LOWER BOUNDS FOR THE RAMSEY NUMBERS

BY

PIERRE ROBILLARD

ABSTRACT. A lower bound for a family of Ramsey numbers is derived using a geometrical argument.

The Ramsey number $N(q_1, q_2, \ldots, q_t, r)$ is defined as the least *n* such that for every *t*-ary partition $A_1 \cup A_2 \cup \cdots \cup A_t$ of the $\binom{n}{r}$ unordered *r*-subsets in an *n*-element set, there must exist one *i* for which A_i contains all the $\binom{q_i}{r}$ *r*-subsets of a q_i -subset. We want to find a lower bound for a family of Ramsey numbers.

In order to prove that n^* is a lower bound for the number $N(q_1, q_2, \ldots, q_t, r)$ it is sufficient to produce a partition $A_1^* \cup A_2^* \cup \cdots \cup A_t^*$ of the $\binom{n^*}{r}$ unordered *r*-subsets in an *n**-element set where it is impossible to find a set A_i containing all the $\binom{q_i}{q_i}$ *r*-subsets of a q_i -subset.

Let us consider the finite projective geometry PG(r-1, q) of dimension (r-1)over the field GF(q) (q is a prime number or the power of a prime number). A set of points in PG(r-1, q) is said to possess the property P_d if no d-subset of them are linearly dependent. We denote by $m_d(r, q)$ the maximum number of points we can choose in PG(r-1, q) so that no d are dependent. The number $m_d(r, q)$ arises in connection with some problems of the theory of confounded factorial designs [2] and error correcting codes [3]. The evaluation of $m_d(r, q)$ is known as 'the packing problem'.

The geometry PG(r-1, q) contains $(q^r-1)/(q-1) = N$ points. Let S denote the set of all $\binom{N}{r}$ unordered r-subsets of PG(r-1, q). Let A_1 consist of all the r-subsets of points of S with the property P_r . Let A_2 consist of all the r-subsets of points of $S-A_1$ with the property P_{r-1} and in general let A_v consist of all the r-subsets of points in $S - \bigcup_{i=1}^{v-1} A_i$ with property P_{r-v+1} for $v=2, 3, \ldots, r-1$.

From the definition of $m_r(r, q)$ it follows easily that no $(m_r(r, q)+1)$ -subset of points exists with all its *r*-subsets contained in A_1 . For each *v*-subset *T* of points in PG(r-1, q) whose $\binom{p}{r}$ unordered *r*-subsets are contained in A_2 we can associate an $r \times v$ matrix M(T) the columns of which represent (in some given order) the *v* points of *T*. From the definition of A_2 it follows that M(T) has rank r-1. Thus one can premultiply M(T) by a nonsingular matrix *A* and obtain the matrix $M^*(T) = A \cdot M(T)$ the last row of which is null. If we delete this last row, each column of $M^*(T)$ represents a point of PG(r-2, q); this new set of *v* points has property P_{r-1} . The maximum number of points of PG(r-1, q) one can choose such that all its *r*-subsets are contained in A_2 is then $m_{r-1}(r-1, q)$. A similar argument applies for the set A_v and the maximum number is $m_{r-v+1}(r-v+1, q)$.

Received by the editors November 15, 1969.

PIERRE ROBILLARD

As $m_s(s,q)=s+1$ for $q \le s$ then $m_w(w,q) \to \infty$ as $w \to \infty$, and there exist an integer $w \ge 2$ for which the inequality $m_w(w,q) \ge r$ holds. We now have the following

THEOREM 1.

(1)
$$N(m_r(r,q)+1, m_{r-1}(r-1,q)+1, \ldots, m_w(w,q)+1, r) > (q^r-1)/(q-1)$$

COROLLARY. The inequality (1) remains true if some $m_s(s, q)$ are replaced by a value $m_s^*(s, q) > m_s(s, q)$.

We now apply the result of the theorem when r=3 and consider the geometry PG(2, q); A_1 consists of all the independent triplets of points of PG(2, q) and A_2 of all the dependent triplets of points. In this case we have

(2)
$$m_2(2,q) = q+1$$

(3)
$$m_3(3,q) = q+1 \quad \text{if } q \text{ is odd} \\ = q+2 \quad \text{if } q \text{ is even.}$$

Then

 $N(q+2, q+2, 3) > q^2+q+1$ if q is odd $N(q+3, q+2, 2) > q^2+q+1$ if q is even.

For example this gives

$$N(5, 4, 3) > 7$$

 $N(5, 5, 3) > 13$
 $N(7, 6, 3) > 21$
 $N(7, 7, 3) > 31$

for q = 2, 3, 4, 5 respectively.

Gulati [6] has proved that $m_i(t, 2) = t+1$ for $t \ge 4$. This, with (2) and (3), leads to the inequality

$$N(r+2, r+1, \ldots, 6, 5, 4, 3) > 2^r - 1$$
 for $r \ge 4$.

The upper bounds for $m_t(t, q)$ derived in [1, 4, 5, 6] can also be used to obtain some lower bounds for the Ramsey numbers.

A generalization. We consider again the geometry PG(r-1, q) and S denotes the set of all the unordered r-subsets of points. A_1 now consists of all the r-subsets of points S with property P_{r_1} where $r \ge r_1 \ge 2$. A_2 consists of all the r-subsets of points of $S-A_1$ with property P_{r_2} where $r_1 > r_2 \ge 2$ and in general A_v consists of all the r-subsets of all the r-subsets of points $S - \bigcup_{i=1}^{v-1} A_i$ with property P_{r_v} where $r_{v-1} > r_v \ge 2$. We now have

THEOREM 2.

 $N(m_{r_1}(r,q)+1, m_{r_2}(r_1-1,q)+1, \ldots, m_{r_w}(r_{w-1}-1,q)+1, r_1) > (q^r-1)/(q-1)$ where all the quantities $m_s(t,q)$ in the left-hand side are greater than or equal to r.

The proof of this theorem follows the lines of the proof of Theorem 1.

https://doi.org/10.4153/CMB-1970-046-0 Published online by Cambridge University Press

[June

228

As an application of Theorem 2 we consider the values r=4, $r_1=3$, and $r_2=2$. It is known that

 $m_3(4,q) = q^2 + 1$

and

1970]

$$m_2(2,q)=q+1.$$

 $N(q^2+2, q+2, 3) > q^3+q^2+q+1$ for q > 1.

Then

Thus

<i>N</i> (6, 4, 3) >	15
<i>N</i> (11, 5, 3) >	40
N(18, 6, 3) >	85

for q=2, 3, 4 respectively.

REFERENCES

1. A. Barlotti, Bounds for k-caps in PG(r, q) useful in the theory of error correcting codes, Inst. of Statist. Mimeo, **484.2** (1966).

2. R. C. Bose, Mathematical theory of the symmetrical factorial design, Sankhya 8 (1947), 107-166.

3. ——, On some connections between the design of experiments and information theory, Bull. Inst. Internat. Statist. 38, part IV, (1961).

4. R. C. Bose and J. N. Srivastava, On a bound useful in the theory of factorial designs and error correcting codes, Ann. Math. Statist. 35 (1964), 408–414.

5. I. M. Chakravarti, *Bounds on error correcting codes (non random)*, Inst. of Statist. Mimeo, **451** (1965).

6. B. J. Gulati, Some useful bounds in symmetrical factorial designs (Abstract), Ann. Math. Statist. (2) 40, (1969).

Département d'Informatique Université de Montréal, Montréal, Québec