AN ALGORITHM FOR DETERMINING DEFINING RELATIONS OF A SUBGROUP

by D. H. McLAIN

(Received 18 July, 1975)

1. Introduction. Suppose that G is a finitely presented group, and that we are given a set of generators for a subgroup H of finite index in G. In this paper we describe an algorithm by which a set of defining relations may be found for H in these generators.

The algorithm is suitable for programming on a digital computer. It appears to have significant computational advantages over the method of Mendelsohn [8] (which is based on the Schreier-Reidemeister results, see for example [4, pp. 91-95]) in those cases where the generators of H are given as other than the familiar Schreier-Reidemeister generators.

Both the algorithm and the proof of its sufficiency are based on the Todd-Coxeter coset enumeration process [9].
2. The algorithm. Suppose that G is a group generated by g_{1}, \ldots, g_{n}, with defining relations $R_{1}=\ldots=R_{r}=1$. Suppose that H is a subgroup of finite index in G, with generators h_{1}, \ldots, h_{m}. We may assume, without loss of generality, that the generators of H are among the generators of G, labelled so that

$$
\begin{equation*}
h_{1}=g_{1}, \ldots, h_{m}=g_{m}, \quad \text { with } \quad n \geqq m . \tag{1}
\end{equation*}
$$

For, suppose that one of the generators of H, say h_{1}, is given as a word $w(g)$ in the generators of G and their inverses, of length greater than 1 . Then we may add h_{1} to the list of generators of G and add the relation $w(g) h_{1}^{-1}=1$ to the list of defining relations. This inclusion of the generators of H among those of G is an essential step of our algorithm; Mendelsohn [8] quotes an example to show that the relations $S_{j \lambda}(h)=1$, defined below, are not sufficient to define H if this step is not taken.

Now suppose that the Todd-Coxeter-Benson-Mendelsohn procedure [1] is performed to determine the cosets of H in G. This procedure is an extension of the Todd-Coxeter coset enumeration process [9]. The Benson-Mendelsohn extension not only enumerates the cosets $H x_{\lambda}$ but also, at the same time, calculates the coset representatives x_{λ} as words in g_{1}, \ldots, g_{n} and, for each coset representative x_{λ} and each generator g_{i} or its inverse g_{i}^{-1}, tabulates the product $x_{\lambda} g_{i}^{\varepsilon}$ in the form

$$
\begin{equation*}
x_{\lambda} g_{i}^{\varepsilon}=w(h) x_{\mu} \tag{2}
\end{equation*}
$$

where ε denotes $\pm 1, w(h)$ represents a word in the generators h_{1}, \ldots, h_{m} of H and x_{μ} is the representative of another (or possibly the same) coset. We shall refer to the formulae (2) as the T-C-B-M table.

For completeness, the procedure is summarised in the next paragraph, in a somewhat simplified form compared with the description in [1].

Glasgow Math. J. 18 (1977) 51-56.

Starting from the table entries

$$
\begin{equation*}
x_{1}=1, \quad x_{1} h_{i}^{e}=h_{i}^{e} x_{1}, \quad i=1, \ldots, m, \quad \varepsilon= \pm 1 \tag{3}
\end{equation*}
$$

which determine x_{1} as the identity, we create, for any incomplete table entry $x_{2} g_{i}^{e}=$?, a new coset representative $x_{\mu}=x_{\lambda} g_{i}^{\varepsilon}$ and we insert in the T-C-B-M table the two entries $x_{\lambda} g_{i}^{\varepsilon}=1 x_{\mu}$ and $x_{\mu} g_{i}^{-\varepsilon}=1 x_{\lambda}$. When we have enough such equations (2), we may calculate, by repeated application (as many times as the length of the word R), the product $x_{\lambda} R_{i}=w(h) x_{\mu}$; this differs from the original Todd-Coxeter process, which merely determines the coset μ, in that $w(h)$ is simultaneously formed by concatenating the appropriate H-words in the T-C-B-M table. If $\lambda \neq \mu$ then, as in the standard process, we must proceed to identify the two cosets, i.e. to force $\lambda=\mu$. The Benson-Mendelsohn extension requires us also to adjust the corresponding H-words in the table in the obvious way. Thus, for example, we must replace each occurrence of x_{μ} on the right-hand side of the table by $w(h)^{-1} x_{\lambda}$, by postmultiplying all the appropriate H-words by $w(h)^{-1}$, or alternatively replace each occurrence of x_{2} by $w(h) x_{\mu}$. If, during this process of identifying the cosets μ and λ, the products $x_{\lambda} g_{i}^{\varepsilon}$ and $x_{\mu} g_{i}^{e}$ have both been defined in the table, then we may have further identifications to make, again with the appropriate adjustments in the H-words in the table. The procedure is finished when every relation R_{j} has been applied to every coset λ to ensure that

$$
\begin{equation*}
\text { if } \quad x_{\lambda} R_{j}=w(h) x_{\mu} \text { then } \lambda=\mu \tag{4}
\end{equation*}
$$

Mendelsohn [6], [7] shows that the procedure does finish if $|G: H|$ is finite.
There are many possible modifications to the above, as to the basic Todd-Coxeter procedure, e.g. Leech [2], [3]. Although these are very useful in practice, to reduce the proliferation of cosets, they are not necessary for an understanding of the algorithm.

The method for finding the defining relations of H is as follows. The complete $\mathrm{T}-\mathrm{C}-\mathrm{B}-\mathrm{M}$ table for the cosets of H in G allows us to express the product of a coset representative x_{λ} and any word $w(g) \in G$ in the form

$$
\begin{equation*}
x_{\lambda} w(g)=W(h) x_{\mu} \tag{5}
\end{equation*}
$$

where $W(h)$ is a word in h_{1}, \ldots, h_{m}. This is done by repeated applications of (2), one for each element g_{i}^{e} in the word $w(g)$. In particular, we carry out this multiplication for every $\operatorname{coset} x_{\lambda}$ and every relation R_{j}, obtaining, in view of (4),

$$
\begin{equation*}
x_{\lambda} R_{j}=S_{j \lambda}(h) x_{\lambda} \tag{6}
\end{equation*}
$$

for some word $S_{j \lambda}(h)$ in h_{1}, \ldots, h_{m}.
It is clear that in the group H the relations $S_{j \lambda}(h)=1$ must hold. Conversely we shall show that these relations in the m generators h_{1}, \ldots, h_{m} are sufficient to define H independently.
3. Example. Let G be the symmetric group on 3 objects generated by h, g subject to relations $R_{1}=g^{3}, R_{2}=h g h g, R_{3}=h g^{2} h g^{2}, R_{1}=R_{2}=R_{3}=1$ and let H be the group $\mathrm{Gp}\{h\}$. Then the $\mathrm{T}-\mathrm{C}-\mathrm{B}-\mathrm{M}$ table is as follows.

Coset representative	Generator or Inverse of Generator			
	h	h^{-1}	g	g^{-1}
$x_{1}=1$	$h x_{1}$	$h^{-1} x_{1}$	$1 x_{2}$	$1 x_{3}$
$x_{2}=g$	$h^{-1} x_{3}$	$h x_{3}$	$1 x_{3}$	$1 x_{1}$
$x_{3}=g^{2}$	$h^{-1} x_{2}$	$h x_{2}$	$1 x_{1}$	$1 x_{2}$

From this table we see that $x_{2} R_{3}=h^{-2} x_{2}$ and $x_{3} R_{2}=h^{-2} x_{3}$ and that the remaining seven combinations of λ, j all give $x_{\lambda} R_{j}=x_{\lambda}$. Thus the algorithm returns the one defining relation $h^{-2}=1$ for the group H, which shows that H has order 2 .

4. Proof of the algorithm.

Theorem. Let G be a group defined by the generators $h_{1}=g_{1}, \ldots, h_{m}=g_{m}, g_{m+1}, \ldots, g_{n}$ and the relations $R_{1}=\ldots=R_{r}=1$. Let H be a subgroup of finite index, generated by h_{1}, \ldots, h_{m}, and let the Todd-Coxeter-Benson-Mendelsohn algorithm be performed on the cosets x_{λ} of H in G. If repeated use of the entries (2) in the $T-C-B-M$ table enables each product $x_{\lambda} R_{j}$ to be expressed in the form

$$
\begin{equation*}
x_{\lambda} R_{j}=S_{j \lambda}(h) x_{\lambda}, \tag{6}
\end{equation*}
$$

for some word $S_{j \lambda}(h)$ in h_{1}, \ldots, then H may be independently defined by the generators h_{1}, \ldots, h_{m} and the relations $S_{j \lambda}(h)=1$, for all relations R_{j} and cosets x_{λ}.

Proof. The proof consists, essentially, of a demonstration that no information is lost by adapting the Todd-Coxeter enumeration of the cosets of 1 in G (i.e. the elements of G) to make use only of the m generators of H, the relations $S_{j \lambda}(h)=1$ and the information in the T-C-B-M tąble for $G: H$.

To give a rigorous proof, we distinguish between H, the subgroup of G, and the group defined by m generators and the relations $S_{j \lambda}=1$ by calling the latter K. The generators of K will be k_{1}, \ldots, k_{m} and if $w(h)$ is a word in h_{1}, \ldots, h_{m} then $w(k)$ will denote the corresponding word in k_{1}, \ldots, k_{m}. We shall show that the mapping $w(h) \rightarrow w(k)$ is an isomorphism of H onto K.

Suppose first that G is finite, and consider the Todd-Coxeter process to enumerate the cosets of 1 in G. At each stage we have a set Γ of " cosets " α, β, \ldots, which will end up as elements of G. We create a map f of Γ into the set of all pairs

$$
\left(k, x_{\mu}\right), k \in K, 1 \leqq \mu \leqq|G: H|
$$

as follows. Start with $f(1)=\left(1, x_{i}\right)$. Whenever a new $\operatorname{coset} \beta$ is created from an existing one α by multiplying by g_{i}^{z}, then $f(\beta)$ is defined to satisfy the condition:

$$
\begin{gather*}
\text { if } f(\alpha)=\left(w_{1}(k), x_{\mu}\right), \alpha g_{i}^{\varepsilon}=\beta \text { and if the T-C-B-M table for } \\
G: H \text { gives } x_{\mu} g_{i}^{\varepsilon}=w_{2}(h) x_{\lambda} \text {, then } f(\beta)=\left(w_{1}(k) w_{2}(k), x_{\lambda}\right) . \tag{7}
\end{gather*}
$$

We now prove that throughout the Todd-Coxeter process on $G: 1$ the mapping remains well-defined and that (7) holds for every table entry $\alpha g_{i}^{\varepsilon}=\beta$. The next Todd-Coxeter step may be either (a) the creation of a new coset, (b) the identification of two cosets α, β when we find $\alpha R_{j}=\beta$, or (c) the identification of two cosets α, β from a previously identified pair $\gamma=\delta$ with $\alpha=\gamma g_{i}^{e}, \beta=\delta g_{i}^{e}$. We consider these separately.
(a) When a new coset β is created from α then the definition of $f(\beta)$ implies (7) for the entry $\alpha g_{i}^{e}=\beta$. It also holds for the only other entry made at that time $\beta g_{i}^{e}=\alpha$ because of the duality of the T-C-B-M table: $x_{\mu} g^{\varepsilon}=w(h) x_{\lambda}$ if $x_{\lambda} g^{-\varepsilon}=w(h)^{-1} x_{\mu}$.
(b) Suppose the Todd-Coxeter process finds $\alpha R_{j}=\beta$. Let $f(\alpha)=\left(w(k), x_{\lambda}\right)$ and $R_{j}=g_{i_{1}}^{\varepsilon_{1}} \ldots g_{i_{p}}^{\varepsilon_{p}}$. Because the p table entries $\alpha g_{i_{1}}^{\varepsilon_{1}},\left(\alpha g_{i_{1}}^{\varepsilon_{1}}\right) g_{i_{2}}^{\varepsilon_{2}}, \ldots$ must be complete at this stage, by p-fold application of (7) and the definition (6) of $S_{j \lambda}(h)$, we conclude that

$$
f(\beta)=\left(w(k) S_{j \lambda}(k), x_{j}\right)
$$

Because in the group $K, S_{j \lambda}(k)=1$, we see that $f(\alpha)=f(\beta)$; so the mapping f remains welldefined after the identification $\alpha=\beta$.
(c) Suppose that in $\Gamma, \alpha=\gamma g_{i}^{e}, \beta=\delta g_{i}^{e}$, and that γ and δ have been successfully identified, so that $f(\gamma)=f(\delta)=\left(w_{1}(k), x_{\lambda}\right)$. Then (7) applies to both table entries $\gamma g_{i}^{e}, \delta g_{i}^{e}$, so that

$$
f(\alpha)=f(\beta)=\left(w_{1}(k) w_{2}(k), x_{\mu}\right),
$$

where $w_{2}(h)$ and x_{μ} are given in the T-C-B-M table for $x_{i} g_{i}^{\varepsilon}$. The identification $\alpha=\beta$ is thus consistent with f.

A simple induction argument on the number of steps in the Todd-Coxeter process shows that the relation (7) is true when, at the end of the process, the cosets α, β, \ldots have become the elements of the group G.

Now, repeated application of (7) shows that the set of elements of G whose f-images have the second component x_{μ} is just the coset $H x_{\mu}$. In particular, the set with second component x_{1} forms H. If we identify the pair $\left(k, x_{1}\right)$ with the element k of K, f gives a mapping of H into K. Because the generators h_{i} of H are among the elements g_{i} for which (7) holds, we have, for each generator h_{i}

$$
f\left(h_{i}^{\varepsilon}\right)=f\left(1 h_{i}^{\varepsilon}\right)=f(1) k_{i}^{\varepsilon}=k_{i}^{\varepsilon},
$$

and for each element h of H

$$
f\left(h h_{i}^{\varepsilon}\right)=f(h) k_{i}^{\varepsilon}=f(h) f\left(h_{i}^{\varepsilon}\right) .
$$

It follows, by induction on the word length of elements of H, that f is both a homomorphism of H into K and the natural mapping $f(w(h))=w(k)$. Since the generators of K are in $f(H)$, the homomorphism is onto K.

Further, as we have already remarked, the relations $S_{j 2}(h)=1$ hold in H. Because these are the defining relations of K, the homomorphism f must be an isomorphism. This completes the proof of the theorem for finite G.

If G is infinite then the Todd-Coxeter process to enumerate the cosets α, β, \ldots of 1 in G will not, of course, terminate. However it can still be used as a tool in proving the theorem. We first show that the infinite Todd-Coxeter process can be a meaningful process. We must
ensure that for each coset α, and each generator and generator-inverse g_{i}^{e} there will be a finite stage at which the coset αg_{i}^{z} will be created, and also that, for each relation R_{j}, there will be a finite stage at which the condition $\alpha R_{j}=\alpha$ will be imposed. We must also ensure that when two cosets are identified $\alpha=\beta$, then it is the later one, β if $\beta>\alpha$, which will be deleted from the table. If the steps of the process are ordered to satisfy the above, then for any number N there will be a stage after which the entries for the first N cosets will never change. For suppose this holds for the first $N-1$ cosets. If we repeatedly identify the N-th coset with an earlier one, this would imply that all cosets ever created are among the first $N-1$ and hence that $|G: 1| \leqq N-1$. Thus at some stage the N-th $\operatorname{coset} \alpha$ is never identified with earlier ones (although, of course, we may never know when we have reached such a stage!); from then on the entries $\alpha g_{i}^{\varepsilon}$ can only decrease, and must eventually remain unchanged. The assertion follows by induction on N. By letting N tend to infinity we see that a limit exists, which may be taken as the result of the infinite Todd-Coxeter process.

The proof that this limit represents the multiplication table for the cosets of 1 in G is the same as for the finite case. The details are omitted, except for the remark that two words $w(g), w^{*}(g)$ belong to the same coset of 1 in G if and only if there is a finite identity

$$
w(g)=w^{*}(g) w_{1}(g) R_{i_{1}}^{\varepsilon_{1}} w_{1}(g)^{-1} \ldots w_{s}(g) R_{i_{s}}^{\varepsilon_{s}} w_{s}(g)^{-1}
$$

With this interpretation of the infinite Todd-Coxeter procedure, the proof of the theorem for finite G extends immediately to the case where G is infinite.
5. Computer implementation. The main difficulty in computer implementation of the Todd-Coxeter-Benson-Mendelsohn process and the present algorithm to determine defining relations of a subgroup is that some of the H-words in the T-C-B-M table can become rather long and rapidly fill the computer's store. Because of the large variance in the lengths of these words, the use of a language, such as Algol 68, [10], allowing variable array bounds may seem attractive. However the author has found it advantageous to handle a longer word as a list of other words, or their inverses. Thus the multiplication of two words (or in computing terms the concatenation of two strings) can be achieved by a subroutine which merely sets pointers to the two components, or, if one of them is the identity element, to the other component. Similarly the inverse of a word can be formed by setting a different pointer (e.g. negative) to the original word. If this approach is adopted, a " garbage collection" mechanism as implemented in most LISP compilers, e.g. [5], is desirable to determine which of the H-words are not components of others, and need not be retained. The whole process can readily be programmed in the common computer languages like Fortran which do not include pointers among their built-in facilities, since the subroutines which handle the pointers represent only a small proportion of the total.

In practical applications, where we may wish to repeat the algorithm on subgroups of subgroups, etc., it is necessary to follow the algorithm by another to prune at least most of the redundant relations. For example one might wish to use it, either in a single computer program or by calling a sequence of routines interactively from a terminal, to determine whether a finite group G is soluble; in theory the computer needs only to run the present method to determine a set of generators and relations for the derived group G^{\prime}, repeating
until the index of G^{\prime} is equal to 1 , and then to run the standard Todd-Coxeter process to find whether $|G: 1|=1$. Unfortunately there appears to be no practicable algorithm (i.e. a method guaranteed to find an optimal answer) to reduce a set of relations to a minimum set, so that heuristic techniques (i.e. ad hoc methods which perform reasonably well in most situations) are indicated. This is a further reason why the list method for word manipulation is advantageous, since an important constituent of such heuristic methods must be the search for frequently used common subexpressions.

REFERENCES

1. C. T. Benson and N. S. Mendelsohn, A calculus for a certain class of word problems, J. Combinatorial Theory 1 (1966), 202-208.
2. J. Leech, Coset enumeration on digital computers, Proc. Cambridge Philos. Soc. 59 (1963), 257-267.
3. J. Leech (ed.), Computational problems in abstract algebra (Pergamon, 1970).
4. W. Magnus, A. Karrass and D. Solitar, Combinational group theory (Interscience, 1966).
5. J. McCarthy, Lisp 1.5 programmer's manual (MIT Press, 1968).
6. N. S. Mendelsohn, An algorithmic solution for a word problem in group theory, Canad. J. Math. 16 (1964), 509-516.
7. N. S. Mendelsohn, Correction to: an algorithmic solution for a word problem in group theory, Canad. J. Math. 17 (1965), 505.
8. N. S. Mendelsohn, Defining relations for subgroups of finite index of groups with a finite presentation, in reference [3] above, 43-44.
9. J. A. Todd and H. S. M. Coxeter, A practical method for enumerating cosets of a finite abstract group, Proc. Edinburgh Math. Soc. (2) 5 (1936), 26-34.
10. A. Van Wijngaarden, B. J. Mailloux, J. E. L. Peck and C. H. A. Koster, Report on the algorithmic language Algol 68, Numer. Math. 14 (1969), 79-218.

Computing Centre
University of Sheffield
Sheffield

