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Abstract
It is a simple method to identify the hub dynamic loads of rotor by measuring the vibration responses on helicopter
fuselage. However, the identification accuracy of the hub dynamic loads is related to the layout or placement of
measuring points on the fuselage. The identification will be inaccurate if the layout of measuring points on the
fuselage is unreasonable to result in the “ill-conditioned” frequency response function (FRF) matrix measured on
the fuselage. In order to avoid the inaccurate identification due to the “ill-conditioned” measured FRF matrix, an
accurate method for identifying the hub dynamic loads of rotor by vibration measurement on helicopter fuselage is
proposed in this paper. In the proposed method, the reasonable layout of the measuring points on the fuselage for the
“well-conditioned” measured FRF matrix can be obtained according to the condition number of the measured FRF
matrix on the fuselage, and then the hub dynamic loads of rotor can be accurately identified. The simulation and
experiment of the identification of the hub dynamic loads on a dynamically similar frame structure of a helicopter
cockpit floor have verified the effectiveness and accuracy of the proposed method.

Nomenclature

cond(H) condition number of the matrix [H (ω)]
[C] damping coefficient matrix
Fj (ω) exciting load at point j of the structure
[F (ω)]nf ×1 column vector of exciting loads
Fx lateral force
Fy longitudinal force
Fz vertical force
Hij (ω) FRF between points i and j
[H] FRF matrix
[H (ω)]−1 inverse of the FRF matrix
[K] stiffness matrix
Mx lateral moment
My longitudinal moment
Mz vertical moment
[M] mass matrix
nf number of exciting loads to be identified
nu number of vibration measuring points on the structure
Nb number of blades
�t time increment
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Ui (ω) response generated at point i of the structure
[U (ω)]nu×1 column vector of measured responses
x lateral direction of the fuselage
y longitudinal direction of the fuselage
z vertical direction of the fuselage

Greek symbol

σmax(H) maximum singular value of the FRF matrix [H (ω)]
σmin(H) minimum singular value of the FRF matrix [H (ω)]
ω frequency
� rotor speed

Subscripts/Superscripts

H complex conjugate transpose of matrix
+ generalised inverse of matrix

Abbreviations

FBG fibre Bragg grating
FRF frequency response function

1.0 Introduction
The dynamic loads of rotor hub are transmitted to helicopter fuselage through rotor shaft, causing strong
vibration of the fuselage. Therefore, the accurate identification of the hub dynamic loads is of great
significance for analysis and control of the fuselage vibration. The aerodynamic, inertia, elastic, damping
and centrifugal forces of each rotor blade are synthesised to blade root, forming the root forces of each
blade, then superimposing to the centre of the rotor hub to form the hub dynamic loads which are the
three forces and three moments in three directions. At present, there are three methods for identification
of the hub dynamic loads as follows.

The first method for identification of the hub dynamic loads is based on analysis of the rotor blade,
i.e., analysing firstly the dynamic loads on each blade, then obtaining the dynamic loads at the blade
root, and then obtaining the hub dynamic loads. This method requires establishment of complex aeroe-
lastic dynamic model of the blade and its solving method. Because the aerodynamic environment and
movement of the rotor blade are very complex during the flight of a helicopter, the established aeroe-
lastic dynamic model of the rotor blade involves the elastic dynamics, unsteady aerodynamics, wake
modeling and so on. At present, there are two kinds of the method for calculating the hub dynamic loads
according to the different methods for calculating the aerodynamic loads of the blade and the wake.
One is by using the comprehensive analysis models [1, 2] which are the aeroelastic dynamic models of
the blade established by combining the multi-body dynamics and structural dynamics with the approx-
imate aerodynamic loads and wake calculation methods. The typical examples are CAMRAD II [3],
RCAS [4], DYMORE4.0 [5], UMARC2 [6], etc. The other is by adopting the CFD/CSD coupled aeroe-
lastic dynamics. The typical representatives of commonly used CFD algorithms include OVERFLOW
[7], TURNS [8] and FUN3D [9], etc. The prediction accuracy and capability of CFD/CSD coupled
aeroelastic dynamics for the hub dynamic loads are significantly improved. However, under complex
manoeuvering conditions and specific flight conditions, the CFD/CSD prediction accuracy for the har-
monic components of the hub dynamic loads is still difficult to meet the requirements of fuselage
vibration analysis [10].

The second method for identification of the hub dynamic loads is based on the vibration measure-
ment on the rotor, i.e., measuring the dynamic strains at the blade root or the distributed dynamic strains
on the blade or the dynamic strains on the rotor shaft, and then analysing the hub dynamic loads. The
blade dynamic strains can be measured by using strain gauges or fibre Bragg grating (FBG) sensors.
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The measurement using strain gauges is the most widely used method for dynamic strain measurement
on the blade and has been applied in lots of measurements of typical helicopters such as UH-60A [11].
In recent years, the FBG sensors have been used for dynamic strain measurements of the rotor blade
because of the advantages such as anti-electromagnetic interference, high measurement accuracy, wide
measurement range and quasi-distributed measurement [12, 13]. At present, there are some static cal-
ibration measurement methods and various load identification methods [14, 15] which can be used to
identify the hub dynamic loads based on the strain data measured on the blade, but due to the complexity
of practical problems, these methods adopt some specific assumptions, resulting in accuracy loss of the
identified hub dynamic loads.

The third method for identification of the hub dynamic loads is based on the vibration measurement
on the fuselage, i.e., measuring the vibration responses on the fuselage, and then analyzing the hub
dynamic loads. In this method, the vibration acceleration responses on fuselage are firstly measured to
obtain the FRF matrix between the exciting points and measuring points, then inverse the FRF matrix,
and then obtain the hub dynamic loads. Giansante et al. [16] placed acceleration sensors on the fuselage
and used the FRF matrix measured on the ground to identify the dynamic loads of AH-1G helicopter in
flight. Fabunmi [17] studied the factors affecting the measurement accuracy of the helicopter dynamic
loads, and experimentally showed that the modal parameters could be used to evaluate the reliability
of dynamic loads measurement. Dobson et al. [18] studied the inverse problem of the FRF matrix used
for identification of the dynamic loads, and proposed that the identification error could be reduced by
increasing the number of measuring points. Callahan et al. [19] studied the identification of applied
positions of dynamic loads based on the inverse of the FRF matrix. The results showed that a better
identification effect could be achieved when the identification range included all actual applied positions
of dynamic loads.

Among the above three methods, the third method is the easiest way to implement. However, in
the analysis process, the FRF matrix obtained by the vibration measurements on the fuselage needs
to be inversed. Hence the measured FRF matrix must be ‘well-conditioned’ for an accurate identifica-
tion of the hub dynamic loads. However, the identification of the hub dynamic loads will be inaccurate
if the measured FRF matrix is ‘ill-condition’. Whether the measured FRF matrix is well-conditioned
or ill-conditioned depends on a reasonable or unreasonable layout of the measurement points on the
fuselage since the position of the hub dynamic loads is determined. The reasonable layout of measure-
ment points on the fuselage means that measurement points have a large vibration response, and the
signal-to-noise ratios measured at measurement points are high, and then the measured FRF matrix will
be well-conditioned. The unreasonable layout of measurement points on the fuselage means that the
vibration responses at some measurement points are very small, and the signal-to-noise ratios measured
at these measurement points are very low, and then the measured FRF matrix may be ill-conditioned.
Therefore, it is necessary to obtain a reasonable layout of the measuring points on the fuselage to obtain
a well-conditioned FRF matrix to improve the identification accuracy of the hub dynamic loads. At
present, in the field of dynamic load identification, the problems of ill-conditioned FRF have been inves-
tigated [20, 21]. Jia et al. [20] proposed a weighted total least squares method to reduce the errors of
the generally ill-posed random dynamic load identification. Alqam et al. [21] presented an approach for
indirect identification of dynamic loads using the strain FRF, displacement FRF, along with the optimal
locations.

It was difficult to obtain accurate identification of the hub dynamic loads by vibration measurement on
the fuselage. The accuracy of identification of the hub dynamic loads was improved generally by adding
measuring points on the fuselage [18]. According to matrix theory, whether a matrix is ill-conditioned
depends on the condition number of the matrix. Hence, the condition number of the measured FRF
matrix can be used as the basis of whether the layout of the measuring points on the fuselage is reason-
able. Based on the matrix theory, an accurate method for identifying the hub dynamic loads by vibration
measurement on helicopter fuselage is proposed in this paper. In the proposed method, the reasonable
layout of the measuring points on the fuselage for the well-conditioned measured FRF matrix can be
obtained according to the condition number of the measured FRF matrix on the fuselage, and then
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the hub dynamic loads of rotor can be accurately identified. The formula for calculating the condition
number of the two norm FRF matrix is proposed in this paper. The simulations and experiments of the
identification of the hub dynamic loads on a dynamically similar frame structure of Z-11 helicopter
cockpit floor are carried out to verify the effectiveness and accuracy of the proposed method.

2.0 Accurate method for identifying hub dynamic loads based on condition number of measured
FRF on fuselage

Helicopter fuselage vibration is mainly caused by the hub dynamic loads. The fuselage vibration fre-
quencies, i.e., the frequencies of the hub dynamic loads are the blade passage frequencies kNb�, where
k = 1, 2, 3, . . ., Nb is the number of blades, and � is rotor speed. Therefore, the fuselage vibration is the
deterministic harmonic vibration.

2.1 Identification of hub dynamic loads by vibration measurement on fuselage
For a multi-degree-of-freedom structural system, under the exciting load Fj (ω) at point j of the structure,
the response generated at point i of the structure is Ui (ω), and there is the following formula:

Hij (ω) = Ui (ω)

Fj (ω)
(1)

where, Hij (ω) is the FRF between points i and j, its physical meaning is the response generated at the
point i when a unit exciting load with frequency ω is applied on point j of the structure. Due to the
reciprocity of linear systems and the fuselage is a linear structure, there is the following equation:

Hij (ω) = Hji (ω) (2)

According to the FRF definition by Equation (1), when the structure is only excited by a load Fj (ω),
there is the following equation:

Ui (ω) = Hij (ω) Fj (ω) (3)

If the structure is excited by N loads {F} = {F1, F2, · · · FN}, according to the principle of linear
superposition, there is the following equation:

Ui = Hi1F1 + Hi2F2 + · · · + HinFn = [Hi1, Hi2, · · · , Hin]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F1

F2

...

Fn

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4)

Then there is the following equation:

{U} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U1

U2

...

Un

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣

H11 H12 · · · H1n

H21 H22 · · · H2n

...
...

...

Hn1 Hn2 · · · Hnn

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F1

F2

...

Fn

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= [H] {F} (5)

where the FRF matrix [H] is a symmetric matrix.
For the deterministic vibration responses of the structure, it is assumed that the number of excit-

ing loads to be identified is nf and the number of vibration measuring points on the structure is nu.
It is required that the number of measuring points is greater than or equal to the number of exciting
loads, i.e., nu � nf ; otherwise, the solution cannot be solved. In this case, the column vector of exciting
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loads [F (ω)]nf ×1 and the column vector of measured responses [U (ω)]nu×1 in frequency domain of the
vibration system satisfy the following relationship:

[U (ω)] = [H (ω)] [F (ω)] (6)

where the FRF matrix [H (ω)]nu×nf
is a square matrix when nu = nf , and the exciting loads can be

calculated by the following formula:

[F (ω)] = [H (ω)]−1 [U (ω)] (7)

Equation (7) contains the inverse of the FRF matrix [H (ω)]−1. The [F (ω)]nf ×1 obtained by Equation
(7) is the column vector of exciting loads in frequency domain. To get the time history of exciting loads,
it needs to take the inverse Fourier transform of the exciting loads.

In order to improve the identification accuracy and stability of the exciting loads, the number of
vibration measuring points on the structure is generally more than the number of exciting loads to be
identified, i.e., nu > nf , then the FRF matrix is of order nu × nf , and the exciting loads can be calculated
by the following formula:

[F (ω)] = [H (ω)]+ [U (ω)] = [
[H (ω)]H [H (ω)]

]−1 [
[H (ω)]H [U (ω)]

]
(8)

where superscript + represents the generalised inverse of matrix and superscript H represents the
complex conjugate transpose of matrix.

Hence, according to Equation (8), the exciting loads [F (ω)] can be identified as long as the vibration
responses [U (ω)] of the structure under the exciting loads [F (ω)] are measured and the FRF matrix
[H (ω)] are obtained by the measurements between the exciting and measuring points on the struc-
ture. For the identification of the hub dynamic loads, the exciting points of the hub dynamic loads are
determined. Hence, the measured FRF matrix on the fuselage depends on the layout of the vibration
measuring points (including location and direction) on the fuselage. However, the layout of the mea-
suring points on the fuselage is uncertain generally and may be unreasonable, which may lead to the
ill-conditioned FRF matrix and then the great errors of the identification of the hub dynamic loads.
The unreasonable layout means that the signal-to-noise ratios on the unreasonable measuring points
are very small, and the signals measured on these measuring points contain lots of noise. The lots of
error information or insufficient modal information will cause the ill-conditioned FRF matrix to produce
inaccurate identification of the hub dynamic loads.

2.2 Condition number of measured FRF matrix
In order to avoid the ill-conditioned or even singular FRF matrix measured on the fuselage due to unrea-
sonable layout of the measuring points on the fuselage, a method for reasonable layout of the measuring
points on the fuselage based on the condition number of the FRF matrix measured on the fuselage is
proposed in this section. The condition number of a matrix is a measure of the accuracy of numerical
solution of a linear system of equations. If the condition number is not too much larger than one, the
matrix is well-conditioned,which means its inverse can be computed with good accuracy. If the condi-
tion number is very large, then the matrix is said to be ill-conditioned. Such a matrix is almost singular,
and the computation of its inverse, or solution of a linear system of equations is prone to large numerical
errors. A matrix that is not invertible has condition number equal to infinity.

For the FRF matrix [H (ω)] in Equation (8), the condition number cond(H) of the matrix [H (ω)] can
be defined as the product of the matrix norm and its inverse matrix norm, i.e.:

cond(H) = ‖H‖ · ∥∥H−1
∥∥ (9)

where the condition number cond(H) of any matrix is always greater than or equal to one. The condition
number of a singular matrix is infinite, and the condition number of an orthogonal matrix is one. The
greater the condition number of a matrix, the more ill conditioned the matrix.
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Figure 1. Photo of frame structure.

The condition number of a matrix is related to the norm selected. In this paper, the two norm of
matrix is selected as the norm of the FRF matrix [H (ω)]. Hence, we have the following formula for
calculating the condition number cond(H) of the FRF matrix [H (ω)]:

cond(H) = σmax(H)

σmin(H)
(10)

Where σmax(H) and σmin(H) are the maximum and minimum singular values of the FRF matrix [H (ω)],
respectively.

In practice, the unit hub dynamic loads are applied at the hub centre of the fuselage, then the vibra-
tion responses at the measuring points on the fuselage are measured, and then the FRF matrix [H (ω)]
between the exciting points of the hub dynamic loads and the measuring points of vibration responses
are obtained according to the definition of the FRF by Equation (1). After obtaining the FRF matrix
[H (ω)], the condition number cond(H) of the FRF matrix [H (ω)] are calculated by Equation (10), then
we can judge if the FRF matrix [H (ω)] is ill-conditioned according to the value of the condition num-
ber cond(H). If the value of the condition number cond(H) is not much more than one, then the FRF
matrix [H (ω)] is not ill-conditioned, and then the layout of the measuring points corresponding to the
FRF matrix [H (ω)] is reasonable. After obtaining the reasonable layout of the measuring points on the
fuselage, we can identify the hub dynamic loads by measuring the vibration responses at the reasonable
layout of the measuring points under the excitation of the hub dynamic loads according to Equation (8).

3.0 Simulation of identifying hub dynamic loads on fuselage model structure
3.1 Fuselage model structure
The fuselage model structure used for the identification of the hub dynamic loads is a dynamically
similar frame structure of the fuselage cockpit floor of Z-11 helicopter. A photo of the frame structure
which was vertically installed to the foundation is shown in Fig. 1. The frame structure was assembled
by rectangular cross section beams and fixed to the foundation by 10 cantilever beams that were used
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Table 1. Parameters of frame structure

Parameters (unit) Values
Length (m) 0.6
Width (m) 0.15
Height (m) 1.26
Elasticity modulus of material (Gpa) 209
Shear modulus of material (Gpa) 82.3
Density of material (kg · m−3) 7,890
Poisson’s ratio of material 0.269

Table 2. Natural frequencies of frame structure

Modal shape Simulated frequency (Hz) Measured frequency (Hz) Frequency error (%)
1st vertical bending 7.98 8.15 2.09
2nd vertical bending 19.01 19.05 0.21
1st torsion 21.92 22.00 0.36

Figure 2. Schematic diagram of frame structure.

to simulate the connection between the fuselage cockpit floor and the middle fuselage, which is the
foundation in Fig.1. The material of beam is steel and its parameters are listed in Table 1. The schematic
diagram of the frame structure with the loading point, boundary nodes connecting to the foundation
and verifying points 1 and 2 for verifying the response calculation method by experiment is shown in
Fig. 2.

In this paper, the finite element model of the frame structure was established by using three-
dimensional beam element. The simulation and measurement results of the natural frequencies of the
frame structure are listed in Table 2. It can be seen from Table 2 that the errors between the natural fre-
quencies obtained by the finite element simulation and measurement of the frame structure are all less
than 3%, indicating that the frequencies between the finite element model and the actual frame structure
are very close.
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3.2 Identification simulation of hub dynamic loads
Helicopter rotor hub dynamic loads are three forces and three moments in three directions which are
located at the hub centre and produce vibration of fuselage structure. According to Section 2, the hub
dynamic loads can be identified by obtaining the FRF matrix at the reasonable layout of the measuring
points on the fuselage. In this paper, the time domain vibration response of the finite element model of
the frame structure under the excitation of dynamic loads is solved by using the Newmark-Beta method.

For the vibration frame structure of the fuselage cockpit floor shown in Fig. 1 with mass matrix [M],
damping coefficient matrix [C] and stiffness matrix [K], the equation of motion under the dynamic load
vector {F} at time point i is

[M]
{
d̈i

} + [C]
{
ḋi

} + [K] {di} = {Fi} (11)

The Newmark-Beta method approximately solves the velocity and displacement of a vibrating system
after a time increment �t using the following two equations:{

ḋi+1

} = {
ḋi

} + �t
[
(1 − γ )

{
d̈i

} + γ
{
d̈i+1

}]
(12)

{di+1} = {di} + �t
{
ḋi

} + (�t)2

[(
1

2
− β

) {
d̈i

} + β
{
d̈i+1

}]
(13)

where the parameters β and γ are freely selectable. Generally, the value of parameter β is between 0 and
0.25, and the value of parameter γ is 0.5. For the combination of β=0.25 and γ=0.5 values, namely the
averaged acceleration method, the numerical analysis is stable and the calculation results are convergent
regardless of the time step size.

By Equation (13), the following equation is obtained:
{
d̈i+1

} = 1

β(�t)2 ({di+1} − {di}) − 1

β�t

{
ḋi

} −
(

1

2β
− 1

) {
d̈i

}
(14)

Substituting Equation (14) into Equation (12) yields:
{
ḋi+1

} = γ

β(�t)2 ({di+1} − {di}) +
(

1 − γ

β

) {
ḋi

} +
(

1 − γ

2β

)
�t

{
d̈i

}
(15)

At time point i+1, the equation of motion of the vibration system is

[M]
{
d̈i+1

} + [C]
{
ḋi+1

} + [K] {di+1} = {Fi+1} (16)

Substituting Equations (14) and (15) into Equation (16) yields:[
K̃

] {di+1} = {
F̃i+1

}
(17)

[
K̃

] = 1

β(�t)2 [M] + γ

β�t
[C] + [K] (18)

{
F̃i+1

} = {Fi+1} + [M]

[
1

β(�t)2 {di} + 1

β�t

{
ḋi

} +
(

1

2β
− 1

) {
d̈i

}]

+ [C]

[
γ

β�t
{di} +

(
γ

β
− 1

) {
ḋi

} +
(

γ

2β
− 1

)
�t

{
d̈i

}]
(19)

Hence, according to Equations (17), (15) and (14), the displacement, velocity and acceleration at
time point i+1 after a time increment �t can be solved by using the parameters β, γ, �t and the values
of displacement, velocity, acceleration and external force at time point i.

For verifying the response calculation using the Newmark-Beta method by experiment, the simulation
and experiment at the verifying points 1 and 2 as shown in Fig. 2 were carried out. In the simulation, a
dynamic force Fz with frequency 25Hz and amplitude 20N and a dynamic moment My with frequency
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Table 3. Simulation and experimental acceleration amplitudes at two verifying
points

Applied dynamic loads Force Torque
Verifying point 1 2 1 2
Experimental amplitude (m/s2) 4.18 2.63 2.77 0
Simulation amplitude (m/s2) 3.92 2.67 2.69 0
Simulation error (%) 6.22 1.52 2.89 –

Figure 3. Loading point of hub dynamic loads and measuring points on frame structure.

25Hz and amplitude 14Nm were applied at the loading point, respectively, and the acceleration responses
at the verifying points 1 and 2 were calculated by using the Newmark-Beta method under the dynamic
force and torque, respectively. In the experiment, a dynamic HEV-50 shaker was used to produce the
same dynamic force as in simulation and apply to the loading point, two dynamic HEV-50 shakers with
a distance of 14cm and opposite phases were used to produce the same dynamic torque as in simulation
and apply to the loading point, and the acceleration responses at the verifying points 1 and 2 were
measured. The simulation and experimental acceleration amplitudes at two verifying points are listed
in Table 3. It can be seen from Table 3 that the largest error of the simulation with experiment is 6.22%,
verifying the calculation results using the Newmark-Beta method.

For the frame structure shown in Fig. 2, the loading point of the hub dynamic loads and six measuring
points are selected as shown in Fig. 3 in which the black dot is the exciting point of the hub dynamic
loads, the square black dots are the measuring points, the arrow is the measurement direction of vibration
acceleration, and x, y and z refer to the lateral, longitudinal and vertical directions of the fuselage, respec-
tively. The rotor hub dynamic loads include the three forces Fx, Fy, Fz and three moments Mx, My, Mz.
However, in the simulation, the lateral force Fx, vertical force Fz, longitudinal moment My and vertical
moment Mz were used as the hub dynamic loads. The longitudinal force Fy and lateral moment Mx were
not used in the simulation, because the end of the frame structure is fixed on the foundation, the vibration
of the frame structure under Fy and Mx is too small to effectively identify the dynamic loads. Hence, four
dynamic loads, one loading point and six measuring points were adopted in the identification simulation
of the hub dynamic loads.
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Figure 4. Simulated accelerations at six measuring points under unit dynamic force Fx.

The unit dynamic loads were applied to the loading point and the acceleration responses on the six
measuring points were computed by using the Newmark-Beta method to obtain three FRF matrices
corresponding to 18, 36 and 54Hz which are the 1st, 2nd and 3rd blade passage frequencies of Z-11
helicopter, respectively. The three 6 × 4 order FRF matrices are denoted as H (18), H (36) and H (54),
respectively. In order to simulate the background noise, Gaussian white noise with an amplitude range
of ±10−2m/s2 was added to the vibration response signal in time domain. According to the simulation
results, the acceleration responses at measuring point 3 under the excitation of Fx, at measuring points 1,
4 and 6 under the excitation of Fz, at measuring point 3 under the excitation of My and at measuring point
3 under the excitation of Mz were all white noise responses. The simulated accelerations at six measuring
points under unit dynamic force Fx are shown in Fig. 4 in which the acceleration signal at measuring
point 3 is actually the noise. At other measuring points and under the excitation of other dynamic loads,
the signal-to-noise ratios of vibration acceleration responses were very high, which indicated that the
vibration acceleration responses were large.

According to the applied unit dynamic loads and the vibration responses at the measuring points, the
FRF matrices H (18), H (36) and H (54) of the frame structure can be obtained as follows:

H (18) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0058 + 0.0001i 0 0.024 + 0.0003i 0.036 − 0.0005i

0.0064 − 0.0001i −0.012 + 0.0072i −0.085 + 0.0025i −0.040 + 0.0010i

0 −0.13 + 0.019i 0 0

−0.0091 + 0.0003i 0 −0.044 + 0.0011i 0.091 − 0.0026i

0.0052 − 0.0001i −0.17 + 0.018i −0.069 + 0.0012i −0.031 + 0.0006i

−0.018 + 0.0006i 0 0.048 − 0.0013i 0.16 − 0.0050i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

H (36) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0096 + 0.0002i 0 0.026 − 0.0013i 0.036 − 0.0019i

−0.015 − 0.0006i 1.1 + 0.18i 0.20 + 0.0081i 0.094 + 0.0038i

0 0.50 − 0.046i 0 0

0.019 + 0.0005i 0 0.13 + 0.0041i −0.20 − 0.0057i

−0.0011 − 0.0004i −1.1 + 0.19i 0.014 + 0.0054i 0.0084 + 0.0026i

0.071 + 0.0014i 0 −0.19 − 0.0046i −0.59 − 0.012i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)
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Table 4. Identified amplitudes and phases of hub dynamic loads at 18Hz

Applied amplitude Identified amplitude Error Applied phase Identified phase Error
Load N or Nm N or Nm % deg deg %
Fx 3.00 3.03 1.01 60.00 59.47 0.88
Fz 10.00 9.99 0.01 90.00 90.28 0.31
My –1.20 –1.19 0.26 180.00 180.26 0.14
Mz 0.30 0.30 1.41 –30.00 –29.04 3.18

Table 5. Identified amplitudes and phases of hub dynamic loads at 36Hz

Applied amplitude Identified amplitude Error Applied phase Identified phase Error
Load N or Nm N or Nm % deg deg %
Fx –1.44 –1.43 0.66 30.00 31.04 3.48
Fz 4.20 4.19 0.20 60.00 60.60 1.01
My 0.41 0.40 0.03 –90.00 –89.31 0.76
Mz 0.09 0.09 1.11 30.00 31.54 5.14

H (54) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.054 + 0.0015i 0 0.21 − 0.0079i 0.33 − 0.011i

0.016 − 0.0018i −0.32 + 0.021i −0.22 + 0.024i −0.099 + 0.011i

0 −0.46 − 0.012i 0 0

0.0069 + 0.0005i 0 0.12 − 0.0011i −0.084 − 0.0045i

0.052 − 0.0028i 1.3 − 0.012i −0.70 + 0.038i −0.31 + 0.017i

0.16 − 0.0040i 0 −0.41 + 0.016i −1.3 + 0.031i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)

After obtained the FRF matrices H (18), H (36) and H (54), the simulation of identifying the hub
dynamic loads can be carried out by using the following four hub dynamic loads:

Fx = 3.0 sin
(

2π × 18t + π

3

)
− 1.44 sin

(
2π × 36t + π

6

)
− 0.46 sin

(
2π × 54t − π

3

)

Fz = 10.0 sin
(

2π × 18t + π

2

)
+ 4.2 sin

(
2π × 36t + π

3

)
+ 1.83 sin

(
2π × 54t − π

3

)

My = −1.2 sin (2π × 18t + π) + 0.41 sin
(

2π × 36t − π

2

)
− 0.18 sin

(
2π × 54t − π

6

)

Mz = 0.3 sin
(

2π × 18t − π

6

)
+ 0.09 sin

(
2π × 36t + π

6

)
− 0.022 sin

(
2π × 54t + π

2

)
(23)

Under simultaneous excitation of the four dynamic loads by Equation (23), the vibration acceleration
responses at the six measuring points on the frame structure can be obtained by using the Newmark-
Beta method. Using the inverse of the FRF matrices by Equations (20), (21) and (22) to identify the
dynamic loads by Equation (8), the identified results and errors of the dynamic loads at the three excit-
ing frequencies can be obtained, respectively. The identified amplitudes and phases of the applied four
dynamic loads and their errors are listed in Tables 4, 5 and 6. It can be seen from these tables that for
the dynamic loads at the first three blade passage frequencies, the errors of the identified amplitudes
are all within 2.1%, and the errors of identified phases are all within 5.2%, indicating that the identified
dynamic loads have high accuracies, and the selected measuring points are reasonable.
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Table 6. Identified amplitudes and phases of hub dynamic loads at 54Hz

Applied amplitude Identified amplitude Error Applied phase Identified phase Error
Load N or Nm N or Nm % deg deg %
Fx -0.46 -0.45 0.74 -60.00 -58.30 2.82
Fz 1.83 1.82 0.28 -60.00 -59.02 1.62
My -0.18 -0.17 0.28 -30.00 -28.91 3.62
Mz -0.02 -0.02 2.05 90.00 89.84 0.16

Figure 5. Amplitude identification errors of four dynamic loads at randomly generated 10,000 layouts
of six measuring points.

3.3 Layout of measuring points by condition number of FRF matrix
In this section, the condition number of the FRF matrix is used to select the layout of the six measuring
points (including position and direction). In order to indicate the influence of the layout of the six mea-
suring points on the identification accuracy of the dynamic loads, the identification simulations of the
four dynamic loads under different layout of the six measuring points were carried out. The amplitudes
of the dynamic loads were set to 100N or 10Nm. 10,000 layouts including positions and directions of
six measuring points were randomly generated. In each layout of six measuring points, the amplitudes
of the four dynamic loads were identified separately. The average identification errors of the amplitudes
of the four dynamic loads at the 10,000 layouts of six measuring points are shown in Fig. 5 in which the
average identification errors are the average values of the identification errors at six measuring points
in each layout. It can be seen from Fig. 5, the average identification errors at some layouts are very
large, even reaching 5,000%. If the average error less than 5% is as qualified standard, then the qualifi-
cation rate of the average identification errors in the randomly generated 10,000 layouts is only 37.48%
according to the analysis of the average identification errors shown in Fig. 5. Therefore, it is necessary
to reasonably select the layouts of six measuring points according to the condition number of the FRF
matrix.

To carry out the identification simulation of the four dynamic loads with reasonable layouts of six
measuring points, 1,000 layouts of six measuring points were randomly generated by setting a range of
the condition number of the FRF matrix. The qualification rate of the average identification errors and
the maximum average identification error of the amplitude identification of the four dynamic loads at
the 1,000 layouts of six measuring points in three ranges of the condition number of the FRF matrix are
shown in Table 7.

https://doi.org/10.1017/aer.2023.91 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.91


1006 Shang et al.

Table 7. Amplitude identification results of four dynamic loads at randomly generated 1,000
layouts of six measuring points in three ranges of condition numbers

Qualification rate of
Range of condition average identification Maximum average

No. number errors (%) identification error (%)
1 cond (H) < 2,000 69.70 70
2 cond (H) < 1,000 89.30 20
3 cond (H) < 500 99.00 10

Table 8. Amplitude identification results and errors of four dynamic loads in four ranges of condition
numbers

Load Fz(N) Fz(N) My(Nm) Mz(Nm)
Applied amplitude 100 100 10 10

(1) 2,900 < cond (H) < 3,000
Identified amplitude 69.35 99.74 9.27 6.65
Identification error (%) 30.65 0.26 7.27 33.47

(2) 1,900 < cond (H) < 2,000
Identified amplitude 94.59 99.60 9.81 9.43
Identification error (%) 5.41 0.40 1.86 5.66

(3) 900 < cond (H) < 1,000
Identified amplitude 97.40 99.60 9.91 9.72
Identification error (%) 2.60 0.40 0.90 2.85

(4) 290 < cond (H) < 300
Identified amplitude 99.29 99.58 9.93 9.92
Identification error (%) 0.71 0.42 0.75 0.78

To clearly indicate the layout effect of six measuring points on identifying accuracy according to the
condition number of the FRF matrix, four layouts of six measuring points were randomly generated in
four ranges of the condition number of FRF matrix to identify the amplitudes of the four dynamic loads,
respectively. The identification results and errors are listed in Table 8. It can be seen from Table 8 that
with the decrease of the ranges of the condition number of FRF matrix, the amplitude identification error
of the four dynamic loads decreases rapidly, indicating that the layout effect of six measuring points on
identifying accuracy according to the condition number of the FRF matrix is very good. For the 4th
range of the condition number, i.e. 290 < cond(H) < 300, the amplitude identification errors of the four
dynamic loads are all less than 1%. Two layouts of six measuring points for the 1st and 2nd ranges of
the condition number are shown in Figs. 6 and 7 respectively. It can be seen from Figs. 6 and 7 that the
two layouts are quite different.

4.0 Experiment of identifying hub dynamic loads on fuselage model structure
In order to further verify the identification effectiveness and accuracy of the hub dynamic loads by using
the condition number of the FRF matrix measured on fuselage, the experiment of identifying the hub
dynamic loads is carried out in this section.
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Figure 6. Layout of measuring points for condition number 2,900 < cond (H) < 3,000.

Figure 7. Layout of six measuring points for condition number 1,900 < cond (H) < 2,000.

4.1 Experimental system
The frame structure used for the experiment is shown in Fig. 1, and the schematic diagram of the experi-
mental system for the identification of the hub dynamic loads is shown in Fig. 8. The experimental system
included the PCB 208C05 force sensor, PCB 352C65 acceleration sensor, TMS320F28335 digital signal
processor, HEV-50 shaker and so on. The vibration signals collected by the accelerometers were ampli-
fied to improve the signal-to-noise ratios of measured signals using the TMS320F28335 digital signal
processor for analog-to-digital conversion and obtain high-quality vibration response acceleration data,
and the amplification factor is set to 100. A dynamic force generated by the shaker at the excitation point
of the frame structure was used to simulate the hub dynamic load, which produced the vibration of the
frame structure. If the excitation point is on the neutral line of the frame structure, the dynamic load is a
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Figure 8. Schematic diagram of experimental system for identification of hub dynamic loads.

force in z direction. If the excitation point is not on the neutral line of the frame structure, the dynamic
load will form a force in z direction and a torque in y direction. One excitation point and three measuring
points in z direction on the frame structure shown in Fig. 7 were selected to carry out the identification
experiment of the hub dynamic loads.

4.2 Experimental results
The excitation frequency in the experiment was set to 30Hz, which is different from the frequencies 18,
36 and 54Hz used in the simulation in order to further verify the feasibility of the proposed identification
method in this paper for different frequencies. The FRF matrix between the excitation point and three
measuring points was obtained under unit force excitation. The acceleration responses at three measuring
points when excitation point was located at the neutral position and at 7cm from the neutral position were
obtained, respectively. By subtracting the acceleration values at the same measuring point and at two
excitation points, the acceleration response at the measuring point under the excitation of unit torque in
y direction can be obtained. By analysing the response data at each measuring point, the FRF matrix
between the excitation point and the three measuring points at 30Hz was obtained as follows:

H (30) =
⎡
⎢⎣

−2.98 − 2.14i 0.37 + 0.29i

−6.95 − 6.10i 4.44 + 0.054i

−4.66 − 4.04i 0.050 + 0.0099i

⎤
⎥⎦ (24)

By analysing the FRF matrix (Equation (24)), the condition number of the matrix is cond (H (30)) =
4.99, indicating that the selected position and direction of the three measuring points is a reasonable
layout and the FRF matrix is well-conditioned. After obtaining the FRF matrix, the identification exper-
iment of the dynamic loads can be carried out. The identification experiment of the dynamic loads
included nine excitation conditions including a combination of three positions of excitation point devi-
ating from the neutral line of the frame structure with three amplitudes of exciting force under each
position of excitation point. The three positions of excitation point deviated 3.5, 5.25 and 7.0cm from
the neutral line, respectively, and the three amplitudes of exciting force were 6.67, 8.33 and 10.00N,
respectively. The experimental results and errors of the dynamic load identification in the nine excita-
tion conditions are listed in Tables 9, 10 and 11, respectively. It can be seen from these tables that the
amplitude identification errors of the dynamic force and torque in the experiment are less than 3%, indi-
cating again that the identification of the hub dynamic loads containing force and torque based on the
condition number of the FRF matrix measured on the fuselage structure can achieve an excellent effect.

It should be noted that although the frame structure used in this paper is simple comparing with a
helicopter, the proposed method for identifying the hub dynamic loads in this paper is still suitable for
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Table 9. Experimental results and errors of dynamic load identification when excitation
point deviated 3.5cm from neutral line

Parameters (unit) Values
Applied force amplitude in z direction (N) 6.67 8.33 10.0
Identified force amplitude in z direction (N) 6.74 8.42 10.06
Identification error (%) 1.05 1.08 0.60

Applied torque amplitude in y direction (Nm) 0.234 0.292 0.35
Identified torque amplitude in y direction (Nm) 0.232 0.296 0.36
Identification error (%) 0.85 1.37 2.86

Table 10. Experimental results and errors of dynamic load identification when excita-
tion point deviated 5.25cm from neutral line

Parameters (unit) Values
Applied force amplitude in z direction (N) 6.67 8.33 10.0
Identified force amplitude in z direction (N) 6.72 8.36 9.98
Identification error (%) 0.75 0.36 0.02

Applied torque amplitude in y direction (Nm) 0.35 0.44 0.53
Identified torque amplitude in y direction (Nm) 0.34 0.43 0.53
Identification error (%) 2.86 2.27 0.66

Table 11. Experimental results and errors of dynamic load identification when excita-
tion point deviated 7.0 cm from neutral line

Parameters (unit) Values
Applied force amplitude in z direction (N) 6.67 8.33 10.0
Identified force amplitude in z direction (N) 6.67 8.30 9.92
Identification error (%) 0.00 0.36 0.80

Applied torque amplitude in y direction (Nm) 0.47 0.58 0.70
Identified torque amplitude in y direction (Nm) 0.47 0.59 0.71
Identification error (%) 0.00 1.72 1.43

a helicopter. The rotor hub dynamic loads are transmitted to the fuselage and cause vibration of the
fuselage, and conversely can be identified by the vibration of the fuselage. Hence, the proposed method
for identifying the hub dynamic loads in this paper is suitable for a helicopter by using Equation (8) to
solve the hub dynamic loads as long as the measured FRF matrix of the measuring points on the fuselage
meets the requirement of the condition number.

5.0 Conclusions
A simple and accurate method for identifying the hub dynamic loads based on the condition number of
the FRF matrix obtained by the vibration measurements on helicopter fuselage has been proposed in this
paper. The proposed method can effectively select the reasonable layouts of the measuring points on the
fuselage, which can avoid the ill-conditioned measured FRF matrix, hence can significantly improve
the identification accuracy of the hub dynamic loads. The specific conclusions of the identification
simulation and experiment by using the proposed method in this paper are as follows:

(1) The identification simulations of the hub dynamic loads on a dynamically similar frame structure
of Z-11 helicopter fuselage cockpit floor have small identification errors of the amplitudes and phases of
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four dynamic loads within 2.1% and 5.2%, respectively, under the first three blade passage frequencies
of Z-11 helicopter. As the condition numbers of the FRF matrix decrease, the amplitude identification
errors of the four dynamic loads decrease rapidly, indicating that the layout efficiency of the measuring
points on the fuselage based on the condition number of the FRF matrix is very high.

(2) The identification experiments of the hub dynamic loads on a dynamically similar frame structure
of Z-11 helicopter cockpit floor have small identification errors of the amplitudes of the dynamic force
and torque in nine exciting conditions less than 3%, experimentally verifying the identification accuracy
of the hub dynamic loads containing force and torque based on the condition number of the FRF matrix
measured on the fuselage.
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