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Abstract. We consider in this paper the problem⎧⎪⎪⎨
⎪⎪⎩

−�u = |x|αvp, x ∈ �,

−�v = |x|βuqε , x ∈ �,

u > 0, v > 0, x ∈ �,

u = v = 0, x ∈ ∂�,

(1)

where � is the unit ball in �N centred at the origin, 0 ≤ α < pN, β > 0, N ≥ 3.
Suppose qε → q as ε → 0+ and qε, q satisfy, respectively,

N
p + 1

+ N
qε + 1

> N − 2,
N

p + 1
+ N

q + 1
= N − 2;

we investigate the asymptotic estimates of the ground-state solutions (uε, vε) of (1) as
β → +∞ with p, qε fixed. We also show the symmetry-breaking phenomenon with
α, β fixed and qε → q as ε → 0+. In addition, the ground-state solution is non-radial
provided that ε > 0 is small or β is large enough.

2010 Mathematics Subject Classification. 35J50, 35J60.

1. Introduction. In this paper, we investigate the limiting behaviour of the ground-
state solutions of the problem⎧⎨

⎩
−�u = |x|αvp, x ∈ �,

−�v = |x|βuqε , x ∈ �,

u = v = 0, x ∈ ∂�,

(2)

where � is the unit ball in �N centred at the origin, 0 ≤ α < pN, β > 0, N ≥ 3. We
assume in this paper that qε → q as ε → 0+ and qε, q satisfy, respectively,

N
p + 1

+ N
qε + 1

> N − 2,
N

p + 1
+ N

q + 1
= N − 2.

Problem (2) has two features. First, it is a Hénon-type system. The Hénon equation
with Dirichlet boundary conditions{−�u = |x|αup, x ∈ �,

u = 0, x ∈ ∂�
(3)
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was found in [10], which stems from rotating stellar structures. A standard compactness
argument show that the infimum

inf
u∈H1

0 (�)\{0}

∫
�

|∇u|2 dx

(
∫
�

|x|α|u|p+1 dx)
2

p+1

(4)

is achieved for any 1 < p < 2∗ − 1, α > 0. In 1982, Ni [14] proved that the infimum

inf
u∈H1

0,rad(�)\{0}

∫
�

|∇u|2 dx

(
∫
�

|x|α|u|p+1 dx)
2

p+1

(5)

is achieved for any p ∈ (1, N+2+2α
N−2 ) by a function in H1

0,rad(�), the space of radial H1
0 (�)

functions. Thus, radial solutions of (3) exist also for (Sobolev) supercritical exponents
p. A natural question is whether any minimizer of (4) must be radially symmetric in the
range 1 < p < N+2

N−2 and α > 0. Since the weight | · |α is an increasing function, neither
rearrangement arguments nor the moving plane techniques of [7] can be applied.

For α > 0, Smets et al. proved in [15] some symmetry-breaking results for (3).
They proved that the minimizers of (4) (the so-called ground-state solutions, or least
energy solutions) cannot be radial for α large enough. As a consequence, (3) has at
least two solutions when α is sufficiently large (see also [16]).

Quite recently, Cao and Peng [3] proved that for p + 1 sufficiently close to 2∗, the
ground-state solutions of (3) possess a unique maximum point whose distance from
∂� tends to zero as p → N+2

N−2 .
For more results about symmetry breaking phenomena for solutions of problem

(3) either α is large enough or p → N+2
N−2 , see for instance [2, 1] and references therein.

Second, the system in (2) is a Hamiltonian-type system, which is strongly indefinite.
The existence of solutions of the Hamiltonian elliptic system⎧⎨

⎩
−�u = vp, x ∈ �,

−�v = uq, x ∈ �,

u = v = 0, x ∈ ∂�

(6)

was first considered in [5] and [11] with 1
p+1 + 1

q+1 > N−2
N ; the curve of (p, q) ∈ �2

satisfying 1
p+1 + 1

q+1 = N−2
N is called critical hyperbola. Afterwards, various results

were obtained in the literature. Extensions of problem (6) can be found in [6] and
[13]. In [13], existence problems for Hardy-type systems and Hénon-type systems were
established. Particularly, for Hénon-type systems⎧⎨

⎩
−�u = |x|αvp, x ∈ �,

−�v = |x|βuq, x ∈ �,

u = v = 0, x ∈ ∂�,

(7)

the critical hyperbola is 1
p+1 (1 + α

N ) + 1
q+1 (1 + β

N ) = N−2
N .

In recent years, a study of the limiting behaviour of ground-state solutions of
elliptic problems has attracted considerable attention. For the system (6), the limiting
behaviour of solutions of (6) as 1

p+1 + 1
q+1 → N−2

N was discussed in [8]. For the system

(7), Yang and He [9] proved that for 1
p+1 + 1

q+1 → N−2
N , the ground-state solutions

of (7) possess a unique maximum point whose distance from ∂� tends to zero as
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1
p+1 + 1

q+1 → N−2
N . Such problems are closely related to solutions of the following

problem: ⎧⎪⎪⎨
⎪⎪⎩

−�U = Vp, y ∈ �N,

−�V = Uq, y ∈ �N,

U(y) > 0, V (y) > 0, y ∈ �N,

U(0) = 1, U → 0, V → 0 as |y| → ∞,

(8)

where 1
p+1 + 1

q+1 = N−2
N . It was proved in [12] that U ∈ D2,

p+1
p (�N), V ∈ D2,

q+1
q (�N),

where D2,r(�N) is the completion of C∞
0 (�N) with respect to the norm ‖� · ‖r. Actually,

U and V are radially symmetric for p ≥ 1 as showed in [4]. Moreover, U and V are
unique and decreasing in r. In the discussion of one equation problem, one uses the
instanton for the best Sobolev constant. However, no explicit form of (U, V ) was
found for p > 2

N−2 up to now. Instead, the asymptotic behaviour of (U, V ) as r → ∞
is sufficient for this purpose. It was found in [12] that

lim
r→∞ rN−2V (r) = a,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

lim
r→∞ rN−2U(r) = b if p > N

N−2 ,

lim
r→∞

rN−2

log r
U(r) = b if p = N

N−2 ,

lim
r→∞ rp(N−2)−2U(r) = b if 2

N−2 < p < N
N−2 ,

(9)

and

lim
r→∞

rV ′(r)
V (r)

= 2 − N,

⎧⎪⎨
⎪⎩

lim
r→∞

rU ′(r)
U(r) = 2 − N if p ≥ N

N−2 ,

lim
r→∞

rU ′(r)
U(r) = 2 − p(N − 2) if p ≤ N

N−2 .

(10)

In this paper, we are interested in the symmetry of ground-states solutions of (2).
Now, we denote

Eα(�) =
{

u ∈ W 2,
p+1

p ∩ W
1,

p+1
p

0 (�) :
∫

�

|x|− α
p |�u| p+1

p dx < ∞
}

and

Erad
α (�) = {u ∈ Eα(�) : u(x) = u(|x|)}.

Our main results are as follows.

THEOREM 1.1. Suppose N ≥ 3, 0 ≤ α < pN, β > 0, p > 2
N−2 , qε >

N+p
Np−2p−1 ; then

there exists β∗ > 0 such that the ground-state solutions uα,β,ε are non-radial provided
β > β∗.

THEOREM 1.2. Suppose N ≥ 3, 0 ≤ α < pN, β > 0, p > 2
N−2 , pqε > 1; then there

exists ε∗ > 0 such that the ground-state solutions uα,β,ε are non-radial provided ε < ε∗ or
q − qε < ε∗.

This paper is organized as follows. In section 2, we give some preliminaries which
turn out to be essential. In section 3, we present some estimates for radial ground-
state solutions of (2) with α, p, qε fixed and β → ∞. This will lead us to get the first
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symmetry-breaking result, stating that for β sufficiently large, the ground-state solution
of problem (2) is non-radial. In section 4, another symmetry-breaking result is proved,
with α, β, p fixed and qε → q as ε → 0.

2. Preliminaries. Before proving our main results, we want to introduce some
simple calculus lemma which turns out to be essential:

LEMMA 2.1. Let u be a radially symmetric function of � (unit ball in �N) with
u(1) = 0, u′(0)exists. Then

(i) |u(x)| ≤ 1

w
p

p+1

N−1(p(N − 1) − 1)
1

p+1

(
∫
�

|∇u| p+1
p dy)

p
p+1

(|x|p(N−1)−1)
1

p+1

(ii)
∣∣∣∣∂u
∂r

∣∣∣∣ ≤ r1−N
(

rN+α

N + α

) 1
p+1

(
1

wN−1

∫
Br(0)

|x|− α
p |�u| p+1

p dx
) p

p+1

,

where wN−1 is the surface area of the unit ball in �N.

Proof. (i) For

u(1) − u(x) =
∫ 1

|x|
|u′(t)| dt,

|u(x)| ≤
∫ 1

|x|
|u′(t)| dt

≤
( ∫ 1

|x|
|u′(t)| p+1

p tN−1 dt
) p

p+1
( ∫ 1

|x|
t−(N−1)p dt

) 1
p+1

.

Since

∫ 1

|x|
t−(N−1)p dt = 1

p(N − 1) − 1

(
1

|x|p(N−1)−1
− 1

)
≤ 1

p(N − 1) − 1
1

|x|p(N−1)−1

and

∫ 1

|x|
|u′(t)| p+1

p tN−1 dt = 1
wN−1

∫ (∫ 1

|x|
|u′(t)| p+1

p tN−1 dt
)

w(θ ) dθ

= 1
wN−1

∫
|x|≤|y|≤1

|∇u| p+1
p dy

≤ 1
wN−1

∫
�

|∇u| p+1
p dy,

we find that

|u(x)| ≤ 1

w
p

p+1

N−1(p(N − 1) − 1)
1

p+1

(
∫
�

|∇u| p+1
p dy)

p
p+1

(|x|p(N−1)−1)
1

p+1

.
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(ii) For

|rN−1 ∂u
∂r

| ≤
∫ r

0
tN−1|�u| dt

≤
( ∫ r

0
t

(N−1+α)(p+1)
p+1 dt

) 1
p+1

( ∫ r

0
(t

p(N−1)−α

p+1 |�u|) p+1
p dt

) p
p+1

=
(

rN+α

N + α

) 1
p+1

(
1

wN−1

∫
Br(0)

|x|− α
p |�u| p+1

p dx
) p

p+1

,

we have

∣∣∣∣∂u
∂r

∣∣∣∣ ≤ r1−N
(

rN+α

N + α

) 1
p+1

(
1

wN−1

∫
�

|x|− α
p |�u| p+1

p dx
) p

p+1

.

�
As a result of Lemma 2.1, we obtain the following corollary.

COROLLARY 2.1. Under hypothesis of Lemma 2.1, and if N+β

q+1 + N+α
p+1 > N − 2,

then

∫
�

|x|β |u(x)|q+1 dx ≤ C
( ∫

�

|x|− α
p |�u| p+1

p dx
) p(q+1)

p+1

,

where

C =
(

1
wN−1

) p(q+1)
p+1 1

N + β −
(

N − 2 − N+α
p+1

)
(q + 1)

(
1

N − 2 − N+α
p+1

)q+1( 1
N + α

) q+1
p+1

.

Proof. From the above Lemma 2.1, we have

|u(|x|)| ≤
∫ 1

|x|
|u′(r)| dr ≤

∫ 1

|x|

(
rN+α

N + α

) 1
p+1

r1−N dr
(

1
wN−1

∫
�

|x|− α
p |�u| p+1

p dx
) p

p+1

.

Since

∫ 1

|x|

(
rN+α

N + α

) 1
p+1

r1−N dr =
(

1
N + α

) 1
p+1

∫ 1

|x|
r

N+α
p+1 r1−N dr

≤ 1

N − 2 − N+α
p+1

(
1

N + α

) 1
p+1 1

|x|N−2− N+α
p+1

,

we have

rβrN−1|u(r)|q+1

≤ rβrN−1

(
1

N−2− N+α
p+1

( 1
N+α

)
1

p+1 1

r
N−2− N+α

p+1

)q+1 (
1

wN−1

∫
�

|x|− α
p |�u| p+1

p dx
) p(q+1)

p+1

,
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which implies

∫ 1

0
rβrN−1|u(r)|q+1 dr ≤

(
1

N − 2 − N+α
p+1

(
1

N + α

) 1
p+1

)q+1

×
∫ 1

0

(
1

rN−2− N+α
p+1

)q+1

rβrN−1 dr
(

1
wN−1

∫
�

|x|− α
p |�u| p+1

p dx
)p(q+1)

p+1

.

Thus, the conclusion holds. �

3. Asymptotic estimates. Consider the minimization problem

Srad
α, β, ε = inf

u∈Erad
α (�)\{0}

Rα,β,ε(u), (11)

where

Rα,β,ε(u) =
∫
�

|x|− α
p |�u| p+1

p dx

(
∫
�

|x|β |u|qε+1 dx)
p+1

p(qε+1)

, u ∈ Eα(�) \ {0}, (12)

is the Rayleigh quotient associated with (2). Similar to [14], we can also prove that

Srad
α,β,ε(�) = inf

u∈Erad
α (�)\{0}

∫
�

|x|− α
p |�u| p+1

p dx

(
∫
�

|x|β |u|qε+1 dx)
p+1

p(qε+1)

is attained by some positive function urad
α,β,ε. After scaling, urad

α,β,ε is also a solution
of (2).

Now, we provide an estimate of the energy Srad
α,β,ε as β → ∞.

LEMMA 3.1. If N ≥ 3, there exists C > 0 depending on N, p such that

Srad
α, β, ε ≥ Cβ

p+2+qε
p(qε+1) as β → ∞.

Proof. Let u ∈ Erad
α (�) and define the rescaled function v(|x|) = u(|x|s), where

s = N
β+N . Then

∫
�

|x|β |u|qε+1 dx = wN−1

∫ 1

0
rβ+N−1|u(r)|qε+1 dr = s

∫
�

|x|s(β+N)−N |v(x)|qε+1 dx,

and from Lemma 2.1, we have

∫
�

|x|− α
p |�u| p+1

p dx ≥ w
p+1

p

N−1(N + α)
1
p r

(p+1)(N−1)−(N+α)
p

∣∣∣∣∂u
∂r

∣∣∣∣
p+1

p

,
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which implies that

∫
�

|x|− α
p |�u| p+1

p dx ≥ w
p+1

p

N−1(N + α)
1
p

∫ 1

0
r

(p+1)(N−1)−(N+α)
p

∣∣∣∣∂u
∂r

∣∣∣∣
p+1

p

dr

= w
p+1

p

N−1(N + α)
1
p

∫ 1

0
r

(p+1)(N−1)−(N+α)
p s− p+1

p r
1−s

s
p+1

p

∣∣∣∣∂v

∂t

∣∣∣∣
p+1

p

dr

= w
1
p

N−1(N + α)
1
p s− 1

p

∫
�

|x| p(N−1)(s−1)−s(1+α)+(1−s)
p |∇v| p+1

p dx.

Thus, we obtain

∫
�

|x|− α
p |�u| p+1

p dx

(
∫
�

|x|β |u|qε+1 dx)
p+1

p(qε+1)

≥ w
1
p

N−1(N + α)
1
p s− 1

p
∫
�

|x| p(N−1)(s−1)−s(1+α)+(1−s)
p |∇v| p+1

p dx

(s
∫
�

|v(x)|qε+1 dx)
p+1

p(qε+1)

.

It follows that

Srad
α,β,ε ≥ w

1
p

N−1(N + α)
1
p s− 1

p s− p+1
p(qε+1) inf

v∈W
1,

p+1
p

0,rad (�)

∫
�

|x| p(N−1)(s−1)−s(1+α)+(1−s)
p |∇v| p+1

p dx

(
∫
�

|v(x)|qε+1 dx)
p+1

p(qε+1)

.

Now, we claim that for every 0 ≤ s ≤ 1, we have p(N − 1)(s − 1) − s(1 + α) +
(1 − s) < 0. Indeed, for

p(N − 1)(s − 1) − s(1 + α) + (1 − s)

= (p(N − 1) − 2 − α)s − (p(N − 1) − 1),

if p(N − 1) − 2 ≤ α < pN, we have p(N − 1)(s − 1) − s(1 + α) + (1 − s) < 0; if α <

p(N − 1) − 2 < p(N − 1) − 1, then for every 0 ≤ s ≤ 1, we also have p(N − 1)(s − 1) −
s(1 + α) + (1 − s) < 0. Therefore,∫

�

|∇v| p+1
p dx ≤

∫
�

|x| p(N−1)(s−1)−s(1+α)+(1−s)
p |∇v| p+1

p dx,

which implies that

cs = inf
v∈W

1,
p+1

p
0,rad (�)

∫
�

|x| p(N−1)(s−1)−s(1+α)+(1−s)
p |∇v| p+1

p dx

(
∫
�

|v(x)|qε+1 dx)
p+1

p(qε+1)

is achieved by standard arguments. Since |x| ≤ 1, if p(N − 1) − 2 ≤ α < pN,
p(N − 1)(s − 1) − s(1 + α) + (1 − s) ≤ −(p(N − 1) − 1), which implies that cs ≥
c0; if α < p(N − 1) − 2, p(N − 1)(s − 1) − s(1 + α) + (1 − s) = (p(N − 1) − 2 − α)s −
(p(N − 1) − 1), then for every 0 ≤ s ≤ 1, |x| p(N−1)(s−1)−s(1+α)+(1−s)

p is non-increasing, which
implies that cs is non-increasing on [0, 1]; then cs ≥ c1. Thus,

Srad
α,β,ε ≥ C(N + α)

1
p s− p+2+qε

p(qε+1) , β → ∞.

�
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By the assumptions on p, qε, the inclusion W 2,
p+1

p (�) ↪→ Lqε+1(�) is compact. It
implies that

Sα,β,ε(�) = inf
u∈Eα (�)\{0}

∫
�

|x|− α
p |�u| p+1

p dx

(
∫
�

|x|β |u|qε+1 dx)
p+1

p(qε+1)

is attained by some positive function uα,β,ε. After scaling, uα,β,ε is a solution of (2).

LEMMA 3.2. Assume N ≥ 3, for any p, qε satisfy N
p+1 + N

qε+1 > N − 2 with p >
2

N−2 , qε >
N+p

Np−2p−1 ; there exists β∗ ≥ 0 such that Sα,β,ε < Srad
α,β,ε provided β > β∗.

Proof. For any fixed u ∈ C∞
0 (�), define uβ(x) = u(β(x − xβ)), where xβ = (1 −

1
β
, 0, . . . , 0). For |β(x − xβ)| ≤ 1, that is, |x − xβ | ≤ 1

β
, then |x| ≥ |xβ | − 1

β
= 1 − 2

β
.

One has

∫
�

|x|− α
p |�uβ | p+1

p dx ≤
(

1 − 2
β

)− α
p

β
2(p+1)

p −N
∫

�

|�u| p+1
p dx,

and

∫
�

|x|β |uβ |qε+1 dx ≥
(

1 − 2
β

)β

β−N
∫

�

|u|qε+1 dx.

Hence by definition, one obtains

Sα,β,ε ≤
∫
�

|x|− α
p |�uβ | p+1

p dx

(
∫
�

|x|β |uβ |qε+1 dx)
p+1

p(qε+1)

≤
(
1 − 2

β

)− α
p β

2(p+1)
p −N ∫

�
|�u| p+1

p dx((
1 − 2

β

)β
β−N

∫
�

|u|qε+1 dx
) p+1

p(qε+1)

≤ C1β
2(p+1)

p −N+ N(p+1)
p(qε+1)

∫
�

|�u| p+1
p dx

(
∫
�

|u|qε+1 dx)
p+1

p(qε+1)

.

Since u is fixed and

∫
�

|�u| p+1
p dx

(
∫
�

|u|qε+1 dx)
p+1

p(qε+1)

is independent of β, we have

Sα,β,ε ≤ Cβ
2(p+1)

p −N+ N(p+1)
p(qε+1) .

From Lemma 3.1 Srad
α, β, ε ≥ Cβ

p+2+qε
p(qε+1) as β → ∞, and p+2+qε

p(qε+1) >
2(p+1)

p − N + N(p+1)
p(qε+1) , that

is, qε >
N+p

Np−2p−1 . Hence Sα,β,ε < Srad
α,β,ε as β → ∞. �

4. Analysis for ε close to 0. In this section, we analyse the case where ε is close
to 0, that is, qε is close to q. We will show that for any fixed 0 ≤ α < pN, β > 0, the
minimizer of Rα,β,ε is non-radial provided that ε is sufficiently small.
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LEMMA 4.1. If N ≥ 3, there exists c0 > 0, such that for every qε and for every
0 ≤ α < pN, β > 0,

c0β
p+1

p(qε+1) ≤ Srad
α,β,ε.

Proof. From Lemma 2.1, we obtain

∫
�

|x|β |u(x)|qε+1 dx ≤ C
( ∫

�

|x|− α
p |�u| p+1

p dx
) p(qε+1)

p+1

,

where

C =
(

1
wN−1

)p(qε+1)
p+1 1

N + β − (N − 2 − N+α
p+1 )(qε + 1)

(
1

N − 2 − N+α
p+1

)qε+1( 1
N + α

)qε+1
p+1

.

Since u ∈ Erad
α (�) is arbitrary,

c0

(
N + β − (N − 2 − N + α

p + 1
)(qε + 1)

) (p+1)
p(qε+1)

≤ Srad
α,β,ε,

which ends the proof. �
Let us denote by S the classical Sobolev constant

S = inf
u∈W 2,

p+1
p ∩W

1,
p+1

p
0 (�)

∫
�

|�u| p+1
p dx

(
∫
�

|u|q+1 dx)
p+1

p(q+1)

.

It is standard that this Rayleigh quotient is invariant under translations and dilations.

LEMMA 4.2. If N ≥ 3 and 0 ≤ α < pN, β > 0, then

S = Sα,β,0 < Srad
α,β,0.

Proof. Using Corollary 2.1, it is easy to verify that Srad
α,β,0 is achieved, so that

S < Srad
α,β,0. Now, we claim that S = Sα,β,0. From the definition of Sα,β,0, we know

that S ≤ Sα,β,0. Thus, we will prove that Sα,β,0 ≤ S. Indeed, for δ > 0, we can choose
xδ = (1 − 1

| ln δ| , 0, . . . , 0), Uδ(x) = U( x−xδ

δ
) and Vδ(x) = V ( x−xδ

δ
), where (U, V ) is the

solution of (8). Let ϕδ ∈ C∞
0 (�N) be a cut-off function satisfying

ϕδ(x) =
⎧⎨
⎩

1, x ∈ B
(
xδ,

1
2| ln δ|

)
,

0, x ∈ �N \ B
(
xδ,

1
| ln δ|

)
,

0 ≤ ϕδ(x) ≤ 1, |∇ϕδ(x)| ≤ C| ln δ|, |�ϕδ| ≤ C| ln δ|2 in �N, where C > 0, is
independent of δ. Set wδ = ϕδUδ, similar to [9], we have

lim
δ→0

lim
ε→0

∫
�

|x|− α
p |�wδ|

p+1
p dx

(
∫
�

|x|β |wδ|qε+1 dx)
1

qε+1
p+1

p

≤ S,
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and

lim
ε→0

∫
�

|x|− α
p |�wδ|

p+1
p dx

(
∫
�

|x|β |wδ|qε+1 dx)
1

qε+1
p+1

p

≥ lim
ε→0

∫
�

|x|− α
p |�uα,β,ε|

p+1
p dx

(
∫
�

|x|β |uα,β,ε|qε+1 dx)
1

qε+1
p+1

p

≥ lim
ε→0

∫
�

|�uα,β,ε|
p+1

p dx

(
∫
�

|uα,β,ε|q+1 dx)
1

q+1
p+1

p

,

where uα,β,ε is a minimizer of Sα,β,ε ; thus Sα,β,0 ≤ S. �
LEMMA 4.3. Assume that N ≥ 3. For any n ∈ � there exists δn > 0 such that Sα,β,ε <

Srad
α,β,ε provided β ≥ 1

n and ε < δn.

Proof. By contradiction, assume that there exists n ∈ � and sequences βk ≥ 1
n and

δk → 0 such that

Sα,βk,δk = Srad
α,βk,δk

. (13)

From Lemma 3.2, there exists c1 independent of qδk , such that

Sα,β,δk ≤ c1β

2(p+1)
p −N+ N(p+1)

p(qδk
+1)

k .

Lemma 4.1 implies that

c0β

p+1
p(qδk

+1)

k ≤ Srad
α,β,δk

.

Since

p + 1
p(qδk + 1)

− 2(p + 1)
p

+ N − N(p + 1)
p(qδk + 1)

= (pN − 2p − 2)(qδk + 1) − (p + 1)(N − 1)
p(qδk + 1)

,

we have

β

(pN−2p−2)(qδk
+1)−(p+1)(N−1)

p(qδk
+1)

k ≤ c1

c0
.

From q + 1 = N(p+1)
Np−2p−2 >

(N−1)(p+1)
Np−2p−2 and qδk → q as k → +∞, it is implies that

(pN − 2p − 2)(qδk + 1) − (p + 1)(N − 1) > 0 as k → +∞. Thus, βk is bounded. We
can assume that βk → β ≥ 1

n as k → +∞.
Claim that

Srad
α,β,0 = lim

k→+∞
Srad

α,βk,δk
. (14)

Indeed, by upper semi-continuity, it follows that

Srad
α,β,0 ≥ lim sup

k→+∞
Srad

α,βk,δk
,
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On the other hand, from

∫
�

|x|βk |uk|qδk +1 dx ≤
( ∫

�

|x|βk |uk|q+1 dx
) qδk

+1

q+1
( ∫

�

|x|βk dx
) q−qδk

q+1

,

we have

Srad
α,β,0 ≤ lim inf

k→+∞
Srad

α,βk,δk
.

Similarly, by upper continuity,

Sα,β,0 ≥ lim sup
k→+∞

Sα,βk,δk . (15)

We obtain from (13)–(15), Sα,β,0 ≥ Srad
α,β,0, which contradicts Lemma 4.2. �
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H. Poincaré Anal. Non Linéaire 25 (2008), 181–200.

9. H. He and J. Yang, Asymptotic behavior of Solutions for Hénon systems with nearly
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