LOWER BOUNDS FOR THE RAMSEY NUMBERS

BY
PIERRE ROBILLARD
Abstract. A lower bound for a family of Ramsey numbers is derived using a geometrical argument.

The Ramsey number $N\left(q_{1}, q_{2}, \ldots, q_{t}, r\right)$ is defined as the least n such that for every t-ary partition $A_{1} \cup A_{2} \cup \cdots \cup A_{t}$ of the $\binom{n}{r}$ unordered r-subsets in an n-element set, there must exist one i for which A_{i} contains all the $\binom{q_{i}}{r} r$-subsets of a q_{i}-subset. We want to find a lower bound for a family of Ramsey numbers.

In order to prove that n^{*} is a lower bound for the number $N\left(q_{1}, q_{2}, \ldots, q_{t}, r\right)$ it is sufficient to produce a partition $A_{1}^{*} \cup A_{2}^{*} \cup \cdots \cup A_{t}^{*}$ of the $\left({ }_{r}^{n}{ }^{n}\right)$ unordered r subsets in an n^{*}-element set where it is impossible to find a set A_{i} containing all the $\binom{q_{i}}{r} r$-subsets of a q_{i}-subset.

Let us consider the finite projective geometry $\operatorname{PG}(r-1, q)$ of dimension $(r-1)$ over the field $G F(q)$ (q is a prime number or the power of a prime number). A set of points in $\operatorname{PG}(r-1, q)$ is said to possess the property P_{d} if no d-subset of them are linearly dependent. We denote by $m_{d}(r, q)$ the maximum number of points we can choose in $\operatorname{PG}(r-1, q)$ so that no d are dependent. The number $m_{d}(r, q)$ arises in connection with some problems of the theory of confounded factorial designs [2] and error correcting codes [3]. The evaluation of $m_{d}(r, q)$ is known as 'the packing problem'.

The geometry $\operatorname{PG}(r-1, q)$ contains $\left(q^{r}-1\right) /(q-1)=N$ points. Let S denote the set of all $\binom{N}{r}$ unordered r-subsets of $\operatorname{PG}(r-1, q)$. Let A_{1} consist of all the r-subsets of points of S with the property P_{r}. Let A_{2} consist of all the r-subsets of points of $S-A_{1}$ with the property P_{r-1} and in general let A_{v} consist of all the r-subsets of points in $S-\bigcup_{i=1}^{v=1} A_{i}$ with property P_{r-v+1} for $v=2,3, \ldots, r-1$.

From the definition of $m_{r}(r, q)$ it follows easily that no $\left(m_{r}(r, q)+1\right)$-subset of points exists with all its r-subsets contained in A_{1}. For each v-subset T of points in $\operatorname{PG}(r-1, q)$ whose $\binom{v}{r}$ unordered r-subsets are contained in A_{2} we can associate an $r \times v$ matrix $M(T)$ the columns of which represent (in some given order) the v points of T. From the definition of A_{2} it follows that $M(T)$ has rank $r-1$. Thus one can premultiply $M(T)$ by a nonsingular matrix A and obtain the matrix $M^{*}(T)=A \cdot M(T)$ the last row of which is null. If we delete this last row, each column of $M^{*}(T)$ represents a point of $\operatorname{PG}(r-2, q)$; this new set of v points has property P_{r-1}. The maximum number of points of $\operatorname{PG}(r-1, q)$ one can choose such that all its r-subsets are contained in A_{2} is then $m_{r-1}(r-1, q)$. A similar argument applies for the set A_{v} and the maximum number is $m_{r-v+1}(r-v+1, q)$.

Received by the editors November 15, 1969.

As $m_{s}(s, q)=s+1$ for $q \leq s$ then $m_{w}(w, q) \rightarrow \infty$ as $w \rightarrow \infty$, and there exist an integer $w \geq 2$ for which the inequality $m_{w}(w, q) \geq r$ holds. We now have the following

Theorem 1.

$$
\begin{equation*}
N\left(m_{r}(r, q)+1, m_{r-1}(r-1, q)+1, \ldots, m_{w}(w, q)+1, r\right)>\left(q^{r}-1\right) /(q-1) \tag{1}
\end{equation*}
$$

Corollary. The inequality (1) remains true if some $m_{s}(s, q)$ are replaced by a value $m_{s}^{*}(s, q)>m_{s}(s, q)$.

We now apply the result of the theorem when $r=3$ and consider the geometry $\operatorname{PG}(2, q) ; A_{1}$ consists of all the independent triplets of points of $\operatorname{PG}(2, q)$ and A_{2} of all the dependent triplets of points. In this case we have

$$
\begin{align*}
m_{2}(2, q) & =q+1 \tag{2}\\
m_{3}(3, q) & =q+1 \quad \text { if } q \text { is odd } \\
& =q+2 \quad \text { if } q \text { is even. }
\end{align*}
$$

Then

$$
\begin{array}{ll}
N(q+2, q+2,3)>q^{2}+q+1 & \text { if } q \text { is odd } \\
N(q+3, q+2,2)>q^{2}+q+1 & \text { if } q \text { is even. }
\end{array}
$$

For example this gives

$$
\begin{aligned}
& N(5,4,3)>7 \\
& N(5,5,3)>13 \\
& N(7,6,3)>21 \\
& N(7,7,3)>31
\end{aligned}
$$

for $q=2,3,4,5$ respectively.
Gulati [6] has proved that $m_{l}(t, 2)=t+1$ for $t \geq 4$. This, with (2) and (3), leads to the inequality

$$
N(r+2, r+1, \ldots, 6,5,4,3)>2^{r}-1 \quad \text { for } r \geq 4
$$

The upper bounds for $m_{t}(t, q)$ derived in $[1,4,5,6]$ can also be used to obtain some lower bounds for the Ramsey numbers.

A generalization. We consider again the geometry $\mathrm{PG}(r-1, q)$ and S denotes the set of all the unordered r-subsets of points. A_{1} now consists of all the r-subsets of points S with property $P_{r_{1}}$ where $r \geq r_{1} \geq 2$. A_{2} consists of all the r-subsets of points of $S-A_{1}$ with property $P_{r_{2}}$ where $r_{1}>r_{2} \geq 2$ and in general A_{v} consists of all the r-subsets of points $S-\bigcup_{i=1}^{v=1} A_{i}$ with property $P_{r_{v}}$ where $r_{v-1}>r_{v} \geq 2$. We now have

Theorem 2.

$$
N\left(m_{r_{1}}(r, q)+1, m_{r_{2}}\left(r_{1}-1, q\right)+1, \ldots, m_{r_{w}}\left(r_{w-1}-1, q\right)+1, r_{1}\right)>\left(q^{r}-1\right) /(q-1)
$$ where all the quantities $m_{s}(t, q)$ in the left-hand side are greater than or equal to r.

The proof of this theorem follows the lines of the proof of Theorem 1.

As an application of Theorem 2 we consider the values $r=4, r_{1}=3$, and $r_{2}=2$. It is known that

$$
m_{3}(4, q)=q^{2}+1
$$

and

$$
m_{2}(2, q)=q+1
$$

Thus

$$
N\left(q^{2}+2, q+2,3\right)>q^{3}+q^{2}+q+1 \text { for } q>1
$$

Then

$$
\begin{aligned}
N(6,4,3) & >15 \\
N(11,5,3) & >40 \\
N(18,6,3) & >85
\end{aligned}
$$

for $q=2,3,4$ respectively.

References

1. A. Barlotti, Bounds for k-caps in $\mathrm{PG}(r, q)$ useful in the theory of error correcting codes, Inst. of Statist. Mimeo, 484.2 (1966).
2. R. C. Bose, Mathematical theory of the symmetrical factorial design, Sankhya 8 (1947), 107-166.
3. -_, On some connections between the design of experiments and information theory, Bull. Inst. Internat. Statist. 38, part IV, (1961).
4. R. C. Bose and J. N. Srivastava, On a bound useful in the theory of factorial designs and error correcting codes, Ann. Math. Statist. 35 (1964), 408-414.
5. I. M. Chakravarti, Bounds on error correcting codes (non random), Inst. of Statist. Mimeo, 451 (1965).
6. B. J. Gulati, Some useful bounds in symmetrical factorial designs (Abstract), Ann. Math. Statist. (2) 40, (1969).

Département d' Informatique
Université de Montréal,
Montréal, Québec

