a natural left D(R, k)-module structure onHn−i
P (X̂,O

X̂
), defined without Matlis

duality: see [Har75, §§ I.7 and III.2] and [Hel07, § 7.2]. Let d ∈ D(R, k) be a differential operator
of order j. For all t > 0, d(It+j) ⊂ It, and so d induces a k-linear map dt : R/It+j → R/It.
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If I ⊂ OX is the sheaf of ideals on X = Spec(R) corresponding to I, the map dt induces a
sheafified map d̃t : OX/It+j → OX/It of sheaves of k-spaces on X; taking local cohomology, we
obtain k-linear maps dt : Hn−i

m (R/It+j) → Hn−i
m (R/It), where we have identified Hn−i

m (R/I l)
with Hn−i

P (X,OX/I l) as R-modules for all l [GR05, Exp. II, Corollary 4]. The reason that
sheaves were introduced here is to make clear that merely k-linear (or even additive) maps
between R-modules still induce maps on local cohomology, because local cohomology, in its most
general form, is a functor on sheaves of Abelian groups on a topological space [GR05, Exp. I,
Déf. 2.1].

These maps dt are compatible with the natural surjections R/It+l→ R/It, in the sense that
we have commutative diagrams

Hn−i
m (R/It+j+l)

dt+l

//

��

Hn−i
m (R/It+l)

��
Hn−i

m (R/It+j)
dt

// Hn−i
m (R/It)

for all t, j, and l, where the vertical arrows are the R-linear maps induced by the
natural surjections. Therefore, upon passing to inverse limits, the dt define a k-linear map
d : lim
←−H

n−i
m (R/It)→ lim

←−H
n−i
m (R/It). If γ ∈ lim

←−H
n−i
m (R/It) = Hn−i

P (X̂,O
X̂

), we set d·γ = d(γ),

and in this way define a left action of D(R, k) on Hn−i
P (X̂,O

X̂
).

Definition 6.4. If (R,m) is a complete Gorenstein local ring of dimension n with coefficient
field k and I ⊂ R is an ideal, the Matlis dual action of D = D(R, k) on D(H i

I(R)) for any i is
the right action defined by dualizing the natural structure of left D-module on H i

I(R), and the

inverse limit action of D on D(H i
I(R)) = Hn−i

P (X̂,O
X̂

) is the left action defined in the previous
paragraph.

In the case of a characteristic-zero complete regular local ring (R,m) containing its residue
field k, we can state precisely how these two D-module structures are related: they are transposes
of each other, as in Definition 4.15. This is the main result of this section.

Theorem 6.5. Let k be a field of characteristic zero, let R = k[[x1, . . . , xn]], and let I ⊂ R be an
ideal. Denote by m the maximal ideal of R, and by D = D(R, k) the ring of k-linear differential
operators on R. Then for all i, the Matlis dual action of D on D(H i

I(R)) = Hn−i
P (X̂,O

X̂
) is the

transpose of the inverse limit action.

Remark 6.6. It follows from Theorem 6.5 that the identification of Proposition 6.3 can be
extended to an identification of left D-modules, regarding D(H i

I(R)) as a left D-module by
transposing the Matlis dual action as in Proposition 4.17. We can therefore identify the de
Rham complexes of both sides as well.

Proof. Every element of D is a finite sum of terms of the form ρ∂a11 · · · ∂ann where ρ ∈ R, and
Matlis duality respects composition of operators (reversing the order), so we need only check the
statement of the theorem for the action of a single ρ or ∂i. There is nothing to prove in the case
of an element ρ ∈ R, since the Matlis dual of the R-linear multiplication by such an element
ρ is again multiplication by ρ. Therefore, to prove Theorem 6.5, we need only to show that
if i is fixed (1 6 i 6 n), the Matlis dual and inverse limit actions of the partial derivative
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∂i ∈ D on D(H i
I(R)) = Hn−i

P (X̂,O
X̂

) differ by a sign (transposing the action of ∂i introduces

a sign change, by Definition 4.15). Without loss of generality, we may assume i = 1 and write

x for x1, so that R = k[[x, x2, . . . , xn]] and ∂ = ∂1. We denote the inverse limit action of ∂ on

D(H i
I(R)) = Hn−i

P (X̂,O
X̂

) by δ and the Matlis dual action by ∂∗. In order to prove the theorem,

it is enough to prove the equality

δ = −∂∗.

We will prove this equality first for a complete intersection ideal I and then in general. We

prove the complete intersection case by induction on the number of generators of I. Suppose

that f1, . . . , fs is a regular sequence in R, and assume the theorem has been proved for complete

intersection ideals with s − 1 generators: the base case, s = 0, has already been established as

Example 4.2, since H0
(0)(R) = R and H i

(0)(R) = 0 for i > 0. We write f for fs. Let I be the ideal

(f1, . . . , fs) and J ⊂ I the ideal (f1, . . . , fs−1), so that I = J + (f). Let Y (respectively Z) be the

closed subscheme of X = Spec(R) defined by I (respectively J), and let Xt = Spec(R/(f t)) for

all t > 1. We claim that the Matlis dual and inverse limit actions of ∂ on D(H i
I(R)) = Hn−i

P (X/Y ,

OX/Y ) differ by a sign for all i. Since I is a complete intersection ideal, H i
I(R) = 0 unless i = s,

so this is the only case we need to consider.

Let M = Hs−1
J (R). Since f1, . . . , fs is a regular sequence, the composite local cohomology

spectral sequence of Example 2.15 (with respect to the ideals J and (f)) degenerates at E2, and

consequently we have Hs
I (R) ' H1

(f)(M) as R-modules (indeed, as left D-modules). We write

∂M for the action of ∂ on the left D-module M , ∂∗M for the corresponding Matlis dual action on

D(M), and δZ for the inverse limit action of ∂ on D(M) = Hn−s+1
P (X/Z ,OX/Z ) (note that our

induction hypothesis is that δZ = −∂∗M ).

By the Čech complex definition of local cohomology, H1
(f)(M) is the cokernel of the

localization map M → Mf . Since f1, . . . , fs is a regular sequence, this localization map is

injective: identifying M with its image, we view M as a submodule of Mf and write Mf/M

for the cokernel, which we can express as the direct limit lim−→M/f tM . Here, the transition map

M/f tM →M/f t+1M carries the class ofm ∈M to the class of fm, and theR-linear isomorphism

Mf/M → lim−→M/f tM carries the class of (m/f t) ∈Mf to the class of m ∈M modulo f tM . The

action of ∂ on the left D-module M induces an action of ∂ on Mf/M , defined by the quotient rule:

we have a k-linear map (∂M )f : Mf → Mf given by (∂M )f (m/f t) = (f∂M (m)− t∂(f)m)/f t+1

that carries M ⊂ Mf into itself and therefore descends to the quotient Mf/M . In terms of the

description of Mf/M as the direct limit lim−→M/f tM , the map (∂M )f is defined by the direct

limit of the k-linear maps ∂t : M/f tM →M/f t+1M where

∂t(µ) = (f∂M (m)− t∂(f)m) + f t+1M ∈M/f t+1M

if µ is the class of m ∈M in M/f tM . It is straightforward to check that ∂t(µ) is well defined (that

is, depends only on µ and not on m) and that ∂t satisfies the Leibniz rule: ∂t(rµ) = ∂(r)µ+r∂t(µ)

for r ∈ R, where µ is the image of µ under the transition map M/f tM →M/f t+1M .

The maps ∂t defined in the previous paragraph fit into commutative diagrams

0 //M
f t
//

∂M

��

M //

f∂M−t∂(f)

��

M/f tM //

∂t
��

0

0 //M
f t+1

//M //M/f t+1M // 0
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for all t, where the rows are exact sequences of R-modules and the vertical arrows are k-linear.
The commutativity of the right square is clear, while the calculation

(f∂M − t∂(f))(f tm) = f∂M (f tm)− t∂(f)f tm = f(tf t−1∂(f)m+ f t∂M (m))− t∂(f)f tm

= f t+1∂M (m)

for m ∈M shows that the left square is commutative. Fix t and consider the Matlis dual of the
above diagram, which takes the following form.

0 // D(M/f t+1M) //

∂∗t

��

D(M)
f t+1

//

(f∂M−t∂(f))∗

��

D(M) //

∂∗M

��

0

0 // D(M/f tM) // D(M)
f t

// D(M) // 0

(∗)

Since H1
(f)(M) is the direct limit lim−→M/f tM , the Matlis dual D(H1

(f)(M)) is the inverse limit

lim
←−D(M/f tM), and by Remark 3.20, the Matlis dual action of ∂ on D(H1

(f)(M)) is defined by

lim
←− ∂

∗
t (the Leibniz rule implies that all ∂t are Σ-continuous).

We turn next to the inverse limit action of ∂ on D(Hs
I (R)) = Hn−s

P (X/Y ,OX/Y ). Again we

let M = Hs−1
J (R). From the long exact sequence of local cohomology supported at J applied to

the short exact sequence

0→ R
f t−→ R→ R/(f t)→ 0

of R-modules, it follows at once that M/f tM ' Hs−1
J (R/(f t)) as R-modules. By the change

of ring principle [BS13, Theorem 4.2.1], we have Hs−1
J (R/(f t)) ' Hs−1

J
(R/(f t)) as R-modules,

where J = (J + (f t))/(f t) ⊂ R/(f t), the local cohomology module on the right-hand side is
computed in the category of R/(f t)-modules, and its R-module structure is defined using the
natural surjection R→ R/(f t). Therefore D(M/f tM) ' D(Hs−1

J
(R/(f t))) as R-modules. Since

M/f tM (and hence Hs−1
J

(R/(f t))) is annihilated by f t, it does not matter whether the Matlis

dual on the right-hand side is computed over the ring R or R/(f t). Taking the second point
of view, we can apply Proposition 6.3 to the (n − 1)-dimensional Gorenstein local ring R/(f t),
obtaining an isomorphism

D(M/f tM) ' D(Hs−1
J

(R/(f t))) ' Hn−s
P ((Xt)/Z ,O(Xt)/Z )

of R-modules (the cohomological degree is n − s = (n − 1) − (s − 1) = dim(R/(f t)) − (s − 1)).
Here, we have abusively written Z for the closed subscheme of Xt defined by J = (J+(f t))/(f t).
We already know the inverse limit lim

←−D(M/f tM) is isomorphic as an R-module to

D(H1
(f)(M)) ' D(Hs

I (R)) = Hn−s
P (X/Y ,OX/Y ),

from which it follows (by passing to the inverse limit in t) that we must have

lim
←−H

n−s
P ((Xt)/Z ,O(Xt)/Z ) ' Hn−s

P (X/Y ,OX/Y )

as R-modules. In order to see how this last isomorphism interacts with the inverse limit action
of ∂, we describe it more explicitly. For all t, we have

Hn−s
P ((Xt)/Z ,O(Xt)/Z ) ' lim

←−
l

Hn−s
m ((R/(f t))/J

l
) ' lim
←−
l

Hn−s
m (R/(J l + (f t)))
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as R-modules. Passing to the inverse limit in t, we obtain

lim
←−
t

Hn−s
P ((Xt)/Z ,O(Xt)/Z ) ' lim

←−
t

lim
←−
l

Hn−s
m (R/(J l + (f t))).

As the family {I l} = {(J + (f))l} of ideals of R is cofinal with the family {J l + (f t)}(l,t), this
last inverse limit is isomorphic to

lim
←−
l

Hn−s
m (R/(J + (f))l) = Hn−s

P (X/Y ,OX/Y ),

as claimed. For all t and l, there are k-linear maps δl,t : R/(J l+1 + (f t+1))→ R/(J l + (f t)) and
δl : R/J l+1

→ R/J l, induced on the quotients by ∂ : R→ R, that induce k-linear maps

δl,t : Hn−s
m (R/(J l+1 + (f t+1)))→ Hn−s

m (R/(J l + (f t)))

and
δl : Hn−s

m (R/J l+1)→ Hn−s
m (R/J l)

on local cohomology, by viewing local cohomology as a functor on sheaves of k-spaces on the
topological space Spec(R). (Here we write, for instance, δl rather than ∂l to avoid confusion with
the maps ∂l defined earlier in the proof.) The inverse limit action of ∂ on Hn−s

P (X/Y ,OX/Y ),

which we have denoted δ, is defined by lim
←−(l,t)

δl,t. If we pass to the inverse limit in l first, we

find that δ = lim
←−tδZ,t, where for all t, the map

δZ,t : Hn−s
P ((Xt+1)/Z ,O(Xt+1)/Z )→ Hn−s

P ((Xt)/Z ,O(Xt)/Z )

is simply lim
←−lδl,t.

The maps δl,t and δl defined in the previous paragraph fit into commutative diagrams

0 // R/J l+1

f t+1
//

∂f+t∂(f)

��

R/J l+1 //

δl

��

R/(J l+1 + (f t+1)) //

δl,t

��

0

0 // R/J l
f t

// R/J l // R/(J l + (f t)) // 0

for all l and t, where the rows are exact sequences of R-modules and the vertical arrows are
k-linear. It is clear that the map ∂f + t∂(f) : R→ R carries J l+1 into J l (the left vertical arrow
is the k-linear map that this map induces on the quotients), and the calculation (at the level of
elements of R)

f t((∂f + t∂(f))(r)) = f t(∂(fr) + t∂(f)(r)) = f t(∂(f)r + f∂(r) + t∂(f)(r))

= f t+1∂(r) + (t+ 1)f t∂(f)r

= ∂(f t+1r)

for r ∈ R shows that the left square is commutative (the commutativity of the right square
is clear). Fix l and t. Since the rows of the above diagram are short exact sequences of R-
modules, both induce long exact sequences of local cohomology supported at m, and the vertical
arrows, which are k-linear, induce k-linear maps on local cohomology as defined in the previous
paragraph. Since J is a complete intersection ideal, R/J l is a Cohen–Macaulay ring (of dimension
n − s + 1) for all l by [Mat86, Example 17.4], so H i

m(R/J l) = 0 unless i = n − s + 1. It follows
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that H i
m(R/(J l+(f t))) = 0 unless i = n−s, since f t is a non-zero divisor on R/J l for all l and t.

Therefore, the only non-zero portion of the resulting diagram is

0 // Hn−s
m (R/(J l+1 + (f t+1))) //

δl,t
��

Hn−s+1
m (R/J l+1)

f t+1
//

��

Hn−s+1
m (R/J l+1) //

δl
��

0

0 // Hn−s
m (R/(J l + (f t))) // Hn−s+1

m (R/J l)
f t

// Hn−s+1
m (R/J l) // 0

where the middle arrow is the map induced by ∂f + t∂(f) on local cohomology. We now pass
to the inverse limit in l while keeping t fixed. By [BS13, Theorem 7.1.3], the local cohomology
modules appearing in the above diagram are all Artinian, and if t is fixed, the transition maps in
the inverse systems {Hn−s+1

m (R/J l)}l and {Hn−s
m (R/(J l+(f t)))}l are R-linear. Consequently, the

Mittag-Leffler hypotheses of Proposition 5.9 are satisfied, and so the rows in the above diagram
remain exact after passing to the inverse limit in l. The result is a commutative diagram

0 // Hn−s
P ((Xt+1)/Z ,O(Xt+1)/Z ) //

δZ,t
��

Hn−s+1
P (X/Z ,OX/Z )

f t+1
//

δZf+t∂(f)
��

Hn−s+1
P (X/Z ,OX/Z ) //

δZ
��

0

0 // Hn−s
P ((Xt)/Z ,O(Xt)/Z ) // Hn−s+1

P (X/Z ,OX/Z )
f t
// Hn−s+1

P (X/Z ,OX/Z ) // 0

(∗∗)
where the rows are short exact sequences of R-modules. Recall that δZ defines the inverse limit
action of ∂ on Hn−s+1

P (X/Z ,OX/Z ). We have already established that the inverse limit action of
∂ on

Hn−s
P (X/Y ,OX/Y ) ' lim

←−H
n−s
P ((Xt)/Z ,O(Xt)/Z )

is given by lim
←− δZ,t. We now have a diagram

in which the front face is the left square of diagram (∗), and the back face is the left square of
diagram (∗∗), so these two faces commute. Consider next the arrows from the front face to the
back face. The arrows on the right are the isomorphisms of Proposition 6.3. These are inverse
limits of the local duality isomorphisms of Theorem 6.1, which are functorial. The arrows on the
left are composites of the isomorphisms of Proposition 6.3 with inverse limits of the change-of-ring
isomorphisms Hs−1

J (R/(f t)) ' Hs−1
J

(R/(f t)) [BS13, Theorem 4.2.1], which are also functorial.
Therefore the top and bottom faces also commute.

By the induction hypothesis, the Matlis dual and inverse limit actions of ∂ on

D(M) = Hn−s+1
P (X/Z ,OX/Z )
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differ by a sign, that is, δZ = −∂∗M . Therefore, the right vertical arrow in the front face is

(f∂M − t∂(f))∗ = (f∂M )∗ − t∂(f) = ∂∗Mf − t∂(f) = −δZf − t∂(f)

under the identification D(M) = Hn−s+1
P (X/Z ,OX/Z ) (here we have used the fact that the Matlis

dual of multiplication by an element of R is again multiplication by that element). We conclude
that the right face of the diagram anticommutes. Since the horizontal arrows of the front and back
faces are injective, the left face must also anticommute. Consequently, under the identification
D(Hs

I (R)) = Hn−s
P (X/Y ,OX/Y ) and isomorphisms D(Hs

I (R)) ' lim
←−D(M/f tM) and Hn−s

P (X/Y ,

OX/Y ) ' lim
←−H

n−s
P ((Xt)/Z ,O(Xt)/Z ), we have

δ = lim
←− δZ,t = lim

←− (−∂∗t ) = −lim
←− ∂

∗
t = −∂∗;

that is, the Matlis dual and inverse limit actions on D(Hs
I (R)) = Hn−s

P (X/Y ,OX/Y ) also differ
by a sign, completing the proof by induction for complete intersection ideals I. 2

Before beginning the proof for arbitrary ideals I, we need a lemma.

Lemma 6.7. Let J ⊂ I be ideals of R, and let Y (respectively Z) be the closed subscheme of
X = Spec(R) defined by I (respectively J).

(a) If the natural map Hj
I (R)→ Hj

J(R) is surjective, and the Matlis dual and inverse limit

actions of ∂ on D(Hj
I (R)) = Hn−j

P (X/Y ,OX/Y ) differ by a sign, then the Matlis dual and inverse

limit actions of ∂ on D(Hj
J(R)) = Hn−j

P (X/Z ,OX/Z ) also differ by a sign.

(b) If the natural map Hj
I (R)→ Hj

J(R) is injective, and the Matlis dual and inverse limit

actions of ∂ on D(Hj
J(R)) = Hn−j

P (X/Z ,OX/Z ) differ by a sign, then the Matlis dual and inverse

limit actions of ∂ on D(Hj
I (R)) = Hn−j

P (X/Y ,OX/Y ) also differ by a sign.

Proof of Lemma 6.7. There are canonical surjections R/J l→R/I l for all l which induce R-linear
maps Hn−j

m (R/J l)→ Hn−j
m (R/I l) and ExtjR(R/I l, R)→ ExtjR(R/J l, R). The first of these maps

and the Matlis dual of the second are the horizontal arrows in the diagram

D(ExtjR(R/J l, R)) //

��

D(ExtjR(R/I l, R))

��

Hn−j
m (R/J l) // Hn−j

m (R/I l)

whose vertical arrows are the isomorphisms of Theorem 6.1: the diagram commutes because the
isomorphisms of Theorem 6.1 are functorial. By Proposition 6.3, the inverse limit in l of these
commutative diagrams is the commutative diagram

D(Hj
J(R)) //

��

D(Hj
I (R))

��

Hn−j
P (X/Z ,OX/Z ) // Hn−j

P (X/Y ,OX/Y )

of R-modules. If the natural map Hj
I (R) → Hj

J(R) is surjective (respectively injective), then
the top horizontal arrow of this diagram is injective (respectively surjective), as is the bottom
horizontal arrow (because the vertical maps are isomorphisms).
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Both parts of the lemma will follow if we can show that the top (respectively bottom)
horizontal arrow commutes with the Matlis dual (respectively inverse limit) action on both
sides; for then in the case that the map Hj

I (R)→ Hj
J(R) is surjective (so both horizontal maps

in the preceding commutative diagram are injective), the Matlis dual (respectively inverse limit)
action on D(Hj

J(R)) = Hn−j
P (X/Z ,OX/Z ) is induced by the Matlis dual (respectively inverse

limit) action on D(Hj
I (R)) = Hn−j

P (X/Y ,OX/Y ), and in the case that the map Hj
I (R)→ Hj

J(R)
is injective (so both horizontal maps in the preceding commutative diagram are surjective), the
Matlis dual (respectively inverse limit) action on D(Hj

I (R)) = Hn−j
P (X/Y ,OX/Y ) is induced by

the Matlis dual (respectively inverse limit) action on D(Hj
J(R)) = Hn−j

P (X/Z ,OX/Z ).
The top arrow commutes with the Matlis dual action of D on both sides because it is the

Matlis dual of an D-linear map. Finally, the bottom arrow

Hn−j
P (X/Z ,OX/Z )→ Hn−j

P (X/Y ,OX/Y )

commutes with the inverse limit action of D on both sides, because if d ∈ D is a differential
operator of order j, we have commutative diagrams

R/J t+j //

��

R/It+j

��
R/J t // R/It

for all t where the vertical arrows are induced by d, and these diagrams remain commutative
after applying the functor Hj

m to all of their objects and maps (viewing local cohomology as a
functor on sheaves of k-spaces on the topological space Spec(R)). 2

Now let I ⊂ R be an arbitrary ideal, and let h = ht(I). Choose a regular sequence f1, . . . ,
fh ∈ I and denote by J the ideal generated by f1, . . . , fh, so that J ⊂ I and J is a complete
intersection ideal. Let J = q1∩· · ·∩qr be a primary decomposition of J . Reindexing if necessary,
we may assume I ⊂ √q1, . . . , I ⊂

√
qs, I 6⊂

√
qs+1, . . . , I 6⊂

√
qr. We may assume s < r, as

otherwise
√
I =
√
J and there is nothing left to prove. Put I ′ = q1∩· · ·∩qs and I ′′ = qs+1∩· · ·∩qr;

then we have ht(I ′) = h,ht(I ′ + I ′′) = h+ 1, J = I ′ ∩ I ′′, and
√
I =
√
I ′.

The ideals I ′ and I ′′ give rise to a Mayer–Vietoris sequence of local cohomology
(Proposition 2.4)

· · ·→ Hh−1
J (R)→ Hh

I′+I′′(R)→ Hh
I (R)⊕Hh

I′′(R)→ Hh
J (R)→ Hh+1

I′+I′′(R)→ · · ·

where we identify H i
I(R) with H i

I′(R) for all i because the ideals I and I ′ have the same radical
[BS13, Remark 1.2.3]. Since ht(I ′ + I ′′) > h, we have Hh

I′+I′′(R) = 0, so there is an injection

Hh
I (R) ⊕ Hh

I′′(R) ↪→ Hh
J (R); composing with the inclusion of the first summand, we obtain

an injection Hh
I (R) ↪→ Hh

J (R), which is just the natural map induced by the inclusion J ⊂ I
of ideals. By the previous step of the proof, since J is a complete intersection ideal, the Matlis
dual and inverse limit actions of ∂ on D(Hh

J (R)) = Hn−h
P (X/Z ,OX/Z ) differ by a sign. We

conclude from Lemma 6.7(b) that the Matlis dual and inverse limit actions of ∂ on D(Hh
I (R)) =

Hn−h
P (X/Y ,OX/Y ) also differ by a sign. This proves the theorem for an arbitrary ideal I in

cohomological degree equal to the height of I.
Finally, we prove the theorem in arbitrary cohomological degree i by induction on i− ht(I);

the base case, where i = ht(I), was proved in the previous paragraph. Let i > h = ht(I) be
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given. Since J is a complete intersection ideal of height h, H i
J(R) = 0 unless i = h, so from the

Mayer–Vietoris sequence we also conclude that H i
I′+I′′(R) maps surjectively to H i

I(R)⊕H i
I′′(R);

composing with the projection onto the first summand, we obtain a surjection H i
I′+I′′(R) →

H i
I(R), which is just the natural map induced by the inclusion I ⊂ I ′ + I ′′ of ideals. We have

ht(I ′ + I ′′) > ht(I), so i− ht(I ′ + I ′′) < i− ht(I). By the induction hypothesis, the Matlis dual
and inverse limit actions of ∂ on D(H i

I′+I′′(R)) = Hn−i
P (X/Z′ ,OX/Z′ ) differ by a sign, where Z ′

is the closed subscheme of X = Spec(R) defined by I ′ + I ′′. We conclude from Lemma 6.7(a)
that the Matlis dual and inverse limit actions of ∂ on D(H i

I(R)) = Hn−i
P (X/Y ,OX/Y ) also differ

by a sign. 2

7. The de Rham cohomology of a complete local ring

In this section, we turn our attention to de Rham cohomology, and prove Theorems B and D. We
prove the latter theorem (and Theorem B(b) as an immediate corollary) first, by synthesizing
our results from the previous sections on Matlis duality and local cohomology of formal schemes.
The proof of Theorem B(a), which we give next, proceeds similarly to that of Theorem A(a). As
in § 2, we will first give the proof of Theorem B(a) for the E2-terms of the spectral sequences, to
bring out the main ideas of the proof. There is a technical complication that will make the E2 case
more difficult than the E2 case of Theorem A(a). (We will need to verify various Mittag-Leffler
hypotheses for inverse systems, for which Corollary 5.31 will be necessary.)

We begin by recalling notation used in § 2 and giving Hartshorne’s definition of de Rham
cohomology. Thus A is again a complete local ring with a coefficient field k of characteristic zero
and π : R→ A is a surjection of k-algebras with R = k[[x1, . . . , xn]] for some n. The surjection
π induces a closed immersion of spectra Spec(A) = Y ↪→ X = Spec(R), defined by the coherent
sheaf of ideals I ⊂ OX associated with the ideal I = kerπ ⊂ R. Let X̂ be the formal completion
of Y in X, that is, the topological space Y equipped with the structure of a locally ringed space
via the sheaf of rings O

X̂
= lim
←−OX/I

l, an inverse limit of sheaves of rings supported at Y . For

any coherent sheaf F of OX -modules, we can define its I-adic completion F̂ = lim
←−F/I

lF , which
is a sheaf of O

X̂
-modules.

Now consider again the (continuous) de Rham complex Ω•X . By the Leibniz rule, the k-linear
differentials in this complex of sheaves on X are I-adically continuous, and therefore pass to
the I-adic completions of the coherent OX -modules Ωi

X . We obtain, therefore, a complex Ω̂•X ,
whose objects are sheaves of O

X̂
-modules but whose differentials are merely k-linear. Since X is

the spectrum of a complete regular local ring and so the sheaves Ωi
X are finite free OX -modules,

there is a simpler description of the complex Ω̂•X . As formal completion commutes with finite

direct sums, the sheaf Ω̂i
X is a direct sum of copies of O

X̂
. All of the derivations ∂xj : R→ R

induce I-adically continuous maps O
X̂
→ O

X̂
, and if we form the de Rham complex of O

X̂
with

respect to these derivations, we recover precisely the complex Ω̂•X .
In [Har75], the (local) de Rham cohomology of the local scheme Y is defined as H i

P,dR(Y ) =

Hi
P (X̂, Ω̂•X), the hypercohomology (supported at the closed point P of Y ) of the completed de

Rham complex. These k-spaces are known to be independent of the choice of R and π [Har75,
Proposition III.1.1] and finite-dimensional [Har75, Theorem III.2.1]. Since the local de Rham
cohomology is defined as the hypercohomology of a complex, we have, as in the case of homology,
a Hodge–de Rham spectral sequence that begins Ẽp,q1 = Hq

P (X̂, Ω̂p
X) and abuts to Hp+q

P,dR(Y ).
We also recall from § 2 that the Hodge–de Rham spectral sequence for homology has E1-term

given by En−p,n−q1 = Hn−q
Y (X,Ωn−p

X ) and abuts to HdR
p+q(Y ). The assertion of Theorem D is that,
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for all p and q, the k-spaces En−p,n−q2 and Ẽp,q2 are dual to each other. Since we know by
Theorem A(b) that the former k-space is finite-dimensional, this duality implies that the latter
is as well, which will prove Theorem B(b). Our work in §§ 5 and 6 is nearly enough to establish
this duality; all that remains is to identify the rows of the E1-term of the cohomology spectral
sequence with de Rham complexes of D-modules.

We recall again Convention 2.1, which remains in force in this section: if M is a left
D(R, k)-module, we write M ⊗Ω•R for its de Rham complex, where the subscript R indicates the
ring over which the complex is being computed: the objects of this complex are tensor products
of R-modules taken over R, but the maps are not R-linear.

Lemma 7.1. Let the surjection π : R = k[[x1, . . . , xn]]→ A (and the associated objects I,X, X̂,
Y ) be as above, and {Ẽ•,•• } the corresponding Hodge–de Rham spectral sequence for cohomology.
For all q, the qth row {Ẽ•,q1 } of the E1-term {Ẽ•,•1 } is isomorphic, as a complex of k-spaces, to

the de Rham complex Hq
P (X̂,O

X̂
)⊗Ω•R, where the left D(R, k)-structure on Hq

P (X̂,O
X̂

) is given
by the inverse limit action of Definition 6.4.

Proof. Let q be fixed. Both formal completion along Y and local cohomology Hq
P commute with

finite direct sums, so for all p, Ẽp,q1 = Hq
P (X̂, Ω̂p

X) is a direct sum of copies of the R-module

Hq
P (X̂,O

X̂
), and the complex {Ẽ•,q1 } has differentials induced by the differentials in the complex

Ω•X by first passing to I-adic completions and then applying the functor Hq
P . This is exactly the

de Rham complex of Hq
P (X̂,O

X̂
) with respect to the inverse limit action, since by Proposition 6.3

we have an isomorphism Hq
P (X̂,O

X̂
) ' lim
←−H

q
P (X̂,OX/I l). 2

Proof of Theorems D and B(b). Fix q. By Lemma 7.1, the qth row of the E1-term of the
cohomology spectral sequence, Ẽ•,q1 , is the de Rham complex of the left D(R, k)-module

Hq
P (X̂,O

X̂
). By Theorem 6.5 and Remark 6.6, this complex is isomorphic (as a complex of

k-spaces) to the de Rham complex of the left D(R, k)-module D(Hn−q
I (R)). We obtain the

E2-term by taking cohomology, so for all p, Ẽp,q2 = Hp
dR(D(Hn−q

I (R))). Since Hn−q
I (R) is a

holonomic D(R, k)-module, Theorem 5.1 applies: we have an isomorphism

Hp
dR(D(Hn−q

I (R))) ' (Hn−p
dR (Hn−q

I (R)))∨.

The right-hand side of this isomorphism is nothing but (En−p,n−q2 )∨ (by Lemma 2.16), completing
the proof. 2

We will now begin working toward the proof of Theorem B(a). The reductions immediately
preceding Lemma 2.18 are equally valid here, so for the remainder of the section, we assume
that R = k[[x1, . . . , xn]] and R′ = R[[z]], and it suffices to compare the Hodge–de Rham spectral
sequences for cohomology corresponding to an arbitrary ideal I ⊂ R (defining a closed immersion
Y = Spec(R/I) ↪→ X = Spec(R)) and the ideal I ′ = IR′ + (z) ⊂ R′ (defining a closed
immersion Y ↪→ X ′ = Spec(R′)).

In the proof of Theorem A(a), we made use of an operation (Definition 2.19) on k-spaces.
Its replacement in this section is the following operation.

Definition 7.2. Let M be any k-space. We define M+ = M [[z]], the D(k[[z]], k)-module of
formal power series with coefficients in M . If M is an R-module (respectively a D(R, k)-module),
then M+ defined in this way is an R′-module (respectively a D(R′, k)-module), with ∂z-action
defined by ∂z(

∑
mlz

l) =
∑

(l + 1)ml+1z
l.
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If M is an R-module, the R′-module M+ is always z-adically complete. What is more, k-linear
maps between k-spaces and R-linear maps between R-modules extend to the corresponding
formal power series objects: if f : M → N is a k-linear map between k-spaces (or an R-linear
map between R-modules), f+ : M+

→ N+ is defined by f+(
∑
mlz

l) =
∑
f(ml)z

l.

Remark 7.3. If M is an R-module, the R′-module M+ = M [[z]] is usually not isomorphic to
M ⊗R R′. This is an example of the failure of inverse limits to commute with tensor products.
We do have

M+ ' lim
←−M [[z]]/zl ' lim

←− (M ⊗R R′/zl),
where every M ⊗RR′/zl is regarded as an R′-module via the natural surjection R′→ R′/zl, but
this inverse limit need not be isomorphic to M ⊗R (lim

←−R
′/zl).

In the proofs below, we will often take two inverse limits simultaneously in the process of
forming the module M+. The general principle is the following.

Lemma 7.4. Let {Ml} be an inverse system of R-modules, indexed by N, and let M = lim
←−Ml.

Then lim
←− (Ml ⊗R R′/zl) 'M+ as R′-modules.

Proof. As an R′-module, M+ ' lim
←−l((lim←−sMs) ⊗R R′/zl). Consider the inverse system

{Ms ⊗R R′/zl}, indexed by N× N where (s, l) 6 (s′, l′) if and only if s 6 s′ and l 6 l′. Then

lim
←−
l

((
lim
←−
s

Ms

)
⊗R R′/zl

)
' lim
←−
(s,l)

Ms ⊗R R′/zl.

As the ‘diagonal’ inverse system {Ml ⊗R R′/zl}l is cofinal with {Ms ⊗R R′/zl}(s,l), their inverse
limits are isomorphic, as desired. 2

We have defined the formal power series operation both for k-spaces and for R-modules.
In what follows, we will frequently apply the operation to an entire complex whose objects are
R-modules but whose differentials are merely k-linear. We will still (abusively) use the notation
⊗R′/zl for the lth truncation of the formal power series operation, a convention which we record
here.

Definition 7.5. Let C• be a complex whose objects are R-modules and whose differentials are
merely k-linear. The complex C• ⊗ R′/zl is the direct sum of l copies of C•, indexed by zi for
i = 0, . . . , l − 1.

Note that the complex (C•)+, obtained by applying the formal power series operation to all
objects and differentials of C•, is the inverse limit (in the category of complexes of k-spaces) of
C• ⊗R′/zl.

Remark 7.6. We note one important difference between the formal power series operation defined
above and the operation of Definition 2.19. The latter operation is defined using an infinite direct
sum. Therefore, the question of whether it commutes with cohomology reduces to the question
of whether the underlying category satisfies Grothendieck’s axiom AB4 [Gro57], that is, whether
direct sums are exact. This is true for the categories of R-modules, of k-spaces, and of sheaves
of Abelian groups on a topological space [Wei94, p. 80]. By contrast, the formal power series
operation is defined using an infinite direct product, which commutes with cohomology if the
underlying category satisfies axiom AB4∗. This is true for the categories of R-modules and
k-spaces but not sheaves [Wei94, p. 80].
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The main technical preliminary result we need concerns the interaction of the formal power
series operation with the de Rham complexes of local cohomology modules on formal schemes.
For reference, we repeat in the statement of this proposition the notation we will use for the
remainder of this section.

Lemma 7.7. Let R = k[[x1, . . . , xn]] and let I be an ideal of R. Let R′ = R[[z]] and I ′ = IR′+(z).
Let I (respectively I ′) be the associated sheaf of ideals of OX (respectively OX′) where X =
Spec(R) and X ′ = Spec(R′). Let Y be the closed subscheme of X defined by I; via the natural
closed immersion X ↪→ X ′, we identify Y with the closed subscheme of X ′ defined by I ′, which
we also denote Y . Let P ∈ Y be the closed point. Then for all q, we have

Hq
P (X̂ ′,O

X̂′
)⊗ Ω•R ' (Hq

P (X̂,O
X̂

)⊗ Ω•R)+

as complexes of k-spaces, where the D(R, k)-structure on both local cohomology modules is given
by the inverse limit action of Definition 6.4.

The proof of Lemma 7.7 involves several ideas, so we begin with a lemma focusing on a single
local cohomology module, with no reference to its de Rham complex. We will appeal below not
only to this lemma but also to its proof.

Lemma 7.8. All notation is the same as in Lemma 7.7. For all q, we have

Hq
P (X̂ ′,O

X̂′
) ' (Hq

P (X̂,O
X̂

))+

as R′-modules.

Proof. For all l, let Jl be the ideal I lR′ + (zl). The families {Jl} and {(I ′)l} of ideals of R′ are
cofinal, and we have isomorphisms

R′/Jl = R′/(I lR′ + (zl)) ' R/I l ⊗R R′/zl

as R′-modules for all l (the R′-module structure on R/I l ⊗R R′/zl being defined via the natural
surjection R′→ R′/zl).

Denote by n (respectively m) the maximal ideal of R′ (respectively R). For all q, we have
isomorphisms

Hq
P (X̂ ′,O

X̂′
) ' lim
←−H

q
n(R′/(I ′)l) ' lim

←−H
q
n(R′/Jl),

the first isomorphism by Proposition 6.3 and the second by the cofinality of {Jl} and {(I ′)l}. We
saw above that R′/Jl ' R/I l ⊗R R′/zl as R′-modules, and therefore

Hq
n(R′/Jl) ' Hq

n(R/I l ⊗R R′/zl)

as R′-modules. We claim that the right-hand side is isomorphic to Hq
m(R/I l) ⊗R R′/zl as an

R′-module.
The R′-module R/I l ⊗R R′/zl is annihilated by a power of z, and so

H i
(z)(R/I

l ⊗R R′/zl) = R/I l ⊗R R′/zl

if i = 0, and is zero otherwise. The spectral sequence of Example 2.15 corresponding to the
composite functor Γn = ΓmR′ ◦ Γ(z) therefore degenerates at E2, and we have isomorphisms

Hq
n(R/I l ⊗R R′/zl) ' Hq

mR′(R/I
l ⊗R R′/zl)
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as R′-modules. By the change of ring principle [BS13, Theorem 4.2.1], it does not matter whether
we compute this last local cohomology module over R′ or over R′/zl, so in fact

Hq
mR′(R/I

l ⊗R R′/zl) ' Hq
m(R′/zl)

(R/I l ⊗R R′/zl)

as R′/zl-modules. Finally, since R′/zl is flat over R, the flat base change theorem [BS13,
Theorem 4.3.2] implies that

Hq
m(R′/zl)

(R/I l ⊗R R′/zl) ' Hq
m(R/I l)⊗R R′/zl

as R′/zl-modules. The previous two isomorphisms of R′/zl-modules are isomorphisms of R′-
modules, as well, since the R′-structures are defined using the natural surjection R′ → R′/zl.
Putting these isomorphisms together, we see that

Hq
n(R′/Jl) ' Hq

n(R/I l ⊗R R′/zl) ' Hq
m(R/I l)⊗R R′/zl

as R′-modules, for all l. As the isomorphisms of [BS13, Theorem 4.2.1, Theorem 4.3.2] are
functorial, the isomorphisms above form a compatible system, and passing to the inverse limit,
we have

Hq
P (X̂ ′,O

X̂′
) ' lim
←−H

q
n(R′/Jl) ' lim

←−H
q
m(R/I l)⊗R R′/zl,

and since lim
←−H

q
m(R/I l) ' Hq

P (X̂,O
X̂

) (again by Proposition 6.3), the rightmost module above

is isomorphic as an R′-module to (Hq
P (X̂,O

X̂
))+ by Lemma 7.4, as desired. 2

We now consider the de Rham complexes as well, and prove Lemma 7.7.

Proof of Lemma 7.7. We retain the notation introduced in the proof of Lemma 7.8. For all l and
s, let Jl,s = I l+sR′ + (zl). (Note that Jl,0 = Jl.) The families {Jl,s} (with s fixed) and {(I ′)l} of
ideals of R′ are cofinal. For all l and s, the derivations ∂1, . . . , ∂n induce (by the Leibniz rule)
k-linear maps R′/Jl,s → R′/Jl,s−1, as all of these derivations are z-linear. In turn, these maps
induce k-linear maps on local cohomology as described in § 6. We can therefore construct, for
every l, a ‘de Rham-like’ complex

0→ Hq
n(R′/Jl,n)→

⊕
16i6n

Hq
n(R′/Jl,n−1)→ · · ·→ Hq

n(R′/Jl,0)→ 0

using the derivations ∂1, . . . , ∂n. We write Hq
n(C•l ) for this complex (cf. Definition 7.10 below).

The argument in the proof of Lemma 7.8 applies to all terms of this complex, and using the
fact that the differentials in this complex do not involve z or dz, we see that this complex is
isomorphic to the complex(

0→ Hq
m(R/I l+n)→

⊕
16i6n

Hq
m(R/I l+n−1)→ · · ·→ Hq

m(R/I l)→ 0

)
⊗R′/zl,

which we write Hq
m(C•l )⊗R′/zl, again anticipating Definition 7.10. We now pass to the inverse

limit in l of both systems of complexes. For all s, we have

lim
←−
l

Hq
n(R′/Jl,s) ' Hq

P (X̂ ′,O
X̂′

)
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as R′-modules, by Proposition 6.3 and the cofinality of {Jl,s} and {(I ′)l}. Moreover, by the

definition of the inverse limit action, the differentials in the complex Hq
P (X̂ ′,O

X̂′
) ⊗ Ω•R are

given by taking the inverse limit of the differentials in the complexes Hq
n(C•l ). That is, we have

Hq
P (X̂ ′,O

X̂′
)⊗ Ω•R ' lim

←−H
q
n(C•l ),

for all l, as complexes of k-spaces. On the other hand, again using Proposition 6.3, we have

lim
←−H

q
m(R/I l) ' Hq

P (X̂,O
X̂

)

as R-modules, and, by the definition of the inverse limit action,

Hq
P (X̂,O

X̂
)⊗ Ω•R ' lim

←−H
q
m(C•l ),

for all l, as complexes of k-spaces. To conclude the lemma, it suffices to show that

lim
←−H

q
n(C•l ) ' (lim

←−H
q
m(C•l ))+

as complexes of k-spaces. We have already shown that we have isomorphisms Hq
n(C•l ) 'Hq

m(C•l )⊗
R′/zl that clearly form a compatible system, which implies

lim
←−H

q
n(C•l ) ' lim

←−H
q
m(C•l )⊗R′/zl,

and since lim
←−H

q
m(C•l ) ⊗ R′/zl ' (lim

←−H
q
m(C•l ))+ (by applying Lemma 7.4 to all objects in the

complex) the lemma follows. 2

We can now begin the proof of Theorem B(a). We have already reduced ourselves to the case
where R and R′ are as in the statement of Lemma 7.7. With R and R′ as in the statement of that
lemma, our goal is to compare the spectral sequence {Ẽp,qr,R} arising from the surjection R→ A,

to the spectral sequence {Ẽp,q
r,R′} arising from the surjection R′→ A. We will first prove that the

E2-objects of these spectral sequences are isomorphic. As we have identified these E2-objects in
Lemma 7.1, this claim is equivalent to the following proposition. As with Lemma 2.18, we will
later need not only the statement of this proposition, but the specific isomorphisms appearing
in its proof.

Proposition 7.9. All notation is the same as in Lemma 7.7. For all p and q, we have

Ẽp,q2,R = Hp
dR(Hq

P (X̂,O
X̂

)) ' Hp
dR(Hq

P (X̂ ′,O
X̂′

)) = Ẽp,q
2,R′

as k-spaces, where the de Rham cohomology is computed by regarding Hq
P (X̂,O

X̂
) as

a D(R, k)-module and Hq
P (X̂ ′,O

X̂′
) as a D(R′, k)-module.

Proof. The argument closely parallels that of Lemma 2.18. Consider the short exact sequence

0→ O
X̂′
⊗ Ω̂•X [−1]

ι−→ Ω̂•X′
π−→ O

X̂′
⊗ Ω̂•X → 0

of complexes of sheaves of k-spaces on X̂ ′, where ι is simply ∧ dz. This sequence is the analogue,
for completed sheaves, of the short exact sequence given in Definition 2.21, and consists of split
exact sequences of finite free O

X̂′
-modules. Apply Hq

P to the entire sequence of complexes: as
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formal completion and local cohomology commute with finite direct sums, we obtain a short
exact sequence

0→ Hq
P (X̂ ′,O

X̂′
)⊗ Ω•R[−1]→ Hq

P (X̂ ′,O
X̂′

)⊗ Ω•R′
π•q−→ Hq

P (X̂ ′,O
X̂′

)⊗ Ω•R→ 0

of complexes of k-spaces. The corresponding long exact sequence in cohomology (accounting for
the shift of −1) is

· · ·→ hp−1(Hq
P (X̂ ′,O

X̂′
)⊗ Ω•R)

∂z−→ hp−1(Hq
P (X̂ ′,O

X̂′
)⊗ Ω•R)

→ hp(Hq
P (X̂ ′,O

X̂′
)⊗ Ω•R′)

πpq−→ hp(Hq
P (X̂ ′,O

X̂′
)⊗ Ω•R)

∂z−→ hp(Hq
P (X̂ ′,O

X̂′
)⊗ Ω•R)→ · · · ,

where we know by Lemma 2.22 that, up to a sign, the connecting homomorphism is ∂z. By
Lemma 7.7, we have

Hq
P (X̂ ′,O

X̂′
)⊗ Ω•R ' (Hq

P (X̂,O
X̂

)⊗ Ω•R)+

as complexes of k-spaces. By Remark 7.6, the formal power series operation on the right-hand
side commutes with cohomology (since we are now applying this operation to k-spaces, not
sheaves). Taking the cohomology of both sides, we find

hp(Hq
P (X̂ ′,O

X̂′
)⊗ Ω•R) ' (hp(Hq

P (X̂,O
X̂

)⊗ Ω•R))+

as k-spaces for all p. For any k-space M , the action of ∂z on M+ is given in Definition 7.2,
and it is clear from this definition (since char(k) = 0) that coker(∂z : M+

→ M+) = 0 and
ker(∂z : M+

→ M+) ' M , the latter corresponding to the ‘constant term’ component of M+.
Returning to the displayed portion of the long exact sequence (with M = hp(Hq

P (X̂,O
X̂

)⊗Ω•R)),
the first ∂z is surjective, and so by exactness the unlabeled arrow is the zero map; this implies
that πpq is injective, inducing an isomorphism between the kernel of the second ∂z and

hp(Hq
P (X̂ ′,O

X̂′
)⊗ Ω•R′) = Hp

dR(Hq
P (X̂ ′,O

X̂′
)).

Since this kernel is isomorphic to hp(Hq
P (X̂ ′,O

X̂
) ⊗ Ω•R) = Hp

dR(Hq
P (X̂,O

X̂
)), the proof is

complete. 2

We next work toward the general case of Theorem B(a). Our goal is to construct a morphism
between the Hodge–de Rham spectral sequences {Ẽp,qr,R} and {Ẽp,q

r,R′} arising from the two

surjections R→ A and R′ → A which, at the level of E2-objects, consists of the isomorphisms
of Proposition 7.9 : by Proposition 2.10, this is enough. As in the proof of Theorem A(a), we
will construct an ‘intermediate’ spectral sequence {Ẽp,qr }. The analogue of Lemma 2.29, however,
will be significantly harder to prove, since we are working with inverse limits and must therefore
check various Mittag-Leffler conditions.

We begin with definitions of several complexes, collecting pieces of notation introduced in
the course of the preceding proofs together with some obvious variations.

Definition 7.10. All notation is the same as in Lemma 7.7.
(a) Let C•l be the complex

0→ R/I l+n→
⊕

1616n

R/I l+n−1
→ · · ·→ R/I l → 0
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defined using the derivations ∂1, . . . , ∂n. Note that this is a complex of R-modules with k-linear
differentials.

(b) Let C•l be the complex

0→ R′/Jl,n→
⊕

1616n

R′/Jl,n−1→ · · ·→ R′/Jl,0→ 0

defined using the derivations ∂1, . . . , ∂n, where for all l and s, Jl,s = I l+sR′ + (zl). This is a
complex of R′-modules with k-linear differentials, and we have C•l ' C•l ⊗R′/zl.

(c) Let Hq
m(C•l ) (respectively Hq

n(C•l )) be the complex obtained by applying local cohomology
functors to the previous two complexes. In the course of the proof of Lemma 7.7, we remarked
that Hq

n(C•l ) ' Hq
m(C•l )⊗R′/zl.

(d) Let

C̃l
•

=

(
0→ OX/I l+n→

⊕
1616n

OX/I l+n−1
→ · · ·→ OX/I l → 0

)
and

C̃•l =

(
0→ OX′/Jl,n→

⊕
1616n

OX′/Jl,n−1→ · · ·→ OX′/Jl,0→ 0

)
be the sheafified versions of the first two complexes, where Jl,s = J̃l,s for all l and s. These can

be viewed as complexes of sheaves of k-spaces on X̂ (respectively X̂ ′). We have Ω̂•X ' lim
←− C̃

•
l

and O
X̂′
⊗ Ω̂•X ' lim

←− C̃
•
l in the respective categories of complexes of sheaves.

(e) Finally, we consider a sheaf-theoretic variant of Definition 7.5. If F• is a complex whose
objects are sheaves of OX -modules and whose differentials are merely k-linear, the complex
F• ⊗OX′/zl is the direct sum of l copies of F•, indexed by zi for i = 0, . . . , l − 1. (At the level
of objects, F ⊗OX′/zl is shorthand for the OX -module F ⊗OX i∗(OX′/Z l), where i is the closed
immersion X ↪→ X ′ and Z is the sheaf of ideals defining this immersion.) As an example, we

have C̃•l ' C̃•l ⊗OX′/zl.
For the complexes of sheaves in Definition 7.10, we have corresponding spectral sequences

for local hypercohomology, and we will need to work with all of these.

Definition 7.11. If F• is a complex of sheaves of k-spaces on X̂ (or X̂ ′, which has the same
underlying space), the local hypercohomology spectral sequence for F• is the spectral sequence
defined in § 2.2 with respect to the functor ΓP of sections supported at the closed point. If
L•,• is any Cartan–Eilenberg resolution of F• (or, more generally, a double complex resolution
satisfying the conditions of Lemma 2.13), this spectral sequence is the column-filtered spectral
sequence associated with the double complex ΓP (X̂,L•,•). It begins Ep,q1 = Hq

P (X̂,Fp) and has

abutment Hp+q
P (X̂,F•). We introduce the following notation for the specific hypercohomology

spectral sequences we will consider below.

(a) The local hypercohomology spectral sequence for Ω̂•X will be denoted Ẽ•,••,R. (This is precisely
the Hodge–de Rham spectral sequence arising from the surjection R→ A.)

(b) The local hypercohomology spectral sequence for Ω̂•X′ will be denoted Ẽ•,••,R′ . (This is

precisely the Hodge–de Rham spectral sequence arising from the surjection R′→ A.)

(c) The local hypercohomology spectral sequence for O
X̂′
⊗ Ω̂•X will be denoted Ẽ•,•• .

(d) For all l, the local hypercohomology spectral sequence for C̃•l will be denoted (Ẽl)
•,•
•,R.

(e) For all l, the local hypercohomology spectral sequence for C̃•l will be denoted (Ẽl)•,•• .
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The key to the proof of Theorem B(a) is the following analogue of Lemma 2.29. Once this
lemma is established, the rest of the proof will closely parallel our work in § 2.

Lemma 7.12. Let Ẽ•,••,R and Ẽ•,•• be the spectral sequences of Definition 7.11. There is an
isomorphism

(Ẽ•,••,R)+ ∼−→ Ẽ•,•• ,

where the object on the left-hand side is obtained by applying the formal power series operation
to all the objects and differentials of the spectral sequence Ẽ•,••,R.

Lemma 2.29 was a consequence of the fact that the double complexes giving rise to the two
spectral sequences considered there were related by the +-operation of Definition 2.19. We were
therefore able to prove that lemma by working entirely at the level of double complexes. The
analogous reasoning fails here for reasons alluded to in Remark 7.6: the formal power series
operation is an infinite direct product. The obvious extension of this operation to sheaves need
not commute with the functor ΓP , because taking stalks of sheaves (a direct limit) and direct
products of sheaves (an inverse limit) need not commute. The proof of Lemma 7.12 will take
place at the level of spectral sequences, not merely double complexes.

We will give the proof of Lemma 7.12 in steps, as follows.

(1) lim
←− (Ẽl)

•,•
•,R, defined by taking the ‘term-by-term’ inverse limit of all objects and differentials

in the spectral sequences, is again a spectral sequence: each term is derived from its
predecessor by taking cohomology. (An identical proof shows that lim

←− (Ẽl)•,•• is a spectral
sequence.)

(2) The spectral sequences Ẽ•,••,R and lim
←− (Ẽl)

•,•
•,R are isomorphic. (An identical proof works for

Ẽ•,•• and lim
←− (Ẽl)•,•• .)

(3) For all l, the spectral sequences (Ẽl)•,•• and (Ẽl)
•,•
•,R⊗R′/zl are isomorphic, via isomorphisms

compatible with the transition maps for varying l (the latter spectral sequence, defined by
the natural extension of Definition 7.5 to spectral sequences, is a direct sum of l copies of
(Ẽl)

•,•
•,R).

(4) There is an isomorphism (Ẽ•,••,R)+ ∼−→ Ẽ•,•• of spectral sequences (the general statement).

Step (4) follows immediately from step (3) by applying Lemma 7.4 to all objects of the
spectral sequences, so we will not give it a separate proof below. Steps (2) and (3) are not
difficult. Step (1), which is necessary in order for the later steps to make sense, is more difficult
and depends crucially on our work in § 5.

Proof of step (1). We show first that the E2-term lim
←− (Ẽl)

•,•
2,R of the ‘term-by-term’ inverse limit

is obtained from the E1-term by taking cohomology: that is, we show that for all p and q, we
have isomorphisms

lim
←− (Ẽl)

p,q
2,R = lim

←−h
p(Hq

m(C•l )) ' hp(lim
←−H

q
m(C•l )) = hp(lim

←− (Ẽl)
•,q
1,R)

of k-spaces. This is the assertion that for the inverse system {Hq
m(C•l )} of complexes of k-spaces,

taking cohomology commutes with inverse limits. By Proposition 5.9, it suffices to check that
for all p and q the inverse systems {Hq

m(Cpl )} and {hp(Hq
m(C•l ))} both satisfy the Mittag-Leffler

condition. By [BS13, Theorem 7.1.3], each Hq
m(Cpl ) is an Artinian R-module; as the transition

maps in this inverse system are R-linear, induced by the canonical R-linear maps Cpl+1 → Cpl ,
the Mittag-Leffler condition for this first system is immediate.
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In order to verify the Mittag-Leffler condition for the second system, we consider the
Matlis dual of the first system. For all q and l, the differentials in the complex Hq

m(C•l ) have Matlis
duals by Proposition 3.21(a), since they are k-linear maps between Artinian R-modules. The
transition maps in the direct system {D(Hq

m(C•l ))} of complexes are R-linear in each degree,
and each D(Hq

m(Cpl )) is a finitely generated R-module (since it is the Matlis dual of an Artinian
R-module). In fact, by Theorem 6.1, D(Hq

m(Cpl )) is a direct sum of
(
n
p

)
copies of the R-module

Extn−qR (R/I l+n−p, R), and so lim−→D(Hq
m(Cpl )) is a direct sum of

(
n
p

)
copies of

lim−→Extn−qR (R/I l+n−p, R) ' Hn−q
I (R).

Finally, the de Rham complex of the D(R, k)-module Hn−q
I (R) is the direct limit of the Matlis

dual complexes D(Hq
m(C•l )), since the inverse limit of their Matlis duals is the de Rham complex

of D(Hn−q
I (R)) = Hq

P (X̂,O
X̂

) by Theorem 6.5 and the definition of the inverse limit action on

Hq
P (X̂,O

X̂
).

The direct system {D(Hq
m(C•l ))} thus satisfies the hypotheses of Corollary 5.31: it is a direct

system of complexes with k-linear differentials whose objects are finitely generated R-modules,
the transition maps are R-linear in each degree, and the direct limit is the de Rham complex
Hn−q
I (R)⊗Ω•R of a holonomic D(R, k)-module. We conclude from that corollary that for all p and

l the images of hn−p(D(Hq
m(C•l ))) in hn−p(D(Hq

m(C•l+s))) stabilize in the strong sense as s varies,
with finite-dimensional stable image. By Corollary 3.18 and Proposition 3.21, all the Matlis duals
(of objects and differentials) in the direct system {D(Hq

m(C•l ))} coincide with k-linear duals. Since
k-linear dual is a contravariant, exact functor, we thus have hn−p(D(Hq

m(C•l ))) ' (hp(Hq
m(C•l )))∨,

and by Lemma 5.13, the inverse system {hp(Hq
m(C•l ))} satisfies the Mittag-Leffler condition, as

desired.
Examining the proof of Lemma 5.13, we see that in fact we can conclude something stronger

than the Mittag-Leffler condition, namely the following: for all p and q, given l, there exists s
such that the image of hp(Hq

m(C•l+s)) in hp(Hq
m(C•l )) is a finite-dimensional k-space. That is,

the inverse system {hp(Hq
m(C•l ))} is eventually finite. Since any descending chain of k-subspaces

of a finite-dimensional k-space must terminate, it is clear that eventual finiteness implies the
Mittag-Leffler condition. But what is more, eventual finiteness is inherited by cohomology: if, for
any r, the inverse system {(Ẽl)p,qr,R} is eventually finite, so is the inverse system {(Ẽl)p,qr+1,R}, since

the objects (Ẽl)
p,q
r+1,R are subquotients of the objects (Ẽl)

p,q
r,R. By induction on r, we conclude that

the Er+1-term of the ‘term-by-term’ inverse limit, lim
←− (Ẽl)

•,•
r+1,R, is obtained from the Er-term

by taking cohomology, and so lim
←− (Ẽl)

•,•
•,R is a well-defined spectral sequence. 2

Proof of step (2). Since Ω̂•X ' lim
←− C̃

•
l as complexes of sheaves on X̂, we have projection maps

πl : Ω̂•X → C̃•l for all l. As described in § 2.2, each such projection map induces a morphism
between the corresponding local hypercohomology spectral sequences. By the universal property
of inverse limits, this family of projection maps induces a morphism of spectral sequences
Ẽ•,••,R → lim

←− (Ẽl)
•,•
•,R (where the right-hand side is a well-defined spectral sequence by step (1)).

We claim this is an isomorphism; by Proposition 2.10, it suffices to check this on the E1-objects
of both sides. By definition, for all p and q, we have Ẽp,q1,R = Hq

P (X̂, Ω̂p
X), a direct sum of(

n
p

)
copies of Hq

P (X̂,O
X̂

), and for all l, we have (Ẽl)
p,q
1,R = Hq

P (X̂, C̃pl ), a direct sum of
(
n
p

)
copies of Hq

m(R/I l+n−p). The induced map Ẽp,q1,R → lim
←− (Ẽl)

p,q
1,R is therefore a finite direct sum

of copies of the canonical map Hq
P (X̂,O

X̂
)→ lim
←−H

q
m(R/I l+n−p), which we already know to be

an isomorphism by Proposition 6.3. 2
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Proof of step (3). This is the only step in the proof where we can work entirely at the level of
the double complexes giving rise to the spectral sequences. Let l be given. Choose a Cartan–
Eilenberg resolution C̃•l → L

•,•
l in the category of sheaves of k-spaces on X̂. By Remark 7.6, this

category satisfies axiom AB4, and so direct sums are exact; furthermore, direct sums of injective
sheaves are again injective, and the functor ΓP commutes with direct sums. We conclude that
the double complex L•,•l ⊗OX′/zl (which is simply a finite direct sum of copies of L•,•l ) satisfies

the conditions of Lemma 2.13, and so the double complex ΓP (X̂,L•,•l ⊗OX′/zl) gives rise to the

local hypercohomology spectral sequence for the complex C̃•l ⊗OX′/zl ' C̃•l . On the one hand,

this spectral sequence is (Ẽl)•,•• by definition. On the other hand, since ΓP commutes with direct
sums, we have ΓP (X̂,L•,•l ⊗ OX′/zl) ' ΓP (X̂,L•,•l ) ⊗ R′/zl as double complexes of k-spaces,
and since cohomology of k-spaces commutes with direct sums, this isomorphism induces an
isomorphism (Ẽl)•,•• ' (Ẽl)

•,•
•,R⊗R′/zl at the level of spectral sequences, as desired. The fact that

these isomorphisms are compatible with the transition maps for varying l follows from the fact
that the same is true for the isomorphisms C̃•l ⊗ OX′/zl ' C̃•l , since as discussed in § 2.2, the
association of a local hypercohomology spectral sequence with a complex of sheaves is functorial
in the complex. This completes the proof of Lemma 7.12. 2

We are now ready to complete the proof of Theorem B.

Proof of Theorem B(a). Consider again the short exact sequence from the proof of Proposition 7.9:

0→ O
X̂′
⊗ Ω̂•X [−1]

ι−→ Ω̂•X′
π−→ O

X̂′
⊗ Ω̂•X → 0.

As described in § 2.2, the morphism of complexes π induces a morphism between the
corresponding spectral sequences for local hypercohomology, given in Definition 7.11. That is,
there is an induced morphism

π•,•• : Ẽ•,••,R′ → Ẽ•,•• .

Identifying first Ẽ•,•• with (Ẽ•,••,R)+ (by Lemma 7.12) and then Ẽ•,••,R with the ‘constant term’

component of (Ẽ•,••,R)+, we see that this further induces a morphism

ψ•,•• : Ẽ•,••,R′ → Ẽ•,••,R

given in every degree by π•,•• followed by the projection of Ẽ•,•• ' (Ẽ•,••,R)+ on its constant term

component. If r = 2, the maps ψp,q2 are precisely the inverses of the isomorphisms

Hp
dR(Hq

P (X̂,O
X̂

)) ' Hp
dR(Hq

P (X̂ ′,O
X̂′

))

appearing in the proof of Proposition 7.9, which were induced by the morphism of complexes π
and the projection of (Ẽp,q2,R)+ = (Hp

dR(Hq
P (X̂,O

X̂
)))+ on its constant term component. Therefore

the morphism ψ•,•• of spectral sequences is an isomorphism at the E2-level. By Proposition 2.10,
it follows that ψ is an isomorphism at all later levels, including the abutments. The proof is
complete. 2

8. Some open questions

In this final section, we pose two questions and state a conjecture left open by our work above.
Our first question concerns coefficient fields. A priori, the isomorphism classes of the spectral

sequences {Ep,qr,R} and {Ẽp,qr,R}, as well as the integers ρp,q of Definition 2.23, depend on the choice
of coefficient field k ⊂ A.
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Question 8.1. Are the isomorphism classes of the spectral sequences {Ep,qr,R} and {Ẽp,qr,R}, as well
as the integers ρp,q of Definition 2.23, independent of the choice of coefficient field k ⊂ A?

In the case where the local cohomology modules Hq
I (R) are supported only at the maximal

ideal m, the ρp,q are indeed independent of this choice by Remark 2.24 (since the λp,q are known
to be independent), which provides supporting evidence for a positive answer to Question 8.1.

Our second question concerns degeneration of the spectral sequences. In general, the E1-
objects Ep,q1 = Hq

Y (X,Ωp
X) in the local Hodge–de Rham homology spectral sequence (for a

complete local ring A with coefficient field k of characteristic zero) are not even finitely generated
as R-modules (where R � A is as in § 2), so the spectral sequence need not degenerate at E1.
However, this obstruction does not exist for the E2-term since, by Theorem A(b), the E2-objects
are finite-dimensional k-spaces. Therefore, the question of possible degeneration at E2 reduces
to a comparison of dimensions: do we have equalities dimk Hl

Y (X,Ω•X) =
∑

p+q=l dimk E
p,q
2 =∑

p+q=l dimkH
p
dR(Hq

I (R)) for all l?

Question 8.2. Does the local Hodge–de Rham homology spectral sequence (for a complete local
ring A with coefficient field k of characteristic zero) degenerate at E2?

Note that by Theorems 1.1(c) and D, degeneration of the homology spectral sequence at
E2 is equivalent to degeneration of the cohomology spectral sequence at E2, so it is enough to
answer the question for the homology sequence. Even if the answer to Question 8.2 is negative
in general, it would be interesting to find conditions on the complete local ring A under which
such degeneration occurs.

Finally, we restate a conjecture which appeared already in § 1.

Conjecture 8.3. Let A, k, and R be as in the statement of Theorem A. Beginning with the
E2-terms, the homology and cohomology spectral sequences are k-dual to each other: for all
r > 2, and for all p and q, En−p,n−qr ' (Ẽpqr )∨, and similarly for the differentials.

So far, we have only proved the k-duality asserted in Conjecture 8.3 for the E2-objects. We
remark that although our proof of Theorem B(a) is independent of Theorem A, the former
becomes an immediate corollary of the latter if Conjecture 8.3 is known.
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des faisceaux cohérents, première partie, Publ. Math. Inst. Hautes Études Sci. 11 (1961), 5–167.
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