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We construct an autoregressive moving average (ARMA) model consisting of the history
and random effects for the streamwise velocity fluctuation in boundary-layer turbulence.
The distance to the wall and the boundary-layer thickness determine the time step and
the order of the ARMA model, respectively. Based on the autocorrelation’s analytical
expression of the ARMA model, we obtain a global analytical expression for the
second-order structure function, which asymptotically captures the inertial, dynamic and
large-scale ranges. Specifically, the exponential autocorrelation of the ARMA model arises
from the autoregressive coefficients and is modified to logarithmic behaviour by the
moving-average coefficients. The asymptotic expressions enable us to determine model
coefficients by existing parameters, such as the Kolmogorov and the Townsend–Perry
constants. A consequent double-log expression for the characteristic length scale is
derived and is justified by direct numerical simulation data with Reτ ≈ 5200 and
field-measured neutral atmospheric surface layer data with Reτ ∼ O(106) from the Qingtu
Lake Observation Array site. This relation is robust because it applies to Reτ from
O(104) to O(106), and even when the statistics of natural ASL deviate from those of
canonical boundary-layer turbulence, e.g. in the case of imbalance in energy production
and dissipation, and when the Townsend–Perry constant deviates from traditional values.
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Figure 1. A schematic diagram of the two points in space used for autocorrelation and second-order structure
function.

1. Introduction

Coherent structures are important for understanding boundary-layer turbulence (Robinson
1991; Schoppa & Hussain 2002; Jiménez 2018). In the logarithmic region, where the
mean streamwise velocity logarithmically depends on the distance to the wall, z, and
beyond, various types of coherent motions on a wide range of scales are important for flow
dynamics, such as the wall-bounded eddies (Yang, Willis & Hwang 2019; Puccioni et al.
2023) and large-scale motions with a streamwise scale of the order of the boundary-layer
thickness δ (Kim & Adrian 1999; Ganapathisubramani et al. 2005; Hutchins & Marusic
2007; Hutchins et al. 2012; Sillero, Jiménez & Moser 2014). These energy-containing
motions contribute to the turbulent skin-friction generation (de Giovanetti, Hwang &
Choi 2016), and transport of kinetic energy and Reynolds stress (Guala, Hommema &
Adrian 2006; Balakumar & Adrian 2007; Wang & Zheng 2016). The two-point correlation
of the fluctuating velocity (Wallace 2014) is widely used to identify the characteristic
scales of these coherent structures (Kovasznay, Kibens & Blackwelder 1970; Tutkun
et al. 2009; Bailey & Smits 2010; Liu, Wang & Zheng 2019b). The common practice
is obtaining a length scale corresponding to an artificial correlation threshold (Zhou
et al. 1999; Hutchins, Hambleton & Marusic 2005; Dennis & Nickels 2011). Liu, Wang
& Zheng (2017) summarized the dependence of streamwise, spanwise and wall-normal
characteristic length scales on the distance to the wall for varying friction Reynolds
number Reτ in a range of three orders of magnitude. In particular, using a threshold value
of 0.05, the streamwise length scales normalized by δ show an approximate logarithmic
dependence on z/δ. However, this intriguing dependence is empirical and remains to be
understood.

We focus on the two-point correlation of streamwise velocities, i.e. the autocorrelation,
with a fixed distance to the wall, illustrated in figure 1. The autocorrelation Ruu relates to
the second-order structure function through

〈�u2(r)〉 = 〈[u(x1 + rex)− u(x1)]2〉 = 2〈u2〉 − 2〈u1u2〉 = 2〈u2〉 − 2Ruu(r), (1.1)

where u1 = u(x1) and u2 = u(x1 + rex), with ex the unit vector in the streamwise
direction, are fluctuating velocities at two points with streamwise displacement r, and the
angular brackets denote the ensemble average. Thus, we can understand the behaviour
of autocorrelation based on the existing theories of the second-order structure function
〈�u2〉.

Different ranges of the second-order structure function are discovered in the logarithmic
region. In the dissipation range, where r is of or smaller than the order of the Kolmogorov
microscale lν = (ν3/ε)1/4 with ν the viscosity and ε the energy dissipation rate, 〈�u2〉 ∼
r2 (Frisch 1995). For scales larger than lν , three ranges depicted in figure 2 are
defined (cf. Chamecki et al. 2017). The inertial range covers the scales between the
dissipation scale (lν) and the distance to the wall (z), where Kolmogorov’s expression
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Figure 2. An illustration of the three ranges of the second-order structure function in log-normal coordinates.
Here, η1 and η2 are the dimensionless lower and upper ends of the dynamic range.

(Kolmogorov 1941) well describes the second-order structure function (de Silva et al.
2015). With intermittency considered, Anselmet et al. (1984) proposed to express 〈�u2〉
as

〈�u2〉 = C2 (εr)2/3
(r

l

)ξ2−2/3
, (1.2)

where C2 is the Kolmogorov constant, l is a characteristic length scale and the departure
of ξ2 from 2/3 captures the turbulent intermittency (Meneveau & Sreenivasan 1987;
She & Leveque 1994). de Silva et al. (2015) chose l = z, and by introducing the local
production-dissipation balance ε ≈ u3

τ /(κz) (Pope 2000) with uτ the friction velocity and
κ the von Kármán constant, they obtain

〈�u+2〉 = M∗
2

(
r
z

)ξ2

, lν � r < z, (1.3)

where the superscript ‘+’ denotes the velocity increment normalized by uτ and M∗
2 =

C2κ
−2/3. For scales larger than z but smaller than the boundary layer thickness δ, the

dynamic range, the shear-dominant flow leads to significant anisotropy and 〈�u+2〉 shows
a logarithmic dependence on r, i.e. (Davidson, Nickels & Krogstad 2006b)

〈�u+2〉 = A∗
2 + B∗

2 ln
(

r
z

)
, z < r � δ, (1.4)

where A∗
2 and B∗

2 are constants. The shear production term −〈�u�w〉 dU/dz leads to
the logarithmic expression over the scale range from z to δ (Pan & Chamecki 2016; Xie
et al. 2021). In this range, the pressure-strain-rate correlation is important in the energy
redistribution between different velocity components (Ding et al. 2018). Additionally, from
the perspective of inactive eddies that contribute to streamwise velocity fluctuations but
not to the shear stress (Townsend 1961; Marusic & Kunkel 2003; Ding et al. 2018), this
range can also be called the ‘inactive range’.

Assuming that there is no distinguished range between inertial and dynamic ranges, Xie
et al. (2021) matched the above two ranges at r = z and determined A∗

2 = M∗
2 and B∗

2 =
M∗

2ξ2. In the above analysis, uτ captures the characteristic velocity and the characteristic
length scale l is chosen to be z. In contrast, Davidson & Krogstad (2014) studied
boundary-layer turbulence without local production–dissipation balance and proposed a
characteristic length scale lε = u3

τ /ε. Pan & Chamecki (2016) extended the use of lε as
a characteristic scale to the vegetation canopy where a significant imbalance between
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local production and dissipation exists. Moreover, Chamecki et al. (2017) investigated
the lε-dependence in the dynamic range for neutral and stable atmospheric surface layers
(ASLs), and obtained the 2/3-power expression for convective ASL turbulence, which is
consistent with the −5/3 law of spectra predicted by Kader & Yaglom (1989) and Yaglom
(1994) in the freely convective atmospheric boundary layer and first interpreted by Tong
& Nguyen (2015) in convective ASL.

The power and logarithmic expressions in the inertial and dynamic ranges are also
obtained for the third-order structure function (Xie et al. 2021). Using ASL data measured
at the Qingtu Lake Observation Array (QLOA) site, in Minqin District, Gansu Province,
PR China, Zhang, Xie & Zheng (2022) compared the choice of l = z and lε = u3

τ /ε,
and argued that z is also suitable for ASL turbulence with unbalanced energy production
and dissipation rate if uτ is replaced by (εz)1/3 as the characteristic velocity scale. In
the present work, we do not aim to distinguish the appropriate normalization scale.
Following the range division by Chamecki et al. (2017) (cf. figure 2), we choose uτ as
the characteristic velocity and z as the characteristic spatial scale for structure functions.
For convective ASL, the buoyancy effects hold significant importance. This gives rise
to another scale range characterized by the −5/3 law of spectra (Tong & Nguyen 2015;
Tong & Ding 2019) and 2/3 power law of second-order structure function (Chamecki
et al. 2017). We refer to the scales beyond the dynamic range as the large-scale range.
Large- and very-large-scale motions that exist in this range have been extensively studied
in terms of their contribution to turbulent kinetic energy and Reynolds stress (Balakumar
& Adrian 2007; Lee & Sung 2011; Wang & Zheng 2016). However, the autocorrelation
in this range lacks a thorough investigation and is one of the main subjects of the present
study.

Several simplified models were proposed since many empirical statistical results have
been discovered in boundary-layer turbulence. A notable instance is Townsend’s attached
eddy model (AEM) (Townsend 1976). In the logarithmic region, the characteristic eddies
are assumed to be geometrically self-similar with kinetic energy scales as u2

τ . AEM
well captures velocity statistics, such as the logarithmic dependence of the second-order
structure function (cf. (1.4)) (Davidson & Krogstad 2014; Yang et al. 2017; Xie et al. 2021),
and it can also describe higher-order statistics after refinement (Marusic & Monty 2019).
In this work, we combine turbulence knowledge, particularly the characteristic scales and
the logarithmic expression of structure functions, and time-series statistical methods to
explore the global behaviour, which covers the three inviscid ranges, of the second-order
structure function.

Several statistical methods have been used to analyse turbulence data obtained in
experiments or field measurements as time series, and to perform digital simulation (Di
Paola 1998; Krenk & Møller 2019) and forecast of wind field velocity (Sfetsos 2002;
Kusiak, Zheng & Song 2009). Stationary time series can be analysed using the spectral
and sequential methods (Kleinhans et al. 2009; Schmitt & Huang 2016; Schmidt et al.
2018), and often these two are combined. Here we adopt the sequential method because
the spectral method is more computationally demanding (Kareem 2008) and because the
sequential method yields results directly linked to measured data.

Specifically, we apply an autoregressive moving average (ARMA) model (Shumway,
Stoffer & Stoffer 2000), which has broad applicability in engineering applications and
theoretical studies of turbulence, particularly in complicated situations where unknown or
unresolved impacts may exist. The autoregressive (AR) part of ARMA model assumes that
the variable at the current moment is affected by past moments, and the moving average
(MA) part models the other unknown effects with a series of noises. For instance, the
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Langevin equation, which is identical to the first-order AR model, was used to describe
the Lagrangian velocities in the inertial range (Thomson 1987). The application of AR and
ARMA models for wind field simulation is described by Rossi, Lazzari & Vitaliani (2004).
In addition, the ARMA model can detect and replace the spikes or outliers in turbulent
velocity data due to Doppler noise and signal aliasing (Razaz & Kawanisi 2011; Dilling &
MacVicar 2017). Faranda et al. (2014a,b) tested the applicability of the ARMA model in
a turbulent von Kármán swirling flow and remarked that the ARMA model is effective
in discriminating different flows. Without prior knowledge, events with undetermined
physical mechanisms can be extracted from time series by distinguishing them from
the white noise and/or first-order AR process, which, after classification, contributes to
the understanding of stable ASL turbulence (Kang, Belušić & Smith-Miles 2014, 2015).
Extended AR models for multivariate situations combined with data clustering methods
were used to investigate interactions between motions with distinct characteristic scales
(Vercauteren & Klein 2015; Vercauteren, Mahrt & Klein 2016; Vercauteren et al.
2019). Moreover, the ARMA model and its combination with other statistical models
can be used to analyse and predict non-stationary ASL turbulence (Zhang et al.
2023).

Our goal is to apply the stochastic equation of the ARMA model to the streamwise
velocity series to capture the behaviours of dynamic and large-scale ranges in the
logarithmic region of boundary-layer turbulence. Specifically, we aim: (i) to provide a
procedure for applying the ARMA model to boundary-layer turbulence; (ii) to provide
explanations of parameters in the ARMA model; (iii) to extend the existing theoretical
expressions for the second-order structure function to the large-scale range using the
analytical expressions based on the ARMA model; and (iv) to explain the behaviour of
streamwise characteristic length scales in the logarithmic region and propose an analytical
expression that explains experimental and measured data. The ASL data measured from
QLOA with high friction Reynolds number (Reτ ∼ O(106)), which could deviate from the
typical states of canonical boundary-layer turbulence due to complicated environmental
impacts, is used as an example to justify and show the robustness of the obtained
expressions.

The rest of this paper is organized as follows. In § 2, we introduce the ARMA model
and construct the ARMA model in boundary-layer turbulence. The model application
procedure and the analytical expressions are also presented. We present the details of
ASL data and perform data analysis and theory verification in § 3. The main results are
summarized and discussed in § 4. Appendix A contains the basic properties and details
about the ARMA model, and an approximate derivation of the ARMA model parameters
leading to the logarithmic expression in the dynamic range is shown in Appendix B. The
uncertainty in determining the global expression is discussed in Appendix C.

2. The ARMA model

Although different velocity components are nonlinearly coupled in the Navier–Stokes
equation, for model simplicity, we assume the streamwise velocity to be autocorrelated
to permit a one-dimensional model. In the context of this paper, ‘autocorrelation’ refers to
the correlation function of streamwise velocity evaluated at different times or locations,
and we fix the distance to the wall z located in the logarithmic region. Under these
assumptions, we can apply the ARMA model to stationary streamwise velocity time series
in boundary-layer turbulence.
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For a stationary fluctuating velocity series {ut}, the ARMA(p, q) model is

ut =
p∑

i=1

αiut−i�t +
q∑

j=1

βjεt−j�t + εt, (2.1)

where p and q are the model orders, αi with i = 1, . . . , p and βj with j = 1, . . . , q are the
model parameters, εt−i�t with i = 0, 1, . . . , q are independent and identically distributed
white noise with variance σ 2

ε , �t is the time step, and the subscript t indicates the
evaluation time t. The maximum model order is referred to as the model’s memory depth,
which indicates the maximum time range of the current moment to be directly affected.
The model applicability and stationarity impose constraints on the model parameters,
which are shown with details in Appendix A.

When applying the ARMA model, the orders p and q and the time step �t should
be determined first. In the traditional application of the ARMA model for time series
analysis, the corresponding orders are generally empirically determined from the data
without known basis (Shumway et al. 2000). If the orders are too small, the data cannot
be well fitted; if the orders are too large, more computational effort is needed, which may
lead to overfitting. In addition, if the autocorrelation of the data extends over a long time,
directly adopting the raw data series with a time step of �t0, which corresponds to the
measurement frequency, will result in an excessive number of model orders. In this case, a
new time series with a time step�t > �t0 should be resampled from the original series at
equal intervals. Overall, there exist uncertainties in the choice of both order and time step
of the ARMA model, which requires careful deliberation.

For boundary-layer turbulence, (1.3) and (1.4) present the expressions of streamwise-
velocity autocorrelation in the inertial and dynamic ranges, but in the large-scale range,
the behaviour of autocorrelation remains obscure. Since the ARMA model provides a
global analytical expression for autocorrelation, we attempt to extend the second-order
structure-function expression to the large-scale range by modelling the dynamic range
with the ARMA model. We focus on the dynamic-range modelling for the following
reasons. Since the dominant balances are distinctive in the inertial and dynamic ranges,
an ARMA model with a fixed order is not applicable simultaneously in these two regimes.
In addition, the large scale separation between the inertial and the dynamic range leads
to excessive memory depth of the ARMA model. Therefore, we limit the minimum and
maximum time ranges, which correspond to the model orders and the dynamic range
of the second-order structure function, respectively. Thus, the autocorrelation has an
asymptotically exponential decay in the large-scale range following the ARMA model
(see Appendix A, (A13)).

2.1. Constructing the ARMA model in boundary-layer turbulence
The ARMA model applies to a time series, which links to a spatial second-order structure
function under Taylor’s frozen hypothesis (Taylor 1938). For a measured streamwise
turbulent velocity time series with a time step �t0, mean streamwise velocity U and
wall-normal position z, we extract a coarse series that does not resolve the small-scale
inertial range. So the time step �t of the extracted series satisfies

U�t ≈ η1z, (2.2)

where η1 corresponds to the scale that separates the inertial and dynamic ranges. The new
series can be obtained by extracting one point for every �t/�t0 points from the original
series.
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The larger scale η2 bounds the memory depth of the model, i.e.

U�t max{p, q} ≈ η1z max{p, q} ≈ η2z, (2.3)

where p and q are undetermined, but at least one of them should equal η2/η1. Then in the
large-scale range, the autocorrelation (cf. (A13)) takes the form

Ruu (r) =
p∑

i=1

ci exp
( r
�x

ln λi

)
, r ≥ η2z, (2.4)

with the corresponding second-order structure function

〈�u2〉 = 2〈u2〉 − 2
p∑

i=1

ci exp
( r
�x

ln λi

)
, r ≥ η2z, (2.5)

where a set of exponential functions approximate the large-scale behaviour of 〈�u2〉, and
ci and λi with i = 1, . . . , p are constants related to the model parameters (cf. (A13) and
(A14)). In (2.5), a higher order p means the more likely it is to better approximate 〈�u2〉.
However, the parameters ci need to be determined by the autocorrelation of the data, and
the roots xi need to be determined by the model parameters through the fitting procedure.
We take a first-order approximation to obtain a more intuitive expression, i.e. p = 1, then
(2.3) leads to q = η2/η1. Additionally, the model equation (cf. (2.1)) is reduced to

ut = αut−�t + εt +
q∑

j=1

βjεt−j�t. (2.6)

Here, the velocity u at the time t depends on the value of u at the previous time t −�t and
is subject to random effects with memory depth q. The properties of autocorrelation of the
ARMA model are presented in Appendix A.

When the two-point displacement is beyond the dynamic range, i.e. k > q, the
autocorrelation becomes (cf. (A13))

Ruu(k�x) = αRuu ((k − 1)�x) = αk−qRuu(q�x) = Ruu(q�x)
αq exp (k lnα) . (2.7)

Replacing k�x with r, (2.7) becomes

Ruu (r) = Ruu(η2z)
αq exp

(
lnα
�x

r
)
, r > η2z. (2.8)

Thus, the autocorrelation implies an exponential decay in the large-scale range since
α < 1, which is similar to the approximation for correlations in homogeneous turbulence
(Taylor 1921; Tennekes 1979, 1982).

The AR part of the ARMA model is regarded as the memory effect of flow and mainly
controls large-scale motions, and the MA part does not contribute to the large-scale
autocorrelation directly. If there is no MA part, the autocorrelation of the ARMA model
decays exponentially as the displacement increases. In the dynamic range, the MA part
contributes to the autocorrelation (cf. (A9)) and with a further constraint that the MA
coefficients follows a power expression with exponent −2, the autocorrelation has a
logarithmic dependence on the displacement, which is discussed in Appendix B.
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2.2. Linking between ARMA and AEM
Based on the analytical expression of the ARMA model, similar to the AEM, the linear
additive form of the MA part in the ARMA model leads to the logarithmic expression.
AEM interprets the logarithmic expression of the dynamic range of second-order structure
function based on the streamwise velocity representation (Yang et al. 2017)

u =
Nz∑

i=1

ai, (2.9)

where ai is the random velocity increment induced by the attached eddies of size δ/2i and
Nz is the number of attached eddies contributing to u. Namely, the fluctuating velocity u
is generated by random eddies with vertical sizes ranging from z to δ, and other potential
effects are neglected. Noteworthily, the ARMA model equation (2.1) also contains random
variables and the velocity memory. Similar to AEM, we interpret the MA part of the
ARMA model as the random effect arising from turbulent eddies. The MA coefficients
can be seen as the eddy population density and the random increment ε has the same
strength. The above analysis is consistent with the interpretation of the ARMA model by
Faranda et al. (2014b) that the AR part is linked to the contribution of the large scales and
the MA part corresponds to the effects of eddies and correlation structure. This physical
picture also guides us to characterize the dynamic range, from which the model orders are
determined.

As mentioned before, the model orders are determined according to the scale
information of boundary layers. By Taylor’s frozen hypothesis, we can obtain �x = U�t
(cf. (2.2)) and in the ARMA(1, q) model,�x is considered as the minimum attached eddy’s
size, which is of O(z). The memory depth of the model corresponds to the maximum
attached eddy’s size, q�x ≈ η2z, which is of O(δ) and represents the largest scale of the
dynamic range. These scales are also important in AEM. Therefore, the ARMA model can
be regarded as a stochastic form of AEM: a set of random white noise, whose scale range
is consistent with the sizes of attached eddies, drives the fluctuating velocity. Additionally,
in the ARMA model, the MA coefficients βi with i from 1 to q quantify the distribution
of attached eddies’ effects (see Appendix B). As shown in figure 8(b) (§ 3.2), the −2
exponent in the power function of MA coefficients is consistent with the eddy population
density in some AEM studies (de Silva, Hutchins & Marusic 2016; Hu, Dong & Vinuesa
2023). In addition, since the model’s stationarity requires α < 1, the lag term in (2.6)
damps this linear dynamical system energized by random noise. Unlike the linear additive
process model (cf. (2.9)) proposed for AEM, the ARMA(1, q) model hypothetically
presents a simple stochastic model of AEM, from which the long-term behaviour of the
autocorrelation can be explored. Though Davidson & Krogstad (2009) provided a general
expression for autocorrelation resulting from the attached eddies’ contribution, eddy shape
needs to be assumed, and they did not discuss the expression’s large-scale behaviour. One
advantage of the ARMA model is that the large-scale autocorrelation is obtained without
assuming the eddy shape due to the capturing of the memory effect.

2.3. Asymptotic expression of second-order structure function
Even though the ARMA model provides an analytical expression for the second-order
structure function in the dynamic and large-scale ranges, this complicated expression is
not practically convenient. So in this section, we obtain a global expression covering
the inertial, dynamic and large-scale ranges of the second-order structure function by
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asymptotic matching. As aforementioned, the second-order structure function follows a
logarithmic expression in the dynamic range (cf. (1.4)). More generally, in shear flows
where the ratio of energy production rate to dissipation rate P/ε varies with wall-normal
location z, which is not rare in ASL turbulence, the two ranges also match at an
intermediate scale influenced by P/ε (Zhang et al. 2022). For the general case, (1.2)
becomes

〈�u+2〉 = C2

(κP/ε)2/3

(
r
z

)ξ2

= M2

(
r
z

)ξ2

, lν � r < z, (2.10)

where M2 may be a height-dependent constant due to the presence of P/ε. Assuming that
the dimensionless lower and upper ends of the dynamic range are r/z = η1 and r/z =
η2, respectively, we can perform the Taylor expansion on (2.10) and (1.4), and obtain the
general form of (1.4) by matching at r/z = η1:

〈�u+2〉 = A2 + B2 ln
(

r
zη1

)
, η1 <

r
z
< η2, (2.11)

where
A2 = M2η

ξ2
1 , B2 = M2η

ξ2
1 ξ2, (2.12a,b)

and they are obtained by matching (1.3) and (2.11) at η1. The matching process links
the dynamic-range coefficients A2 and B2 with the inertial-range coefficients M2 and ξ2,
reducing two free parameters. The empirical value of η1 is O(1) (Davidson, Krogstad
& Nickels 2006a; Davidson & Krogstad 2009; de Silva et al. 2015; Xie et al. 2021),
corresponding to a length scale of O(z). For the canonical case, by setting C2 = 2, κ = 0.4,
ξ2 = 2/3 and η1 = 1, we calculate from (2.12a,b) to obtain A2 ≈ 3.68 and B2 ≈ 2.46,
whose values are close to previous research (Meneveau & Marusic 2013; de Silva et al.
2015; Xie et al. 2021).

In § 2.2, the ARMA model is analogous to a stochastic AEM and the attached eddies
are modelled as a set of random effects. The logarithmic dependence of 〈�u+2〉 can also
be obtained from the ARMA model under the assumption of self-similarity with βi ∼ i−2.
The details can be found in Appendix B.

In the large-scale range with scales larger than η2z, conventional AEM does not provide
information on the structure functions. The advantage of the ARMA(1, q) model is that it
naturally provides an exponential autocorrelation for large scales (cf. (2.8)), i.e.

〈�u+2〉 = 2〈u+2〉 − D2 exp
(

−E2
r
z

)
,

r
z
> η2, (2.13)

where D2 and E2 are positive constants. Assuming that there is no distinguished range
between the dynamic and the large-scale ranges, we match the expression in these ranges
to determine three unknown parameters η2, D2 and E2. By defining r′ = r/z, we expand
(2.11) and (2.13) to

〈�u+2〉 = A2 + B2 ln
(

r′
0
η1

)
+ B2

r′
0

dr′ − B2

2r′2
0

(
dr′)2 + · · · , (2.14a)

〈�u+2〉 = 2〈u+2〉 − D2 exp
(−E2r′

0
)+ D2E2 exp

(−E2r′
0
)

dr′

−D2E2
2

2
exp

(−E2r′
0
) (

dr′)2 + · · · . (2.14b)
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Matching the leading, the first- and second-order terms at r′
0 = η2, we obtain

D2 = B2e, (2.15a)

η2 = 1
E2

= η1 exp
(

2〈u+2〉 − B2 − A2

B2

)
. (2.15b)

Thus, (2.13) becomes

〈�u+2〉 = 2〈u+2〉 − B2 exp
(

1 − r
zη2

)
,

r
z
> η2. (2.16)

At the intermediate scale within distinct ranges, the dominant terms exhibit comparable
magnitudes, while higher-order terms might also hold significance (Tong & Ding 2019).
Here, to obtain a concise expression, we neglect these higher-order terms for simplicity
and find that direct matching of low-order terms works well. Equations (2.10), (2.11)
and (2.16) constitute the global expression for the second-order structure function, where
the coefficients are not all independent. With known turbulent intensity 〈u+2〉 and three
small-scale parameters M2, ξ2 and η1, the global expression for the second-order structure
function is determined. For a fixed height, the global expression applied to three horizontal
scale ranges is determined by four parameters: 〈u+2〉, M2, ξ2 and η1. Additionally, the
height dependence is captured by the logarithmic dependence of 〈u+2〉, 〈u+2〉 = A1 −
B1 log(z/δ), thus, we have in total five parameters: A1, B1, M2, ξ2 and η1.

Assuming that the boundary layer thickness captures the outer scale for large-scale
motions, we set the large-scale range’s characteristic scale η2z of O(δ). In the logarithmic
region, the streamwise turbulence intensity follows (Marusic et al. 2013; Meneveau &
Marusic 2013)

〈u+2〉 = A1 − B1 ln
( z
δ

)
, (2.17)

where B1 is the Townsend–Perry constant and A1 is a flow-dependent constant. The size
of the attached eddies that contribute to the velocity ranges from z to δ, which is consistent
with δ as the characteristic length scale of the large-scale range. Substituting (2.17) into
(2.15b), we get

η2 = η1Cη

(
δ

z

)2B1/B2

, (2.18)

where Cη = exp[(2A1 − B2 − A2)/B2] and η1 is of O(1). Considering a canonical
situation with B2 = 2B1 (Davidson et al. 2006b; Davidson & Krogstad 2014), for example,
B1 = 1.25 (Meneveau & Marusic 2013) and B2 = 2.5 (Xie et al. 2021), we obtain
η2 ∼ δ/z, which is consistent with our analysis and the assumption that η2z ∼ δ. Also,
rearranging (2.15b), we obtain

〈u+2〉 = A2 + B2

2
+ B2

2
ln
(
η2

η1

)
. (2.19)

Taking the approximation η2/η1 ∼ δ/z, (2.19) recovers the expression for streamwise
turbulent intensity (2.17) and B2 = 2B1. Even though B2 may not equal twice of B1 in real
ASL measurement data, which we show in figure 10(b) (§ 3.3), the assumed exponential
expression in the large-scale range links the dynamic range and r → ∞, and is consistent
with the matching procedure by Davidson & Krogstad (2014). The above results show that
the proposed exponential function for 〈�u+2〉 based on the ARMA model is consistent
with and bridges previous theories.
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Figure 3. Variation of Tη1 and Tη2 with z/δ according to (2.21a) and (2.21b), where M2 = 3.62, B1 = 1.25,
A1 = 1.73 and B2 = 2.5.

2.4. Implication of the global expression

2.4.1. Characteristic length scales calculated from the global expression
In this section, we derive the expression of characteristic length scale from the previously
obtained expression of 〈�u+2〉. The characteristic length scale Lx is defined by introducing
an artificial threshold T of the autocorrelation:

Ruu(Lx/2) = T〈u2〉. (2.20)

Though studies show that the threshold value does not change the trend of obtained
length scales (Zhou et al. 1999), we believe the reason is that the threshold values are
usually small. The length-scale behaviour could change when different thresholds locate
in different ranges of the second-order structure function. For example, the thresholds
corresponding to η1 and η2 are

Tη1 = 1 − M2η
ξ2
1

2〈u+2〉 , (2.21a)

Tη2 = B2

2〈u+2〉 . (2.21b)

The dependences of Tη1 and Tη2 on z/δ are shown in figure 3, showing that the detected
characteristic length scale depends on the choice of the threshold value, e.g. if T = 0.05,
the threshold locates in the large-scale range, and if T = 0.4, the threshold locates in the
dynamic range.

Taking 〈�u+2〉 = 2(1 − T)〈u+2〉 in different ranges of 〈�u+2〉, we can obtain the
analytical expression for the length scale Lx/δ predicted for different thresholds:

Lx

δ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2η1Cη
( z
δ

)1−2B1/B2
{

1 − ln
[

2T
B2

(
A1 − B1 ln

( z
δ

))]}
, T < Tη2,

2η1 exp
[

2(1 − T)A1 − A2

B2

] ( z
δ

)1−2B1(1−T)/B2
, Tη2 < T < Tη1,

2
z
δ

[
2(1 − T)

M2

(
A1 − B1 ln

( z
δ

))]1/ξ2

, T > Tη1 .

(2.22)
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Since 〈u+2〉 is expressed in terms of A1 and B1, there is an extra parameter in the expression
for Lx compared with the global expression for the second-order structure function. The
main independent parameters that control the behaviour of Lx are A1/B2 and B1/B2, and
other parameters are close to their canonical value. It is interesting to show that when
T < Tη2 , the characteristic length has a double-log dependence on the distance to the wall,
which is one of our main results and is checked below by experimental data. Additionally,
for a threshold value corresponding to the dynamic and inertial ranges, the behaviours of
Lx can also be described by (2.22). If one wants to observe the large characteristic scales
corresponding to the flow structure with the dynamics, the threshold value should not be
chosen to be greater than the minimum value of Tη2 , as shown in figure 3.

2.4.2. Lower bound for the streamwise turbulent intensity in the logarithmic region
Assuming that the streamwise autocorrelation function decays with increasing scale,
which is commonly found in experiments and numerical simulations of boundary-layer
turbulence, the value of 〈�u+2〉 at r/z = η2 should be larger than that at r/z = η1 in the
dynamic range. Therefore, (2.11) and (2.16) imply

2〈u+2〉 − B2 ≥ A2. (2.23)

With A2 = B2/ξ2 and B2 = C2κ
−2/3η

ξ2
1 ξ2, we obtain

〈u+2〉 ≥ 1
2

(
1 + 1

ξ2

)
C2κ

−2/3η
ξ2
1 ξ2. (2.24)

Taking C2 = 2, κ = 0.4, ξ2 = 2/3 and η1 = 1, we find a lower bound for the turbulence
intensity in the logarithmic region 〈u+2〉 ≥ 3.07, which is justified by previous results
〈u+2〉 (Hutchins et al. 2012; Wang & Zheng 2016). In addition, this lower bound depends
on the imbalance between energy production and dissipation because η1 increases as
dissipation increases (Zhang et al. 2022). More numerical and experimental results are
needed to further check the validity of this lower bound.

2.4.3. Estimation of the integral length scale
Knowing the global expression for second-order structure function, the integral length
scale L can be calculated as

L =
∫ ∞

0

〈u1u2〉
〈u2〉 dr =

∫ ∞

0

〈u2〉 − 〈�u2〉/2
〈u2〉 dr =

∫ ∞

0

(
1 − 〈�u+2〉

2〈u+2〉
)

dr. (2.25)

Denoting r/z as η, and using (2.10), (2.11) and (2.16), we get

L
z

=
∫ ∞

0

(
1 − 〈�u+2〉

2〈u+2〉
)

dη

≈
∫ η1

0

(
1 − M2η

ξ2

2〈u+2〉
)

dη +
∫ η2

η1

[
1 − A2 + B2 ln(η/η1)

2〈u+2〉
]

dη

+
∫ ∞

η2

[
1 − 2〈u+2〉 − B2e1−η/η2

2〈u+2〉
]

dη

= I1 + I2 + I3. (2.26)
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Figure 4. Variations of (a) f1 and (b) f2 with μ = B2/(2〈u+2〉) for ξ2 = 2/3.

Referring to (2.12a,b) and (2.15b), we can express M2, A2 and η2 as functions of B2, η1

and ξ2. Denoting B2/(2〈u+2〉) as μ, the integrals in (2.26) can be calculated as

I1 =
∫ η1

0

(
1 − μηξ2

η
ξ2
1 ξ2

)
dη = η1 − μ

ξ2(ξ2 + 1)
η1, (2.27a)

I2 =
∫ η2

η1

[
1 − μ

ξ2
− μ ln

(
η

η1

)]
dη =

(
μ

ξ2
− 1 − μ

)
η1 + 2μη2, (2.27b)

I3 =
∫ ∞

η2

[
μe1−η/η2

]
dη = μη2, (2.27c)

where the second integral uses ln(η2/η1) = 1/μ− 1 − 1/ξ2 (cf. (2.15b)). Then we obtain

L
z

= − ξ2μ

ξ2 + 1
η1 + 3μη2. (2.28)

Again using (2.15b), (2.28) can be further expressed as

L
z

=
[

3μ exp
(

1
μ

− 1 − 1
ξ2

)
− ξ2μ

ξ2 + 1

]
η1 = f1(μ, ξ2)η1 (2.29a)

or
L
z

=
[

3μ− ξ2μ

(ξ2 + 1) exp (1/μ− 1 − 1/ξ2)

]
η2 = f2(μ, ξ2)η2. (2.29b)

Here, the expressions are reformed to compare with two characteristic scales
corresponding to η1 and η2. The values of f1 and f2 with ξ2 = 2/3 are shown in figure 4.
The parameter μ that guarantees f1 > 1 and f2 < 1 is often achieved in boundary-layer
turbulence, e.g. with B2 = 2.36 and the lower bound of streamwise turbulent intensity
〈u+2〉 ≥ 3.07 estimated in § 2.4.2. Therefore, in the logarithmic region, the integral length
scale L locates in the dynamic range, which is consistent with L estimated in the neutral
ASL and experiments (Hutchins & Marusic 2007; Gustenyov et al. 2023).

Throughout the remainder of the article, we apply the ARMA(1, q) model on the
streamwise velocity of ASL turbulence and test our theoretical expressions (2.16), (2.22)
and (2.29) at Reτ ∼ O(106).
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3. Application to the ASL data

3.1. Experimental facility and data pretreatment
The ASL data used in this work come from QLOA, which is built on the flat dry
lakebed of Qingtu Lake in western China (E: 103◦40′03′′, N: 39◦12′27′′) and provides
the highest order of magnitude friction Reynolds number data to date. Also, QLOA
is the unique observation site where multi-point measurements can be performed
simultaneously, including three-dimensional turbulent velocities, temperature, humidity,
PM10 concentration and electric field, and so forth. The high-quality data of clear-air
and sand-laden ASL flows proved suitable for turbulent boundary layer studies (Wang &
Zheng 2016; Liu, Wang & Zheng 2019a; Wang, Gu & Zheng 2020; Liu, He & Zheng
2021). The main tower is 32 m high and has measurement positions at 0.9, 1.71, 2.5, 3.49,
5, 7.15, 8.5, 10.24, 14.65, 20.96 and 30 m, approximately logarithmically aligned. Eight
low towers of 5 m high are arranged at an equal distance of 30 m in the prevailing wind
direction, and twelve low towers of 5 m high are arranged at an equal distance of 5 m in
the spanwise direction. The data used in this study were obtained from the main tower,
whose height lies roughly in the logarithmic region of the atmospheric boundary layer.
The three-component sonic anemometers (Campbell scientific, CSAT-3B) installed on the
tower measure the velocities and temperature synchronously, with a sampling frequency
of 50 Hz, a velocity measurement range of 0–45 m s−1, a minimum velocity resolution
of 0.001 m s−1, a temperature measurement range of −40–60 ◦C, a minimum temperature
resolution of 1 ◦C and a wind direction recording range of 0–359◦. The sonic anemometers
are all connected to data acquisition instruments that are time-synchronized with the global
positioning system to ensure data synchronization.

Due to the uncertainty and uncontrollability of field measurement, the measured data
need to be selected and pretreated. The same pretreatment procedures as previous ASL
turbulence studies using QLOA data are implemented here. The raw data are partitioned
into hourly time series, and then the pretreatments including wind direction adjustment,
detrending manipulation, stratification stability judgment and stationary wind selection is
carried out. Although the streamwise direction of QLOA is designed to be consistent with
the prevailing wind direction, the wind direction changes during the field measurement.
So the measured data need to be adjusted as

u = um cosω + vm sinω, v = vm cosω − um sinω, (3.1a,b)

where um and vm are streamwise and spanwise velocities measured by the anemometers,
andω is the angle between the actual wind direction and the streamwise direction of QLOA
averaged over all heights. After adjusting the wind direction, the long-term synoptic signal
also needs to be detrended by a low-pass filter with a cut-off wavelength of 20δ to extract
the turbulence fluctuating signal.

In addition, thermal convection often occurs in ASL turbulence, affecting the budget
of turbulent kinetic energy (Wyngaard & Coté 1971; Wyngaard, Coté & Izumi 1971). The
Monin–Obukhov stratification parameter (Monin & Obukhov 1954), which characterizes
the ratio of the buoyancy and shear effects, is often used to evaluate the stratification
conditions and is defined as

z
L

= −κzg〈wθ〉
〈θ〉u3

τ

, (3.2)

where L is the Obukhov length (Obukhov 1946), g is the acceleration of gravity, and 〈wθ〉
is the mean vertical heat flux defined as the covariance of the vertical wind velocity w
and the measured potential temperature θ . If |z/L| � 1, the ASL flow is shear-dominant

981 A20-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

85
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.85


Streamwise velocity autocorrelation in surface layers

104 105 106

In z+/κ
Reτ = 3.78 × 106

U +

z+ z+ z+
〈u+

2
〉

Reτ = 5.49 × 106

Reτ = 4.17 × 106

Reτ = 3.98 × 106

104 105 106 104 105 106
10

15

20

25

30

35

2

4

6

8

10

12

14

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Reτ = 3.78 × 106

Hutchins et al. (2012)

Reτ = 5.49 × 106

Reτ = 4.17 × 106

Reτ = 3.98 × 106

Reτ = 3.78 × 106

Hutchins et al. (2012)

Chauchan (2007)

Reτ = 5.49 × 106

Reτ = 4.17 × 106

Reτ = 3.98 × 106

–
 〈u
w

〉/u
2 τ

(b)(a) (c)

Figure 5. Profiles of statistics for selected intervals at Reτ = O(106). (a) Log-linear plot of the mean
streamwise velocity. The open symbols are current QLOA data and the dashed line corresponds to the log-law
with κ = 0.41 (Pope 2000). (b) Logarithmic decay of streamwise turbulent intensity. The blue symbols is the
ASL result of Hutchins et al. (2012) at Reτ = O(106). The dashed and dotted lines correspond to (2.17) with
B1 = 0.55 and 0.80, respectively. (c) Dimensionless shear Reynolds stress. The blue symbols are ASL data
from Hutchins et al. (2012) and the dashed line is the similarity formulation from Chauhan (2007).

and the density stratification is negligible. In our analysis, the Monin–Obukhov stability
parameter is calculated at z = 1.71 m, and we select the near-neutral data with |z/L| <
0.06. Another effective indicator of the stratification stability is the k−5/3

x scaling of spectra
at low wavenumber (Tong & Nguyen 2015; Tong & Ding 2019). If the k−1

x scaling is
observed instead of k−5/3

x , the ASL flow can be considered to be shear dominant and
therefore near-neutral. The streamwise spectra of the ASL data used in this work exhibit
no significant k−5/3

x range at low wavenumber, as shown, for example, in figure 9(a) (§ 3.2).
Since we focus on fully developed stationary turbulence, selecting the statistically

stationary ASL data is necessary. A non-stationary index γ is used to judge the stationarity,
which is defined as

γ = |(σM − σI)/σI| × 100 %, (3.3)

where σM = ∑12
i=1 σi/12, σ1, σ2, . . . , σ12 are the streamwise velocity variances of

one-twelfth part of the entire time interval and σI is the variance of the overall time
interval. Stationarity requires ASL data over the interval to meet γ < 30 % and we pick
the half-hour with the smallest γ in an hour as our time interval.

Other quantities used here are defined as follows, consistent with previous studies at
the QLOA site under the near-neutral stratification conditions. The friction velocity uτ is
approximated by the peak value of (−〈uw〉)1/2. The air kinematic viscosity ν is calculated
from the measured mean temperature under standard atmospheric pressure. Additionally,
the ASL thickness δ is estimated as 150 m to evaluate the friction Reynolds number Reτ .
Some basic flow information of the selected intervals, including the mean velocity profile,
the streamwise turbulent intensity and the shear Reynolds stress, are shown in figure 5.
Comparison with ASL data obtained by Hutchins et al. (2012) and theoretical results of
boundary-layer turbulence proves that our data are consistent with the logarithmic region
of the boundary layers.

3.2. Justifying the ARMA model
In this section, we justify that the ARMA model can well capture the second-order
statistics of the ASL data in the dynamic and large-scale ranges. The procedural workflow
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Figure 6. Diagrammatic flow of applying the ARMA model to boundary-layer turbulence.

for applying the ARMA model to boundary-layer turbulence is visually depicted in
figure 6. (I) In the first step, ASL data selection and pretreatment are performed. These
details are described in § 3.1. (II) Once the streamwise velocity series is obtained, we need
to determine two characteristic scales η1 and η2. Based on AEM, we have η1 = O(1),
so we choose the interval for the extracted velocity series as �t/�t0 = z/(U�t0). This
resampling process filters out the inertial range. (III) In § 2.1, we specify the model orders
as p = 1 and q = η2/η1. The largest scale η2 of the dynamic range can be estimated by
(2.15b). Alternatively, a more accurate approach to determine η1 and η2 is by obtaining
η1 from the inertial and dynamic ranges of the ASL data according to (2.10)–(2.11), and
then calculating η2 with the help of (2.15b). Specifically, the power fit for scale range
less than η1 yields M2 and ξ2, then A2, B2 and η2 can be obtained by (2.12a,b) and
(2.15b), and then it is convenient to optimize η1 that minimizes the total absolute error
of the global expression by the optimization method, such as the ‘fmincon’ function
in MATLAB. We adopt the latter approach in this work. (IV) Knowing the value of
η1 and η2, we can obtain q and use the ARMA(1, q) model to fit the extracted series.
The fourth step uses the same approach as the statistical practice, which is available
in many function packages, and here we use the ‘arima’ function in R. (V) After the
model fitting procedure, an essential fifth step involves evaluating the model’s goodness
of fit. A common approach is to scrutinize the residuals resulting from the model fitting
process; if these residuals exhibit characteristics akin to white noise, we validate the model.
Conventional practices for this purpose encompass well-known statistical tests such as the
Ljung–Box and Breusch–Godfrey tests (Liu, Erdem & Shi 2011). In the present study,
the model residuals successfully pass the Ljung–Box test with a p-value larger than 0.05,
indicating that the ARMA model captures the correlation of boundary-layer turbulence
well.

There are two significant distinctions from traditional statistical practice in our
procedure. First, the precondition of stationarity is required before employing the ARMA
model. The traditional statistical modelling methods require only the removal of mean
value by applying a moving average or a differential operator and the removal of periodic
signals. Considering the physics of the ASL, we also need to ensure neutrality and filter
large-scale synoptic signals. Second, the typical approach for ascertaining the model
orders involves statistical criteria such as the Akaike or Bayesian information criterion
(Choi 2012). In contrast, within this study, we establish the model order based on the
characteristic scale of the boundary layer, which again is restricted to ASL physics. This
approach enhances the model’s interpretability and endows the model with heightened
physical significance.

Figure 7 shows an example of fitting the ARMA model. The half-hour raw fluctuating
velocity series is presented in figure 7(a). Additionally, the reproduced coarse series is
shown in figure 7(b). Using the ARMA model, we can regenerate the velocity series
with almost the same velocity variance of raw data. Moreover, compared with the
autocorrelation calculated from raw data, the autocorrelation generated by the ARMA(1,
q) model fits well, which is shown in figure 7(c). Figure 7(d) shows the corresponding
second-order structure function, and the consistency between the result of the ARMA
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Figure 7. (a) Raw fluctuating velocity u; (b) reproduced fluctuating velocity ũ; (c) comparison of
autocorrelations of ASL data and ARMA model in normal-normal coordinates; and (d) comparison of the
global expression, second-order structure functions of ASL data and ARMA model in log-normal coordinates,
where uτ = 0.37 m s−1, Reτ = 3.78 × 106 and z+ = 2.27 × 104.

model and the proposed global expression indicates the validity of the approximate
exponential function in the large-scale range. These results validate the applicability of
using the ARMA(1, q) model to describe the boundary-layer streamwise velocity series.

As discussed in § 2.1, we simplify the attached eddies with continuously varying sizes
to a series of eddies whose sizes are approximated as a multiple of z up to δ. The
model parameters βi quantify these attached eddies’ effects on the current position’s
acceleration. Figure 8(a) shows that at all heights, as the distance i�x increases, the effect
of corresponding attached eddies (β2

i ) decreases, indicating that the attached eddies with
larger size contribute less to the fluctuating velocity. In addition, the model’s memory
depth is restricted to the dynamic range, where autocorrelation shows a logarithmic
behaviour. Figure 8(b) shows that the self-similar random effect with a −2 power scaling
of βi leads to a logarithmic autocorrelation, which is discussed in detail in Appendix B.

Here, the ARMA(1, q) model is used to model the dynamic range and to obtain the
large-scale range’s behaviour as a natural extension. To justify the large-scale behaviour,
in figure 9, we show the premultiplied spectra, whose peak is used to distinguish large-
and very-large-scale motions (Wang & Zheng 2016). Even though small scales are not
resolved by the ARMA(1, q) model, its premultiplied spectra well captures that of the
ASL data. Note that since the one-dimensional spectra at low wavenumber contain
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Figure 8. Fitted model parameters βi, i = 1, 2, . . . , q, with Reτ = 3.78 × 106.
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Figure 9. (a) Power spectra Φuu and (b) premultiplied spectra kxΦuu obtained from ASL data and
ARMA(1, q) model, respectively. Here Reτ = 3.78 × 106 and z+ = 7.55 × 105.

an aliasing effect, one needs to be careful when examining large-scale information
from one-dimensional spectra. Improved approaches include examining two-dimensional
spectra (Tong & Nguyen 2015) and employing Fourier cutoff techniques (Ding et al. 2018).

3.3. Asymptotic global expression of the second-order structure function
Because the exact expression of the second-order structure function calculated from the
ARMA(1, q) model is complicated, for analytic simplicity, we derive a global asymptotic
expression for the second-order structure function 〈�u+2〉 in § 2.3 (cf. (2.10), (2.11) and
(2.16)), which is justified in figure 10(a). The uncertainty ranges of parameters M2, ξ2
and η1 are discussed in Appendix C. Additionally, η2 is calculated from (2.15b) with the
optimized η1. The parameters of inertial and dynamic ranges are close to the results of de
Silva et al. (2015).

According to (2.18), η2/η1 is a power function of z/δ, which we check in figure 10(b).
This exponent is conventionally regarded to be 1, corresponding to the empirical values
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Figure 10. (a) Comparison of 〈�u+2〉 obtained from ASL data and global asymptotic expression at Reτ =
3.78 × 106. The intermediate scales of theoretical curves are as follows: Curve 1 – η1 = 1.06, η2 = 27.71;
Curve 2 – η1 = 0.87, η2 = 23.12; Curve 3 – η1 = 0.73, η2 = 15.42. The black curves correspond to
expressions for inertial and dynamic ranges presented by de Silva et al. (2015). (b) Comparison of η2 obtained
from ASL data and the expression (2.18) with A1/B2 = 1.15, A2/B2 = 1/ξ2 = 1.50, B1/B2 = 0.41 and
B1 = 0.80.
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Figure 11. (a) Comparison of 〈�u+2〉 obtained from DNS and experiment data and global asymptotic
expression. Here, z+ locates in the logarithmic region. The triangle symbols correspond to the DNS data
at Reτ ≈ 5200 (Lee & Moser 2015), and the circle and square symbols correspond to the experiment data
Reτ = 19 000 (Hutchins et al. 2009; de Silva et al. 2015). (b) Comparison of η2 obtained from DNS data and
the expression (2.15b) with A1 = 1.72 and B1 = 1.50.

of B1 = 1.25 and B2 = 2.5. However, in ASL data, B1 often deviates from 1.25, and
some researchers argue that B1 may decrease with increasing Reτ (Monkewitz 2022).
In addition, B2 depends on η1 (cf. (2.11)), which is influenced by the ratio between the
energy production and dissipation rate. So instead of restricting the values of B1 and B2
individually, we take the realistic values obtained from ASL data to test our expressions.

Furthermore, we undertake validation of the global expression through direct numerical
simulation (DNS) and experimental results. Illustrated in figure 11(a), the triangle symbols
correspond to the DNS data at Reτ ≈ 5200 obtained from Johns Hopkins turbulence
database (Lee & Moser 2015). Although the logarithmic slope B2 of DNS data ranges from
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Figure 12. Behaviour of covariance of streamwise velocity u and vertical velocity w in the (a) dynamic range
and (b) large-scale range.

1.46 to 1.78, smaller than the previously reported range of 2.16 to 2.5, the global expression
matches the data well. The circle and square symbols in figure 11(a) correspond to the
experiment results at Reτ = 19 000, as detailed by Hutchins et al. (2009) and portrayed in
figure 3(a) of de Silva et al. (2015). Combining these results from experiment, DNS and
ASL data, we conclude that the proposed global expression for the second-order structure
function is applicable across friction Reynolds numbers from O(104) to O(106). Since B2
varies significantly with z+ in DNS data, it is more appropriate to check (2.15b) rather than
(2.18). The relationship between η2 and η1 obtained by asymptotic matching conforms well
to the data, as shown in figure 11(b).

Introducing the two matching scales η1 and η2 makes a more lucid examination of
behaviours across distinct scale ranges feasible. Within the transport equation for the
second-order structure function, the shear production term 〈�u�w〉 dU/dz injects energy
into the shear boundary layers. So we explore the scaling behaviour of 〈u1w2 + u2w1〉.
Figure 12(a) shows that the energy flux remains relatively constant within the inertial
range (scales less than η1z). Additionally, in the dynamic range, 〈u1w2 + u2w1〉 follows
a −1 power law that leads to the logarithmic expression for the structure functions (Xie
et al. 2021). Conversely, scales exceeding η2z exhibit negligible production. So η2z is an
approximate indicator of the energy injection scale in boundary layers. With negligible
energy flux, the autocorrelation in the active range decays exponentially.

One main result of the present study is obtaining the expression of the second-order
structure function in the large-scale range, which is beyond previous works on the inertial
and dynamic ranges (Davidson et al. 2006b; Davidson & Krogstad 2014; de Silva et al.
2015). In our extended expression, the upper bound of the dynamic range scales as η2.
Thus, with scale normalized by η2z, collapse of data of different Reτ in figure 13(a)
justifies this characteristic scale. In the large-scale range, the exponential expression of
the second-order structure functions obtained from the ARMA(1, q) model is justified in
figure 13(b).

3.4. The characteristic length scale
The asymptotic global expression for the second-order structure function provides a
theoretical expression for characteristic length scales Lx identified by a threshold of
autocorrelation. The well-fitting result of the global expression implies the validity
of (2.22). There are three independent parameters in (2.22): η1, A1/B2 and B1/B2.
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Figure 13. (a) Dynamic and large-scale ranges of second-order structure function with new scale η2z at
different high friction Reynolds numbers Reτ . (b) Exponential scaling of the second-order structure function
for scales larger than η2z.
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Figure 14. (a) Characteristic length scales summarized by Liu et al. (2017) and the data comes from Lee &
Sung (2011), Volino, Schultz & Flack (2007), Tutkun et al. (2009), Hutchins & Marusic (2007), Hutchins et al.
(2012), Liu et al. (2017) and Önder & Meyers (2018). Equation (2.22) provides the prediction of parameters
A1/B2 and B1/B2. (b) Some ASL data that deviate from the Lx summarized by Liu et al. (2017) can also be
characterized by (2.22). The height-averaged ratio of energy production and dissipation rate P/ε for the time
intervals corresponding to the circle, triangle and square symbols are 1.84, 1.47 and 1.37, respectively.

The empirical scale η1 and already defined constants A1/B2 and B1/B2 characterize the
variation of Lx. As shown in figure 14(a), the previous results of Lx are summarized by Liu
et al. (2017) with an approximate logarithmic expression. However, other studies found
anomalous behaviour of Lx (Önder & Meyers 2018), suggesting that Lx may be variant
under different flow conditions. Our double-log expression (2.22) with turning parameters
well captures all data, implying it as a robust relation.

To further justify (2.22), in figure 14(b), we select three sets of ASL data with abnormal
Lx. Equation (2.22) also describe these behaviours with parameters A1/B2 and B1/B2
obtained from the streamwise fluctuating velocity variance and second-order structure
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Figure 15. Comparison of integral length scale L and approximate expression (2.29a). The autocorrelation is
integrated up to the first 0.01 crossing. The parameter μ in f1 is obtained from ASL data and ξ2 = 2/3.

function of the corresponding data sets. Note that in (2.22), in addition to A1/B2 and
B1/B2, there is another parameter η1 that needs to be determined, which is of order unity.
In figure 14(a), η1 is assumed to be 1 while it is taken as its average value at different
heights in figure 14(b). The well-fitting results show that (2.22) is a good candidate to
explain the variation of Lx.

Here our primary parameter of interest is B1/B2, which although has an accepted value
of 0.5, deviates in different flows. As can be observed from the expression for Lx in the
large-scale range (cf. (2.22)), the extent to which B1/B2 deviates from 0.5 leads mainly
to the growth rate of Lx/δ with z/δ. Figure 14(b) shows that, usually, a smaller value of
B1/B2 corresponds to a larger set of Lx/δ. In uncontrollable ASL measurements, flow
parameters that deviate from the standard zero-pressure-gradient boundary layer are not
rare, e.g. production and dissipation are not locally balanced, and the height dependence
of turbulent kinetic energy can vary (cf. (2.17)). The unbalanced energy production and
dissipation affects the intermediate scale η1 between inertial and dynamic ranges (Zhang
et al. 2022), thus impacting the value of Lx.

With the global expression, we can estimate the integral length scale L approximately.
For ASL data, because errors at large scales have a significant impact on the calculation
of L, we integrate the dimensionless autocorrelation up to the first 0.01 crossing scale,
similar to the approach adopted by O’Neill et al. (2004) and Tritton (2012). As shown in
figure 15, (2.29a) characterizes the variation of L well. Since f1 is sensitive to the value of
μ, see figure 4, we determine the value of μ from ASL data rather than using empirical
values and the small-scale power exponent is set as ξ2 = 2/3. Additionally, as discussed
in § 2.4.3, (2.29) indicates that L locates in the dynamic range, suggesting that L is a
characteristic scale of the attached eddies in the logarithmic region.

4. Summary and discussion

To model the streamwise velocity and explore the autocorrelation in boundary-layer
turbulence, we apply the ARMA model to the dynamic and large-scale ranges of
the second-order structure function. Consistent with the knowledge of boundary-layer
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turbulence and AEM, the memory depth q in the ARMA(1, q) model is determined by
the lower and upper end of the dynamic range normalized by z, η1 and η2, respectively.
The MA random effect in the ARMA(1, q) model dominates the behaviour of the dynamic
range. A logarithmic second-order structure function is obtained when the randomness
is self-similar, whose strength is captured by a power function with exponent −2.
Additionally, we may regard the ARMA model as a stochastic AEM by the analogous
linear additive random effects.

The ARMA model provides a natural extension of the second-order structure-function
expression to the large-scale range (scales larger than η2z), where the autocorrelation
of streamwise velocity decays exponentially. We match the expression for the dynamic
range and an exponential expression at η2 to the second-order derivative to obtain an
approximate global expression for the second-order structure function 〈�u+2〉 (cf. (2.10),
(2.11) and (2.16)). In the global expression, the large- and small-scale coefficients are
connected by asymptotically matching at characteristic scales η1 and η2. For example,
for inertial and dynamic ranges, only three of the five coefficients (M2, ξ2, η1, A2 and
B2) of the second-order structure-function expression are free and the global expression
is determined after additionally determining the streamwise turbulence intensity 〈u+2〉.
This global expression is checked to be robust by well capturing the measured ASL data
with non-canonical conditions and is applicable across friction Reynolds number from
O(104) to O(106). Despite errors in autocorrelation and second-order structure function
at large scales, the proposed expression yields an accurate calculation of the maximum
energy injection scale η2 and provides a method for determining the characteristic scale
of the dynamic range from the streamwise turbulent intensity. These characteristic scales
are relevant to other length scales in boundary-layer turbulence, as studied by Gustenyov
et al. (2023). For example, in the near-wall region, the energetic scale approximates
the upper bound of the inertial range, which is close to the scale η1z. Additionally,
the interface wavelength quantifying the average distance between two near turbulent
regions corresponds to the peak of premultiplied spectra, which is consistent with η2z,
indicating that in ASL, the large-scale range may be affected by the non-turbulent external
atmospheric environment.

Based on the expression of 〈�u+2〉, the expression for the streamwise characteristic
scale Lx is obtained. When the threshold of the autocorrelation locates in the large-scale
range, the ARMA model implies that the characteristic scale has a double-log dependence
on the distance to the wall, which resembles the traditional log-dependence in the
parameter regimes with local energy production–dissipation balance and B1/B2 ≈ 0.4.
In addition, our expression is also valid for non-standard situations, which is justified
using ASL data with the Townsend–Perry constant and the logarithmic slope of 〈�u+2〉
deviating from their standard values. Thus, the robustness of this expression implies that
the ARMA model captures certain underlying mechanisms in boundary-layer turbulence.

The exponential form of 〈�u+2〉 based on the ARMA model, which links the dynamic
range and the infinitely large scale, can be used to explain the previously proposed
relation that the logarithmic slope of 〈�u+2〉 is twice that of the streamwise turbulent
intensity 〈u+2〉 in the logarithmic region. For instance, Davidson et al. (2006b) matched
the dynamic range with the expression for streamwise turbulence intensity directly to
obtain

〈�u+2〉 (r) = A2 + B2 ln (r/z) , z < r � δ, (4.1a)

〈�u+2〉 = 2〈u+2〉 = 2
[
A1 + B1 ln (δ/z)

]
, r ∼ δ, (4.1b)
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where the coefficients B2 in (4.1a) and 2B1 in (4.1b) are equal. This matching procedure
assumes that the logarithmic behaviour of 〈�u+2〉 lasts to the scale of r = O(δ) and that
the the autocorrelation at r = O(δ) is negligible so 〈�u+2〉 ≈ 2〈u+2〉. However, without
an expression for the range r ≥ O(δ), the validity of the above assumptions is not solid.
Additionally, based on the empirical value of Lx larger than δ, we know that when r = δ,
the second-order structure function is at least smaller than 1.9〈u+2〉. By proposing an
expression of the large-scale range of 〈�u+2〉 using the ARMA model, we find when
η2/η1 approximates δ/z, their procedure is valid (cf. (2.19)), while for other cases, the
double relation between B1 and B2 is modified.

Also, we obtained a lower bound of 〈u+2〉 in the logarithmic region, which is consistent
with the existing numerical and experimental results (Hutchins et al. 2012; Wang & Zheng
2016). A dependence of this lower bound on the ratio of energy production to dissipation
is proposed but remains to be checked. The global expression also yields an estimation of
the integral length scale L (cf. (2.29)), which agrees well with the ASL data. Additionally,
we conclude that in the logarithmic region of boundary-layer turbulence, L locates in
the dynamic range of structure function and is a characteristic scale of attached eddies.
A statistical study with more ASL data may be able to better validate (2.29a). In future
studies, the same analytical procedure can be applied to the spanwise and wall-normal
velocity series to explore the variation pattern of the corresponding characteristic length
scales. Additionally, we can apply the ARMA(p, q) model with p > 1. For the multivariate
case, the vector ARMA model may be used to detect spatial information such as the
inclination angle of coherent structures (Li et al. 2022). For convective ASL, a new range
emerges due to the buoyancy effect, as delineated by the multi-point Monin–Obukhov
similarity theory (Tong & Nguyen 2015), and the combination of ARMA model and
tempered fractional derivative (Samiee, Akhavan-Safaei & Zayernouri 2022) has the
potential to capture the multi-scaling behaviour of structure functions.

Data errors and some assumptions limit the validation of present results. (i) The wall
shear stress is not directly measured in QLOA and therefore the friction velocity uτ is
approximated by the shear Reynolds stress. (ii) The orders of the ARMA model are all
integers. Inevitably, errors are caused by extracting new series and implementing discrete
models on continuous flow motion. (iii) Though we propose an approximate expression
for 〈�u+2〉, its accuracy remains to be checked at large scales due to the error arising
from Taylor’s frozen hypothesis (He, Jin & Yang 2017). This hypothesis is the only valid
method for the current data to convert temporal data to the spatial domain, which is a
common practice for ASL data analysis. For spatial data, the reformulation of the ARMA
model is straightforward by replacing temporal separations with spatial separations, and
it has the potential to capture more accurate physical information by avoiding the error
brought about by the application of Taylor’s frozen hypothesis.
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Appendix A. Theoretical properties of the ARMA model

For an ARMA(p, q) model expressed as

ut =
p∑

i=1

αiut−i�t +
q∑

j=1

βjεt−j�t + εt, (A1)

or
A(B)ut = B(B)εt, (A2)

where B is the time lag operators with lag �t, i.e. Biut = ut−i�t, and A and B are linear
operators defined as A(B) = 1 −∑p

i=1 αiBi and B(B) = 1 +∑q
j=1 βjB j, respectively.

The time step �t could be chosen as the time interval corresponding to the measurement
frequency of the time series or an artificially selected time step. The model equation (A1)
or (A2) constrains the velocity at the moment t to be influenced up to the velocities of the
previous p time steps (AR part) and the random noises of the previous q time steps (MA
part).

If the ARMA model can be applied to the time series, some restrictions must be satisfied.
For example, if {ut} is a causal function of {εt}, there exists

ut = ψ0 + ψ1εt−�t + ψ2εt−2�t + · · · = Ψ (B)εt, (A3)

where the parameters should satisfy
∑∞

i=0 |ψi| < ∞ or Ψ (z) /= 0 for |z| ≤ 1. Additionally,
the series {ut} should be an invertible function of {εt}, i.e.

εt = ϑ0 + ϑ1ut−�t + ϑ2ut−2�t + · · · = Θ(B)ut, (A4)

where the parameters should satisfy
∑∞

i=0 |ϑi| < ∞ or Θ(z) /= 0 for |z| ≤ 1. Also, the
series is stationary if and only if Ψ (z) /= 0 for |z| = 1.

A.1. Autocorrelation
Since the model equation is linear, some basic properties of the ARMA model can be
expressed explicitly, such as the autocorrelation

Ruu(k�t) = 〈utut−k�t〉, (A5)

where k is the number of time steps and the angular brackets denote the time average
over t. Since (A1) is a linear equation and the white noise εt is temporal independent, the
autocorrelation of ut can be calculated directly as

Ruu(k�t) = σ 2
ε

∞∑
i=0

ϕiϕi+k, (A6)

where ϕ0 = β0 = 1, ϕk = H(q − k)βk +∑min{k,p}
i=1 αiϕk−i. This is a convenient calculation

method but without an explicit expression. An alternative method to obtain autocorrelation
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is to exploit the independence of white noise:

Ruu(k�t) = 〈utut−k�t〉,

=
〈( p∑

i=1

αiut−i�t +
q∑

j=0

βjεt−j�t

)( p∑
i=1

αiut−k�t−i�t +
q∑

j=0

βjεt−k�t−j�t

)〉
,

(A7)

where 〈∑p
i=1αiut−i�t

∑p
i=1αiut−k�t−i�t〉 can easily be obtained since 〈ut−i�tut−j�t〉 =

Ruu(|i − j|�t), and 〈∑q
j=0βjεt−j�t

∑q
j=0βjεt−k�t−j�t〉 can be calculated since

〈εt−i�tεt−j�t〉 = δijσ
2
ε . For the other two terms, if p ≥ q, the calculations are as follows:

〈 p∑
i=1

αiut−i�t

q∑
j=0

βjεt−j�t

〉

= 〈α1ut−�t(β1εt−�t + β2εt−2�t + · · · + βqεt−q�t)

+ α2ut−2�t(β2εt−2�t + β3εt−3�t + · · · + βqεt−q�t)+ · · ·
+ αq−1ut−(q−1)�t(βq−1εt−(q−1)�t + βqεt−q�t)+ αqut−q�tβqεt−q�t〉

=
q∑

i=1

q∑
j=i

αiβjϕj−iσ
2
ε . (A8)

A similar approach is taken for the case p < q. Then (A7) can be simplified as

Ruu(k�t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p∑
i=1

α2
i Ruu(0)+ 2

p−1∑
i=1

p∑
j=i+1

αiαjRuu (( j − i)�t)

+
q∑

i=0

β2
i σ

2
ε + 2

min{p,q}∑
i=1

q∑
j=i

αiβjϕj−iσ
2
ε , k = 0,

p∑
i=1

αiRuu (|k − i|�t)+ H(q − k)
q∑

i=k

βiβi−kσ
2
ε

+ H(q − 1 − k)
min{q−k,p}∑

i=1

q∑
j=k+i

αiβjϕj−i−kσ
2
ε , k ≥ 1,

(A9)

where H is a Heaviside function. Given the parameters α, β and σ 2
ε , the linear equations

Ruu(0),Ruu(�t), . . . ,Ruu( p�t) can be solved according to (A9) and the autocorrelation
can be obtained.

Regardless of the method of calculation used, once the model parameters α, β and σ 2
ε are

fitted, the autocorrelation Ruu can be obtained explicitly. By comparing the autocorrelation
calculated from the model parameters with the autocorrelation of data, it is intuitive to
determine the applicability of the ARMA model.

Note that the Heaviside step function in (A9) leads to distinctive ranges of
Ruu. In particular, when k ≤ max{p, q}, the behaviour of autocorrelation can only
be approximately derived under some assumptions, an example of which is given
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in Appendix B. When k > max{p, q}, (A9) becomes

Ruu(k�t) =
p∑

i=1

αiRuu ((k − i)�t). (A10)

Namely, when the considered data are beyond the model’s memory depth
(max{p�t, q�t}), the autocorrelation is only related to its history. Equation (A10) is a
linear homogeneous recurrence relation whose characteristic equation is

λp − α1λ
p−1 − α2λ

p−2 − · · · − αp = 0. (A11)

If (A11) has p unequal roots λ1, λ2, . . . , λp, its solution has the following form:

λ = c1λ
n
1 + c2λ

n
2 + · · · + cpλ

n
p, (A12)

where c1, c2, . . . , cp are constants. Then Ruu has a general expression:

Ruu(k�t) =
p∑

i=1

ciλ
k�t
i =

p∑
i=1

ci exp (k�t ln λi) . (A13)

Or if (A11) has t unequal roots λ1, λ2, . . . , λt, and the multiple numbers of roots are
m1,m2, . . . ,mt (mi ≥ 1 and

∑t
i=1 mi = p), then the solution has the following form:

λ = (c1,0n0 + c1,1n1 + · · · + c1,m1−1nm1−1)λn
1 + · · ·

+ (ct,0n0 + ct,1n1 + · · · + ct,mt−1nmt−1)λn
t , (A14)

where ci,j(i = 1, . . . , t, j = 0, . . . ,mi − 1) are constants. In this case, Ruu is still
composed of exponential functions.

The above analysis implies that, beyond the model’s memory depth, a set of exponential
functions comprise the autocorrelation, which is mainly controlled by the parameters of
the AR part and not affected explicitly by the MA part.

A.2. Power spectral density
After obtaining the model parameters, we can calculate the power spectral density of the
ARMA model:

Φuu(kx) = σ 2
ε

2π

∣∣∣∣B(ikx)

A(ikx)

∣∣∣∣
2

, (A15)

where A and B are functions defined in (A2), and kx is the wavenumber and the
corresponding wavelength 𝓁 = 2π/kx. Because the power spectra and the autocorrelation
are Fourier pairs, they provide the same statistical information of time series with different
forms. In addition, the premultiplied power spectra kxΦuu illustrates the contribution of
various wavenumber to the total spectra and identifies the wavenumber with the peak
spectral density, which is commonly used to reveal large- and very-large-scale motions in
boundary-layer turbulence. This work can also indicate how well the model’s large-scale
exponential behaviour approximates the data by comparing the premultiplied spectra of
the ARMA model and the measured ASL data. Details and more information about the
ARMA model presented here can be found from Shumway et al. (2000).
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Appendix B. Logarithmic behaviour of the autocorrelation of the ARMA(1, q) model

Multiplying both sides of the equation of the ARMA(1, q) model (cf. (2.6)) by ut+τ and
taking the average, we get

Ruu(τ ) = αRuu(τ +�t)+
q∑

i=0

βi〈ut+τ εt−i�t〉. (B1)

The continuous form of (B1) can be expressed as

dRuu

dτ
= −α̃Ruu + 〈ut+τ εt〉 +

∫ q

1
βs〈ut+τ εt−s�t〉 ds, (B2)

where β0 = 1 is used and α̃ = (1 − α)/�t is a positive constant. Following the same
process as calculating (A8), we obtain

〈ut+τ εt−s�t〉 =
〈(
αut+τ−�t + εt+τ +

q∑
i=1

βiεt+τ−i�t

)
εt−s�t

〉

=
〈[
α

(
αut+τ−2�t + εt+τ−�t +

q∑
i=1

βiεt+τ−�t−i�t

)
+ εt+τ

+
q∑

i=1

βiεt+τ−i�t

]
εt−s�t

〉
= σ 2

ε

Q∑
i=0

βiα
Q−i, (B3)

where Q = min{τ/�t + s, q}. Therefore, in a continuous limit,

〈ut+τ εt−s�t〉 = σ 2
ε

(
ατ/�t+s +

∫ τ/�t+s

1
βs′α

τ/�t+s−s′ ds′
)
. (B4)

Assuming β ′
s has a power-function form β ′

s ∼ s′−γ when s′ > 1, to the leading order, we
obtain

〈ut+τ εt−s�t〉 ∼
∫ τ/�t+s

1
s′−γ ατ/�t+s−s′ ds′ ∼ (τ/�t + s)−γ+1. (B5)

Since 〈ut+τ εt−s�t〉 decreases as s increases according to (B5) and βs also decays, the
integrand in (B2) is the convolution of 〈ut+τ εt〉 with the kernel function βs and it is
therefore less than 〈ut+τ εt〉. Thus, the solution of (B2) is dominated by

Ruu ∼ e−α̃τ
(∫ τ

τ0

eα̃s′ 〈ut+s′εt〉 ds′ + Ruu(τ0)

)
. (B6)

Substituting (B5) into the above approximation, we obtain

Ruu ∼ e−α̃τ
∫ τ

τ0

eα̃s′(s′/�t)−γ+1 ds′. (B7)

Then, taking the leading terms in the Taylor expansion of exponential functions, we get

Ruu ∼ (1 − O(α̃))
∫ τ

τ0

(1 + O(α̃)) (s′/�t)−γ+1 ds′ ∼
∫ τ

τ0

s′−γ+1 ds′. (B8)
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Figure 16. Errors in the optimization of η1.

z+ η1 M2 ξ2

4.3 × 104 [1.04, 1.09] [2.726, 2.729] [0.723, 0.725]
6.3 × 104 [0.85, 0.89] [2.803, 2.807] [0.734, 0.737]
1.3 × 105 [0.72, 0.75] [2.964, 2.965] [0.720, 0.722]

Table 1. Uncertainty ranges of M2, ξ2 and η1 in figure 10(a).

Particularly, when γ = 2, we obtain

Ruu ∼ ln τ. (B9)

Thus, the logarithmic behaviour of autocorrelation is a consequence of the power law of
the MA coefficients β, which justified the fitting result in figure 8(b).

Appendix C. Uncertainty in determining the global expression

As discussed in § 2.3, for a fixed height z with known 〈u+2〉, the behaviour of the global
expression for the second-order structure function is controlled by the transition scale
η1 and small-scale parameters M2 and ξ2. To compare the agreement between global
expression and ASL data, we define an error

E0(η1,M2, ξ2) =
∫ rmax

rmin

∣∣〈�u2〉 − G(η1,M2, ξ2, r)
∣∣

2〈u2〉 d ln
(

r
z

)
, (C1)

where G(η1,M2, ξ2, r) is the global expression of second-order structure function with
fixed η1, M2 and ξ2, and rmin and rmax are the minimum and maximum scales of the
structure function, respectively.

Here, we illustrate the uncertainty relating to the choice of η1 using

E(η1) = min
M2,ξ2

E0(η1,M2, ξ2), (C2)

which is the minimum error for a fixed η1. Figure 16 shows the dependence of E on
η1. These cases correspond to those shown in figure 10(a), where the values of η1 are
determined from the minimum of E . The uncertainty range of η1 is quantified as the values
with E ranging from Emin to (1 + 5 %)Emin. Figure 16 and table 1 show a small uncertainty
of η1. The uncertainty ranges of other parameters are summarized in table 1.
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