Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T11:00:40.565Z Has data issue: false hasContentIssue false

Crystal chemistry and Raman spectroscopy study of bennesherite, Ba2Fe2+Si2O7, and rare accessory Ba minerals from Caspar quarry, Bellerberg volcano, Germany

Published online by Cambridge University Press:  13 July 2022

Rafał Juroszek*
Affiliation:
Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia, Będzińska 60, 41-205, Sosnowiec, Poland
Bernd Ternes
Affiliation:
Retired, Mayen, Germany
*
*Author for correspondence: Rafał Juroszek, Email: rafal.juroszek@us.edu.pl

Abstract

Barium melilite – bennesherite, Ba2Fe2+Si2O7, known only from pyrometamorphic rocks of the Hatrurim Complex in Israel, has been recognised in a carbonate–silicate xenolith from the Bellerberg volcano area in Germany. The empirical formula of the German specimen is as follows: (Ba1.32Ca0.43Sr0.23Na0.05K0.02)Σ2.05(Fe2+0.79Ti0.06Mg0.05Al0.04Mn0.03Zn0.01)Σ0.98Si1.97O7. The Raman spectrum of bennesherite exhibits the presence of the main vibrations related to Fe2+O4 tetrahedra and disilicate Si2O7 groups at the T1 and T2 sites, at 589 cm–1 and in the range 618–673 cm–1, respectively. Detailed spectroscopic analyses performed for bennesherite in two different and random orientations confirm the reduction of bands intensity and the number of some components in several spectral ranges. Moreover, the presence of a heavy Ba atom indicates a decrease in band frequencies compared to melilites with Ca at the X position. A single-crystal X-ray diffraction experiment, despite attempts, could not be carried out due to the poor quality and small size of the bennesherite crystals however, a combination of composition and Raman data allowed for accurate phase identification. Detailed mineralogical investigations distinguished rare Ba minerals in association with bennesherite, such as walstromite, fresnoite and celsian, along with various ferrous melilites. Some of the detected phases are described from xenoliths of the Bellerberg volcano for the first time. The uniqueness of the Bellerberg volcano mineralisation is reflected in the interaction of alkaline magma with xenoliths of different compositions, which suggests that this locality still deserves attention as a source of new and unique minerals.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Koichi Momma

References

Alfors, J.T., Stinson, M.C., Matthews, R.A. and Pabst, A. (1965) Seven new barium minerals from eastern Fresno County, California. American Mineralogist, 50, 314340.Google Scholar
Allu, A.R., Balaji, S., Tulyaganov, D.U., Mather, G.C., Margit, F., Pascual, M.J., Siegel, R., Milius, W., Senker, J., Agarkov, D.A., Kharton, V.V. and Ferreira, J.M.F. (2017) Understanding the formation of CaAl2Si2O8 in melilite-based glass-ceramics: combined diffraction and spectroscopic studies. ACS Omega, 2, 62336243.CrossRefGoogle ScholarPubMed
Andersen, T., Elburg, M.A. and Erambert, M. (2014) Extreme peralkalinity in delhayelite- and andremeyerite-bearing nephelinite from Nyiragongo volcano, East African Rift. Lithos, 206–207, 164178.CrossRefGoogle Scholar
Ardit, M., Cruciani, G. and Dondi, M. (2010) The crystal structure of Sr-hardystonite, Sr2ZnSi2O7. Zeitschrift für Kristallographie, 225, 298301.CrossRefGoogle Scholar
Ardit, M., Dondi, M., Merlini, M. and Cruciani, G. (2012) Melilite-type and melilite-related compounds: structural variations along the join Sr2-xBaxMgSi2O7 (0 ≤ x ≤ 2) and high-pressure behavior of the two end-members. Physics and Chemistry of Minerals, 39, 199211.CrossRefGoogle Scholar
Bindi, L., Bonazzi, P. and Fitton, J.G. (2001) Crystal chemistry of strontian soda melilite from nephelinite lava of Mt. Etinde, Cameroon. European Journal of Mineralogy, 13, 121125.CrossRefGoogle Scholar
Bouhifd, M.A., Gruener, G., Mysen, B.O. and Richet, P. (2002) Premelting and calcium mobility in gehlenite (Ca2Al2SiO7) and pseudowollastonite (CaSiO3). Physics and Chemistry of Minerals, 29, 655662.CrossRefGoogle Scholar
Bychkov, A., Borisov, A., Kharamov, D., Guzhova, A.V. and Urusov, V. (1992) Change of the valent and structural state of iron ions upon melting of barium ferroäkermanite Ba2FeSi2O7. Doklady Akademii Nauk SSSR, 322, 525530.Google Scholar
Chang, C., Hu, W.-X., Fu, Q., Cao, J., Wang, X.-L., Wan, Y. and Yao, S.-P. (2018) Characteristics and formation processes of (Ba,K,NH4)-feldspar and cymrite from a lower Cambrian black shale sequence in Anhui Province, South China. Mineralogical Magazine, 82, 121.CrossRefGoogle Scholar
Chukanov, N.V., Rastsvetaeva, R.K., Britvin, S.N., Virus, A.A., Belakovskiy, D.I., Pekov, I.V., Aksenov, S.M. and Ternes, B. (2011) Schüllerite, Ba2Na(Mn,Ca)(Fe3+,Mg,Fe2+)2Ti2(Si2O7)2(O,F)4, a new mineral species from the Eifel volcanic district, Germany. Geology of Ore Deposits, 53, 767774.CrossRefGoogle Scholar
Coats, J.S., Smith, C.G., Fortey, N.J., Gallagher, M.J., May, F. and McCourt, W.J. (1980) Strata-bound barium-zinc mineralization in Dalradian schist near Aberfeldy, Scotland. Institution of Mining and Metallurgy, Transactions, Section B, 89, 110122.Google Scholar
Dai, Y., Zhu, B., Qiu, J., Ma, H., Lu, B., Cao, S. and Yu, B. (2007) Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser. Applied Physics Letters, 90, 181109.CrossRefGoogle Scholar
Dowty, E. (1987) Vibrational interactions of tetrahedra in silicate glasses and crystals. Physics and Chemistry of Minerals, 14, 8093.CrossRefGoogle Scholar
Dunning, G. (2018) Barium silicate mineralogy of the Western Margin, North America continent, Part 1: Photographic documentation of barium silicates and associated minerals from Baja California Norte, Mexico, Western Canada and Alaska, USA. Baymin Journal, 19, 187.Google Scholar
Dunning, G.E. and Cooper, J.F.J. (1999) Barium silicate minerals from Trumbull Peak, Mariposa County, California. The Mineralogical Record, 30, 411417.Google Scholar
Dunning, G. and Walstrom, R. (2018) Barium silicate mineralogy of the Western Margin, North America continent, Part 1: Geology, origin, paragenesis and mineral distribution from Baja California Norte, Mexico, Western Canada and Alaska, USA. Baymin Journal, 19, 170.Google Scholar
Fortey, N.J. and Beddoe-Stephens, B. (1982) Barium silicates in stratabound Ba-Zn mineralization in the Scottish Dalradian. Mineralogical Magazine, 46, 6372.CrossRefGoogle Scholar
Freeman, J.J., Wang, A., Kuebler, K.E., Jolliff, B.L. and Haskin, L.A. (2008) Characterization of natural feldspars by Raman spectroscopy for future planetary exploration. The Canadian Mineralogist, 46, 14771500.Google Scholar
Gabelica-Robert, M. and Tarte, P. (1981) Vibrational spectrum of fresnoite (Ba2TiOSi2O7) and isostructural compounds. Physics and Chemistry of Minerals, 7, 2630.CrossRefGoogle Scholar
Gaft, M., Yeates, H. and Nagli, L. (2013) Laser-induced time-resolved luminescence of natural margarosanite Pb(Ca,Mn)2Si3O9, swedenborgite NaBe4SbO7 and walstromite BaCa2Si3O9. European Journal of Mineralogy, 25, 7177.CrossRefGoogle Scholar
Galuskin, E.V., Gfeller, F., Galuskina, I.O., Pakhomova, A., Armbruster, T., Vapnik, Y., Włodyka, R., Dzierżanowski, P. and Murashko, M. (2015) New minerals with a modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex. Part II. Zadovite, BaCa6[(SiO4)(PO4)](PO4)2F and aradite, BaCa6[(SiO4)(VO4)](VO4)2F, from paralavas of the Hatrurim Basin, Negev Desert, Israel. Mineralogical Magazine, 79, 10731087.CrossRefGoogle Scholar
Galuskin, E.V., Krüger, B., Krüger, H., Blass, G., Widmer, R. and Galuskina, I.O. (2016) Wernerkrauseite, CaFe3+2Mn4+O6: the first nonstoichiometric post-spinel mineral, from Bellerberg volcano, Eifel, Germany. European Journal of Mineralogy, 28, 485493.CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Vapnik, Y., Prusik, K., Stasiak, M., Dzierżanowski, P. and Murashko, M. (2017a) Gurimite, Ba3(VO4)2 and hexacelsian, BaAl2Si2O8 – two new minerals from schorlomite-rich paralava of the Hatrurim Complex, Negev Desert, Israel. Mineralogical Magazine, 81, 10091019.Google Scholar
Galuskina, I.O., Galuskin, E.V., Pakhomova, A.S., Widmer, R., Armbruster, T., Krüger, B., Grew, E.S., Vapnik, Y., Dzierażanowski, P. and Murashko, M. (2017b) Khesinite, Ca4Mg2Fe3+10O4[(Fe3+10Si2)O36], a new rhönite-group (sapphirine supergroup) mineral from the Negev Desert, Israel – natural analogue of the SFCA phase. European Journal of Mineralogy, 29, 101116.CrossRefGoogle Scholar
Grapes, R.H. (2006) Pyrometamorphism. Springer, Heidelberg, Berlin [Chapter: Calc-silicates and evaporates, pp. 115166].Google Scholar
Grice, J.D., Kristiansen, R., Friis, H., Rowe, R., Cooper, M.A., Poirier, G.G., Yang, P. and Weller, M.T. (2017) Hydroxylgugiaite: a new beryllium silicate mineral from the Larvik Plutonic Complex, Southern Norway and the IlÍmaussaq Alkaline Complex, South Greenland; the first member of the melilite group to incorporate a hydrogen atom. The Canadian Mineralogist, 55, 219232.CrossRefGoogle Scholar
Hanuza, J., Ptak, M., Mączka, M., Hermanowicz, K., Lorenc, J. and Kaminskii, A.A. (2012) Polarized IR and Raman spectra of Ca2MgSi2O7, Ca2ZnSi2O7 and Sr2MgSi2O7 single crystals: Temperature-dependent studies of commensurate to incommensurate and incommensurate to normal phase transitions. Journal of Solid State Chemistry, 191, 90101.CrossRefGoogle Scholar
Hentschel, G. (1987) Die Mineralien der Eifelvulkane. 2nd edition. Weise Verlag, München, Germany.Google Scholar
Holtstam, D., Cámara, F. and Karlsson, A. (2021) Instalment of the margarosanite group, and data on walstromite–margarosanite solid solutions from the Jakobsberg Mn–Fe deposit, Värmland, Sweden. Mineralogical Magazine, 85, 224232.CrossRefGoogle Scholar
Juroszek, R., Krüger, H., Galuskina, I., Krüger, B., Jeżak, L., Ternes, B., Wojdyla, J., Krzykawski, T., Pautov, L. and Galuskin, E. (2018) Sharyginite, Ca3TiFe2O8, A new mineral from the Bellerberg Volcano, Germany. Minerals, 8, 308.CrossRefGoogle Scholar
Juroszek, R., Galuskina, I.O., Krüger, B., Krüger, H., Vapnik, Y. and Galuskin, E. (2022) Mazorite, IMA 2022-022. CNMNC Newsletter 68. Mineralogical Magazine, 86, doi:10.1180/mgm.2022.93.Google Scholar
Kimata, M. (1983) The structural properties of synthetic Sr-åkermanite, Sr2MgSi2O7. Zeitschrift für Kristallographie – Crystalline Materials, 163, 295304.Google Scholar
Kimata, M. (1984) The structural properties of synthetic Sr-gehlenite, Sr2Al2SiO7. Zeitschrift für Kristallographie, 167, 103116.CrossRefGoogle Scholar
Krzątała, A., Krüger, B., Galuskina, I., Vapnik, Y. and Galuskin, E. (2020) Walstromite, BaCa2(Si3O9), from Rankinite Paralava within Gehlenite Hornfels of the Hatrurim Basin, Negev Desert, Israel. Minerals, 10, 407.CrossRefGoogle Scholar
Krzątała, A., Krüger, B., Galuskina, I., Vapnik, Y. and Galuskin, E. (2022) Bennesherite, Ba2Fe2+Si2O7: A new melilite group mineral from the Hatrurim Basin, Negev Desert, Israel. American Mineralogist, 107, 138146.CrossRefGoogle Scholar
Louisnathan, S.J. (1971) Refinement of the crystal structure of a natural gehlenite, Ca2Al(Al,Si)2O7. The Canadian Mineralogist, 10, 822837.Google Scholar
Marincea, S., Dumitras, D.-G., Ghinet, C., Fransolet, A.-M., Hatert, F. and Rondeaux, M. (2011) Gehlenite from three occurrences of high-temperature skarns, Romania: New mineralogical data. The Canadian Mineralogist, 49, 10011014.CrossRefGoogle Scholar
Markgraf, S.A., Sharma, S.K. and Bhalla, A.S. (1992) Raman study of glasses of Ba2TiSi2O8 and Ba2TiGe2O8. Journal of the American Ceramic Society, 75, 26302632.Google Scholar
Matsubara, S., Ritsuro, M., Kato, A., Yokoyama, K. and Okamoto, A. (1998) Okayamalite, Ca2B2SiO7, a new mineral, boron analogue of gehlenite. Mineralogical Magazine, 62, 703706.CrossRefGoogle Scholar
McKeown, D.A. (2005) Raman spectroscopy and vibrational analyses of albite: From 25°C through the melting temperature. American Mineralogist, 90, 15061517.CrossRefGoogle Scholar
Mihajlovic, T., Lengauer, C.L., Ntaflos, T., Kolitsch, U. and Tillmanns, E. (2004) Two new minerals rondorfite, Ca8Mg[SiO4]4Cl2, and almarudite, K(□,Na)2(Mn,Fe,Mg)2(Be,Al)3[Si12O30], and a study of iron-rich wadalite, Ca12[(Al8Si4Fe2)O32]Cl6, from the Bellerberg (Bellberg) volcano, Eifel, Germany. Neues Jahrbuch für Mineralogie – Abhandlungen, 265294.CrossRefGoogle Scholar
Moro, M.C., Cembranos, M.L. and Fernandez, A. (2001) Celsian, (Ba,K)-feldspar and cymrite from Sedex barite deposits of Zamora, Spain. The Canadian Mineralogist, 39, 10391051.CrossRefGoogle Scholar
Novikov, I., Vapnik, Y. and Safonova, I. (2013) Mud volcano origin of the Mottled Zone, South Levant. Geoscience Frontiers, 4, 597619.CrossRefGoogle Scholar
Ogorodova, L.P., Gritsenko, Y.D., Vigasina, M.F., Bychkov, A.Y., Ksenofontov, D.A. and Melchakova, L.V. (2018) Thermodynamic properties of natural melilites. American Mineralogist, 103, 19451952.CrossRefGoogle Scholar
Peng, C.J., Tsao, R.L. and Chou, Z.R. (1962) Gugiaite, Ca2BeSi2O7, a new beryllium mineral and its relation to the melilite group. Scientia Sinica, 11, 977988.Google Scholar
Peretyazhko, I.S., Savina, E.A., Khromova, E.A., Karmanov, N.S. and Ivanov, A.V. (2018) Unique clinkers and paralavas from a new Nyalga combustion metamorphic complex in Central Mongolia: Mineralogy, geochemistry, and genesis. Petrology, 26, 181211.CrossRefGoogle Scholar
Richet, P., Mysen, B.O. and Ingrin, J. (1998) High-temperature X-ray diffraction and Raman spectroscopy of diopside and pseudowollastonite. Physics and Chemistry of Minerals, 6, 401414.CrossRefGoogle Scholar
Sharma, S.K., Simons, B. and Yoder, H.S. (1983) Raman study of anorthite, calcium Tschermak's pyroxene, and gehlenite in crystalline and glassy states. American Mineralogist, 68, 11131125.Google Scholar
Sharma, S.K., Yoder, H.S. and Matson, D.W. (1988) Raman study of some melilites in crystalline and glassy states. Geochimica et Cosmochimica Acta, 52, 19611967.CrossRefGoogle Scholar
Sitarz, M., Mozgawa, W. and Handke, M. (1997) Vibrational spectra of complex ring silicate anions — method of recognition. Journal of Molecular Structure, 404, 193197.CrossRefGoogle Scholar
Sjögren, H. (1895) Celsian, en anorthiten motsvarande bariumfältspat från Jakobsberg. Preliminärt meddelande. Geologiska Föreningens i Stockholm Förhandlingar, 17, 578582.CrossRefGoogle Scholar
Solovova, I.P., Girnis, A.V., Ryabchikov, I.D. and Kononkova, N.N. (2009) Mechanisms of formation of barium-rich phlogopite and strontium-rich apatite during the final stages of alkaline magma evolution. Geochemistry International, 47, 578591.CrossRefGoogle Scholar
Spencer, L.J. (1942) Barium-felspars (celsian and paracelsian) from Wales. Mineralogical Magazine and Journal of the Mineralogical Society, 26, 231245.CrossRefGoogle Scholar
Środek, D., Juroszek, R., Krüger, H., Krüger, B., Galuskina, I. and Gazeev, V. (2018) New occurrence of rusinovite, Ca10(Si2O7)3Cl2: composition, structure and Raman data of rusinovite from Shadil-Khokh Volcano, South Ossetia and Bellerberg Volcano, Germany. Minerals, 8, 399.CrossRefGoogle Scholar
Swainson, I.P., Dove, M.T., Schmahl, W.W. and Putnis, A. (1992) Neutron powder diffraction study of the åkermanite–gehlenite solid solution series. Physics and Chemistry of Minerals, 19, 185195.CrossRefGoogle Scholar
Vapnik, Y., Sharygin, V.V., Sokol, E.V. and Shagam, R. (2007) Paralavas in a combustion metamorphic complex: Hatrurim Basin, Israel. In: Geology of Coal Fires: Case Studies from Around the World (Stracher, G.B., editor). Geological Society of America, Boulder, Colorado, USA.Google Scholar
Whitley, S., Halama, R., Gertisser, R., Preece, K., Deegan, F.M. and Troll, V.R. (2020) Magmatic and metasomatic effects of magma–carbonate interaction recorded in calc-silicate xenoliths from Merapi volcano (Indonesia). Journal of Petrology, 61, 138.CrossRefGoogle Scholar
Wiedenmann, D., Zaitsev, A.N., Britvin, S.N., Krivovichev, S.V. and Keller, J. (2009) Alumoåkermanite, (Ca,Na)2(Al,Mg,Fe2+)(Si2O7), a new mineral from the active carbonatite–nephelinites–phonolite volcano Oldoinyo Lengai, northern Tanzania. Mineralogical Magazine, 73, 373384.CrossRefGoogle Scholar
Wolff, J.E. (1899) On hardystonite, a new calcium-zinc silicate from Franklin Furnace, New Jersey. Proceedings of the American Academy of Arts and Sciences, 34, 479481.CrossRefGoogle Scholar
Yadav, A.K. and Singh, P. (2015) A review of the structures of oxide glasses by Raman spectroscopy. RSC Advances, 5, 6758367609.CrossRefGoogle Scholar
Zhu, B., Dai, Y., Ma, H., Zhang, S., Lin, G. and Qiu, J. (2007) Femtosecond laser induced space-selective precipitation of nonlinear optical crystals in rare-earth-doped glasses. Optics Express, 15, 60696074.CrossRefGoogle ScholarPubMed