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Abstract

Like Lewis, many philosophers hold reductionist accounts of chance (on which claims about
chance are to be understood as claims that certain patterns of events are instantiated) and
maintain that rationality requires that credence should defer to chance (in the sense that under
certain circumstances one’s credence in an event must coincide with the chance of that event). It
is a shortcoming of an account of chance if it implies that this norm of rationality is unsatisfiable
by computable agents. This shortcoming is more common than one might have hoped.

1. Introduction
David Lewis was a reductionist about chance.1 He thought that a full description of the
pattern of instantiation of fundamental properties and relations at a possible world would
not mention any facts about chances. But Lewis suggested that our actual cognitive
abilities and limitations determine an ideal scientific theory for each possible world—the
theory that best balances (by our standards) simplicity with informativeness about the
pattern of events at that world.2 On his Best System Account of chance the true claims about
chance at a world are those that are implied by the ideal theory for that world.

Lewis also had an account of the relation between chance and rational credence:
the Principal Principle.3 Our primary interest here will be in a consequence of the
Principal Principle: A credence function is rationally permitted only if, for any event
E when conditionalized on the chance of E being x, c assigns credence x to E.

For Lewis, the Principal Principle tells us something about what it means to be
rational and at the same time encapsulates important truths about the concept of
chance.4 I suggest the following as an example. The Principal Principle gives us
possible grounds for criticizing reductionist accounts of chance: If we are thinking of
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1 See Lewis (1986, 1994).
2 Following Loewer (2004), I will speak of informativeness where Lewis speaks of strength and fit.
3 See again Lewis (1986, 1994).
4 In addition to Lewis (1986, 1994), see Letters 659 and 660 in Beebee and Fisher (2021).
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theories of chance as something like summaries meant to be used by beings like us,
there is something pathological about a theory of chance relative to which no priors
count as rationally permitted.

I aim here to explain why it is harder than one might expect to find a satisfying
package combining the Best System Account of chance and the Principal Principle.5

One can show that for a certain prima facie attractive version of the Best
System Account of chance, the only priors that satisfy the Principal Principle are
non-computable. So fans of the Lewisian package must either find a more suitable
version of the Best System Account, weaken the Principal Principle, or maintain that
rationality requires us to perform tasks beyond the capability of any Turing machine.6

2. Mathematical framework
A binary sequence is a map S : N� ! 0; 1f g. We denote by 2ω the set of all binary
sequences. For any binary sequence S and natural number n, we write S↾n for the
binary string consisting of the first n bits of S. If τ is a binary string, then we denote by
⟦τ⟧ the set of all binary sequences whose initial bits are given by τ. We call such ⟦τ⟧
the basic subsets of 2ω.

We will call a subset of 2ω an event if it can be constructed out of basic subsets by
taking complements and unions a countable number of times in any order.7

A probability measure on 2ω is a map ν that assigns numbers between 0 and 1
(inclusive) to events, that assigns 1 to 2ω, and that is countably additive
(i.e., if E1; E2; . . . are pairwise disjoint events, then ν [Ek� � � P

ν Ek� �). Any such
map is completely determined by its behavior on basic subsets.

A binary sequence S is computable if there is a Turing machine that on input of any
n 2 N gives as output S↾n. A real number x is computable if there exists a Turing
machine that on input n returns a rational number within 1=n of x. A probability
measure ν on 2ω is computable if there exists a Turing machine that on input of n and
binary string τ returns a rational number within 1=n of ν ⟦τ⟧�� .

If S is a binary sequence then the Dirac measure δS concentrated on S is the
probability measure that assigns probability 1 to event E if S 2 E and assigns
probability 0 to E otherwise. A Dirac measure is computable if and only if the sequence
it is concentrated on is.

If r is a number (strictly) between zero and one, then the Bernoulli measure νr with
parameter r is the probability measure that, for any binary string τ containing ‘ 0s
and m 1s, assigns the basic subset ⟦τ⟧ probability r‘�1 � r�m. We call ν:5 the fair coin
measure. A Bernoulli measure is computable if and only if its parameter is.

3. Worlds
We will be concerned with simple worlds whose histories can be encoded in binary
sequences: At each such world, time has the structure of the natural numbers and the

5 For (all too) full details, see Belot (2023).
6 It is convenient here to focus on the Lewisian package because of its clarity and precision, but it is far

from being the only account of chance, credence, and their relation that faces this sort of problem.
7 For this (transfinite) construction, see, for example, Folland (1999, x 1.6). The basic subsets generate

the product topology on 2ω: The family of events is the corresponding σ-algebra of Borel sets.
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history of such a world just tells us, for each time, whether or not a single property is
instantiated at that time. We work with these worlds in order to have a precise and
tractable framework in which to interpret Lewis’s ideas about chance and credence.
The lessons we learn can be translated to richer settings (our “possible worlds” could
always be interpreted as subsystems of more interesting worlds).

A probability measure ν on 2ω can be thought of as an instruction manual for
building a world. Nature is equipped with a set of coins with each possible bias.
A probability measure ν on 2ω tells Nature to flip a coin with bias ν ⟦0⟧� � to determine
whether the first bit is a 0. More generally, ν tells nature to flip a coin of bias
ν�⟦τ0⟧j⟦τ⟧� to determine whether the next bit will be 0, given that τ gives the history
so far.8 A Dirac measure δS instructs Nature to construct a history by flipping coins of
maximal bias in a way guaranteed to generate S. A Bernoulli measure νr tells Nature to
generate each bit by flipping a coin of bias r.

4. Chance and credence
Reductionism about chance is the thesis that chance-y facts supervene on non-
chance-y facts. So in our context, a reductionist account of chance can be encoded in a
map from 2ω to the space of probability measures over 2ω (this map will be merely
partially defined if there are lawless worlds without chance facts). We call a
probability measure λ a chance law of such an account if the relevant map assigns it to
some world.

For present purposes, a Bayesian prior is a probability measure on 2ω that assigns
positive probability to each basic subset of 2ω.9

It has seemed to many that rationality requires credence to defer to chance in a
certain sense: In some situations, if you are rational, then your credence in an event
must coincide with the chance of that event.

Knowing only that the chance of drawing a red ball from an urn is 0.95, everyone
agrees, in accordance with the law of likelihood, that a guess of “red” about some
trial is much better supported than one of “not-red.” But nearly everyone will go
further, and agree that 0.95 is a good measure of the degree to which “red” is
supported by the limited data. (Hacking 1965, 136)

[T]he chancemaking pattern in the arrangement of qualities must be something
that would, if known, correspondingly constrain rational credence. Whatever
makes it true that the chance of decay is 50% must also, if known, make it
rational to believe to degree 50% that decay will occur. (Lewis 1994, 478)

Fix a reductionist account of chance (such as the Best System Account).
Corresponding to any chance law λ of the theory, there is the set of worlds Λ at
which λ gives the chance facts. We call this set the chance hypothesis corresponding to

8 So a probability measure on 2ω gives the complete set of what Lewis (1986, 97) calls “history to
chance conditionals”—and hence gives what he calls “the complete theory of chance” for a world.

9 So we are forbidding rational agents to be certain a priori that any particular finite data set will
never arise. Note that the set of binary strings is countable.
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that law. This is the chancemaking proposition: the proposition that the chance facts
are given by λ.

Definition 1. (Chance-Credence Principle). Relative to a given reductionist
account of chance, a prior µ on 2ω satisfies the Chance-Credence Principle if,
for any chance law λ with chance hypothesis Λ and for any event A, we have
µ�AjΛ� � λ A� �.

The requirement that rational priors should satisfy the Chance-Credence Principle
for a given reductionist theory of chance is a weak form of Lewis’s Principal
Principle.10

A prior µ satisfies the Chance-Credence Principle for a given reductionist theory of
chance if and only if: (i) the theory of chance admits only countably many chance laws
λ1; λ2; . . . (with chance hypotheses Λ1;Λ2; . . .); (ii) each chance law λk of the theory is
proper, in the sense that λk Λk� � � 1; and (iii) µ can be written as a weighted sum of
probability measures in which each λk appears with non-zero weight (and in which
any other summands are concentrated on the set of lawless worlds).

5. The Best System Account
Lewis (1994, x 4) tells us a bit about the map that encodes his favored reductionist
theory of chance. He works in the context of finite worlds that can be encoded in
binary strings. In this context, under a straightforward frequentist approach a world
σ would be assigned a Bernoulli measure νr as its chance law if and only if r gives the
relative frequency of 0s at σ. Lewis emphasizes that his Best System Account departs
in two ways from this sort of frequentism.

• Some worlds will not be assigned a Bernoulli measure as their Best-System
chance law: some worlds exhibit patterns that render it natural to think of
Nature as generating bits by following instructions that call for a coin
of bias r1 to be flipped to generate the first bit; a coin of bias r2 to be flipped to
generate the second bit; and so on. As an extreme case, Lewis mentions
a world where history alternates between 0 and 1, which is naturally thought
of as generated by alternating between flipping coins with maximal bias in favor
of 0 and 1—in other words, the chance facts there are encoded in a Dirac
measure.

• On the other hand, Lewis thinks that in some cases the chance law at a world
should be a Bernoulli measure νr even though r does not give the relative
frequency of 0s at that world (e.g., in a case where the relative frequency of 0s at
a world is given by a messy number r� close to :5 then the fair coin measure may
provide a better candidate than νr� to be the Best-System chance law of the
world—although of course for long-lived worlds, the chance of getting a relative
frequency of 0s differing even a little from :5 by tossing a fair coin will be
minuscule).

10 On this point see Lewis (1986, 276f.) and Pettigrew (2012, fn. 4).
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How does this look when transposed to the setting of worlds whose histories are
coded in infinite binary sequences? It is helpful to note two important features of the
infinite context.

• The idea behind the Best System Approach is that the chance facts at a world are
given by the best scientific summary of that world—where best means
something like best by our ordinary scientific standards. It is crucial to this picture,
then, that the systems in competition be finitarily specifiable objects—
otherwise, the question of which of them is best according to ordinary scientific
standards loses all sense. The specification of an arbitrary real number is an
infinitary task—requiring, in general, the specification of infinitely many bits. So
the specification of an arbitrary probability measure on 2ω is infinitary twice
over—requiring, in general, the assignment of a real number to each of the
infinitely many binary strings. Now, as Turing (1936, 236) tells us: “The
‘computable’ numbers may be described briefly as the real numbers whose
expressions as a decimal are calculable by finite means.” In the same way, the
finitarily specifiable probability measures are the computable probability
measures. So in the infinite context, only computable measures should be
eligible candidates to be chance laws under the Best System Approach.

• In this setting there is a natural way to make precise the notion of a random-
looking sequence: the notion of a Martin–Löf random sequence.11 If S is a binary
sequence and µ is a computable probability measure, then, roughly speaking,
S is µ-Martin–Löf random just in the case that S exhibits no finitarily specifiable
patterns of behavior that would be arbitrarily surprising to an agent expecting to
see a data stream generated by µ.12

Example 1. If a computable Bernoulli measure νr considers a binary sequence S to be
Martin–Löf random, then: S is non-computable; the relative frequency of 0s in S is r;
each finite string occurs infinitely often in S (and with the right relative frequency); as
one looks at longer and longer initial segments, one finds that the relative frequency
of 0s is greater than r infinitely often (and less than r infinitely often); and, further, S
satisfies every other effectively specifiable criterion for a data stream to be sampled
from νr .

I claim that any plausible version of the Best System Analysis should conform to
the following constraints.

11 For details, see, for example, Shen et al. (2017, Chapter 3). Here is the rough idea: A sequence is not
Martin–Löf random relative to a given computable measure µ just in the case that there is an effectively
definable µ-nullset of 2ω to which it belongs.

12 If µ � 10�6δ0̄ � 1 � 10�6� �δ1̄ (where 0̄ is the all-0s sequence and 1̄ is the all-1s sequence), then an
agent expecting to see data sampled from µ will be very surprised to see a data set beginning with an
initial 0—but no more surprised to see an all-0 data set of any larger size. An agent expecting to see data
sampled from the fair coin measure would not be very surprised by an initial 0—but would be arbitrarily
surprised by arbitrarily large all-0 data sets.
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BS1 If S is assigned chance law λ; then S is Martin–Löf random relative to λ.

BS2 Each computable sequence is assigned a law of chance.

BS3 A sequence is assigned a computable Bernoulli measure νr as its law of
chance if and only if it is νr-Martin–Löf random.

Remark 1. (On BS1). Let S be a sequence and λ a computable measure. If S is not
λ-Martin–Löf random then a computable agent whose data consists of sufficiently
long initial segments of S will eventually be in a position to reject at any level of
significance the hypothesis that the data is being sampled from λ—which would
appear to rule out the possibility that the Best System Account ratifies λ as the chance
law for S. Note that each computable probability measure assigns measure one to the
set of sequences that it considers Martin–Löf random.13

Remark 2. (On BS2). Let S be computable. Then δS is prima facie a very good
candidate to be a chance law for S: S is δS-Martin–Löf random; δS, being computable,
is only finitely complex; at the same time, it gives a maximally informative
characterization of the infinite object S. It may be that some simpler measure achieves
a better balance of simplicity and informativeness (maybe S begins with a long string
that looks like it was generated by flipping a fair coin before settling down to a regular
pattern).14 So perhaps δS is not the Best-System chance law of S—but given that δS is
available as an option, it is implausible that our ordinary standards would decree that
S has no chance law whatsoever. Note that it then follows via BS1 that the chance law
λ of a computable sequence S must satisfy λ Sf g� � > 0.15

Remark 3. (On BS3). Suppose that S is Martin–Löf random relative to a computable
Bernoulli measure νr . Then there is a sense in which νr provides a maximally simple
theory of S: If S is also Martin–Löf random relative to µ, then, as µ is conditionalized
on longer and longer initial segments of S, the probabilities that it gives for the next
bit to be 0 must converge to r.16 It is easy, however, to generate rivals to νr that are in
a sense more informative than it: If τ is any initial segment of S, then S will be Martin–
Löf random relative to the measure ντr that says that the initial bits of history are
given by τ and the rest generated by tossing a coin of bias r. So, intuitively, if S begins
in some striking way—say with a hundred consecutive 0s—but otherwise looks like it
was generated by flipping a fair coin, then a measure of the form ντ:5 would offer a
better balance of informativeness and simplicity than ν:5 does. But I think that this
intuition is an artifact of our habitual attention to small data sets. Maybe if the first
three tosses of a coin come up Heads, we are a bit suspicious that the coin is not fair—
but this suspicion is washed away when we see enough data to be reassured that each

13 Since there are only countably many Turing machines, there can be only countably many effective
µ-nullsets—and the union of countably many µ-nullsets is a µ-nullset.

14 Thanks to Cian Dorr for emphasizing this point to me.
15 Since S is computable, Sf g is an effectively definable λ-nullset if it is a λ-nullset.
16 See Vovk (1987, Theorem 3).
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three-bit string occurs equally often (and in no special pattern). We should have the
same reaction to a random-looking binary sequence that begins with a hundred 0s; by
the time you have seen the billionth block of a billion consecutive 0s, that initial
hundred will not look impressive anymore—because you will have seen that each
one-hundred-bit string occurs (essentially) equally often (and in no special pattern).

6. Trouble
BS1–BS3 and the Chance-Credence Principle are mutually consistent. Consider the
version of the Best System Account in which each computable sequence is assigned
the corresponding Dirac measure as its chance law, each non-computable sequence is
assigned a computable Bernoulli measure as its chance law if and only if it is Martin–
Löf random with respect to it, and all other sequences are lawless. Then any prior that
can be written as a (non-trivial) weighted sum of each of the countably many
computable Dirac measures and computable Bernoulli measures will satisfy the
Chance-Credence Principle.

But no computable prior can satisfy the Chance-Credence Principle for any
reductionist account of chance obeying BS1 and BS2. As noted above, BS1 and BS2
imply that each computable sequence S is assigned a chance law that assigns Sf g
positive probability. It follows that if a prior µ satisfies the Chance-Credence
Principle for an account of chance obeying BS1 and BS2, then it must be possible to
write µ as a weighted sum of probability measures in which each computable Dirac
measure appears with positive weight. We will show that no such prior can be
computable.17 Recall that S↾k is the binary string consisting of the first k bits of S. So
µ�⟦S↾ n� 1� �⟧j⟦S↾n⟧� is the probability that µ gives to seeing the next bit of S after
having been shown the first n bits of S. Let us say that prior µ learns sequence S if,
after seeing sufficiently long initial segments of S, µ is always able to correctly predict
the next bit with credence exceeding some fixed cut-off.18 Consider any prior µ that
can be written in the form µ :� ν� c � δS, where S is a binary sequence, c > 0, and ν is
a measure that considers Sf g a nullset. Since ν Sf g� � � 0, we can make ν ⟦S↾n⟧� �—and
hence also ν ⟦S↾ n� 1� �⟧� �—as small as we like by choosing n sufficiently large.19

It follows that µ learns S. So, in particular, if µ satisfies the Chance-Credence Principle
for a Best System Account obeying BS1 and BS2, then µ must learn each computable
sequence. But given any computable prior µ, we can construct a computable binary
sequence S�µ that µ does not learn: S�µ consists of blocks of 0s separated from each
other by individual 1s; a 1 is called for whenever µ has just seen at least one 0 and
thinks that it is more likely than not that the next bit will be a 0. So no computable
prior can satisfy the Chance-Credence Principle for a reductionist account of chance
obeying BS1 and BS1.

17 The following is a variant of the diagonalization argument of Putnam (1963).
18 For what follows, we need to choose a computable cut-off C such that there is no string τ with

µ ⟦τ⟧� � � C. This is always possible (otherwise we could useµ to show that the computable sequences are
uniformly computable—which they are not).

19 Because probability measures are continuous from above—see, for example, Folland (1999,
Theorem 1.8).
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A variant of this argument shows that no computable probability measure can be
written as a weighted sum of probability measures in which each computable
Bernoulli measure appears with non-zero weight—from which it follows that no
computable prior can satisfy the Chance-Credence Principle for any reductionist
account of chance obeying BS3.

7. Options
Roughly speaking, the problem that we have run into is that on Lewis’s Best System
Account, the chance laws at a world are just good scientific summaries of the patterns
of events at that world; and his Principal Principle implies that if you are rational,
then to the extent that you are confident in a chance hypothesis it should guide your
estimates of probability. Taken together, the package seems to imply that in order to
be rational, you need to be a certain sort of universal learner: Whatever the chance
law at your world, if you are a good scientist and you see enough data, you should
become confident in something like that law and so you should eventually mimic it in
your estimates of probability. As Lewis (1986, 121) puts it: “if we start with a
reasonable initial credence function and do enough feasible investigation, we may
expect our credences to converge to the chances.” But this is a setting in which no
computable universal learner can exist.

I do not think we should rest content with an account of chance and credence that
tells us that rationality requires us to adopt a non-computable credence function—
any more than we would be satisfied with an account of rationality that required
rational agents to be able to solve the halting problem. So I think we ought to be
interested in revising some part of the framework used above, rejecting one or more
of BS1–BS3, or weakening the Chance-Credence Principle. I end with a few
observations about these options.

(1) Would countenancing rational credal states represented by merely finitely
additive probability measures help? No. For suppose that a prior M of this kind
exists such that: (i) for any computable S, M Sf g� � > 0; and (ii) M ⟦τ⟧� � is defined
for each binary string τ. Then there must exist a countably additive µ such that
µ ⟦τ⟧� � � M ⟦τ⟧� � for each string τ, and such that µ Sf g� � > 0 for each
computable sequence S.20 Our diagonalization argument above then tells us
that such an M cannot be computable even in the sense that its restriction to
basic sets is computable.

(2) Our Chance-Credence Principle requires that each law of chance λ be proper,
in the sense that it assigns probability one to its own chance hypothesis Λ. We
could relax this restriction to allow λ Λ� � 2 0; 1� 	. In that case it would be
natural to replace the Chance-Credence Principle by the following.21

20 See Propositions 3.2.7 and 3.3.1 of Bhaskara Rao and Bhaskara Rao (1983).
21 This stands to the New Principle of Hall (1994) and Lewis (1994) as the Chance-Credence Principle

stands to the Principal Principle of Lewis (1986). For another direction in which one might generalize the
Principal Principle in the face of improper laws of chance, see Roberts (2001) and Ismael (2008).
For critical discussion, see Briggs (2009).
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Definition 2. (New Chance-Credence Principle). Relative to a given reductionist
account of chance, a prior µ on 2ω satisfies the New Chance-Credence Principle if,
for any chance law λ with chance hypothesis Λ and for any event A, we
have µ�AjΛ� � λ�AjΛ�.

But this turns out to be of no help with the problem we have run into above
concerning accounts of chance satisfying BS1 and BS2.

(3) Some philosophers amend the Principal Principle to require priors to satisfy
substantive conditions relative to chance laws only if they assign the
corresponding chance hypotheses positive credence.22 I reject such approaches
on the grounds that the amended principle is too weak to embody the
requirement of learnability of chances by rational priors that Lewis, rightly in
my mind, built into the Principal Principle (consider, e.g., a prior concentrated
on the lawless worlds of a reductionist account of chance).

(4) We could replace BS2 with the assumption that the set of computable
sequences to be assigned laws of chance is a set that is learnable in sense
considered above (and proceed analogously with BS3). There is a sense in
which the sets of so-learnable sequences are those that can be computed
quickly.23 So in making this move, there is a sense in which the computable
sequences that we deem lawless are ones that exceed a certain complexity
cut-off—which might seem consonant with the spirit of the Best System
Approach. Maybe. But there is always going to be a worry about arbitrariness
here: If a set of computable binary sequences is learnable in the relevant sense,
then so is the result of enlarging that set by adding any finite set of computable
binary sequences to it; and if two sets of computable sequences are learnable in
this sense, then so is their union.

(5) There are many notions of learning that one might substitute for the one
implicit in the Principal Principle—and thereby construct weaker alternatives
to the Chance-Credence Principle that may comport better with computability.
One possibility would be to require that as a rational prior is conditionalized on
longer and longer initial segments of a (typical) sequence associated with a
given chance law, its probability estimates for the next bit converge to those
given by that chance law (conditional on the same data).24 An interesting
feature of this requirement is that it is consistent with BS3: the so-called
indifference (or Bayes–Laplace) prior meets the requisite condition with respect
to each computable Bernoulli measure. But problems remain with BS1 and BS2:
A family of Dirac measures is learnable in this weaker sense if and only if it is
learnable in the sense relevant to the Chance-Credence Principle.

The moral is: work remains to be done for anyone who is attracted to Lewis’s accounts
of chance and credence and who is also inclined to take computability to be a
constraint on rational priors.

22 For this approach, see, for example, Pettigrew (2012).
23 See Blum and Blum (1975, 127).
24 For this notion see Kalai and Lehrer (1994).
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