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ABSTRACT. We study the approximations underlying the macroscopic theory of glacier response to

climate, and illustrate some basic properties of glacier response using two simple examples, a block on

an inclined plane and a block with a more realistic terminal region. The properties include nonlinearity

and the usefulness of linear approximations, sensitivity to bed slope, timescale, stability, characteristic

elevations of the equilibrium line at which the properties of the response change, the limit of fast

response in a changing climate, the minimum sustainable size, increased sensitivity to climate change as

a glacier retreats, and finally the similarity in the responses of simple glaciers with the same product of

length and square of bed slope.

1. INTRODUCTION

A simplified approach to glacier response to climate is often
useful. One possibility is to use scaling methods to extrapo-
late from measured to many unmeasured glaciers (e.g. Radić
and Hock, 2011). One can also model the response of
individual glaciers (e.g. Oerlemans, 2005; Lüthi and others,
2010). Another possibility is to use a simplified approach to
shed light on some of the basic physical processes which
influence the response, processes which may be less obvious
in more accurate but more complicated numerical models,
yet when understood may suggest which generalizations and
extrapolations are justified. A related possibility is to use a
simplified approach, together with the simplest models, to
study and to illustrate semi-quantitatively some of the most
general properties of the response of valley glaciers. Such is
the focus of this paper. We regard it as a useful step in the
improvement of methods for extrapolation from measured to
unmeasured glaciers, our longer-term objective. We begin
by examining the approximations which underlie many of
the simplified approaches, which we call ‘macroscopic’.

2. MACROSCOPIC APPROXIMATIONS

2.1. Restricted and unrestricted macroscopic
approximations

If there is any single property common to macroscopic
approximations for predicting response, it is the imposition
of constraints on the form of the ice thickness distribution,
which would be calculated as part of a more complete
approach. We call this the ‘restricted’ macroscopic approx-
imation when the thickness distribution is specified either
directly or via a functional relationship between map area A
and ice volume V . We call the latter an ‘A–V functional
relationship’. It turns out that these are equivalent, which is
most easily seen if the glacier has a vertical headwall and

constant width W . Since V ¼W
RL

o

h Xð Þ dX , where L is the

length, h is the ice thickness and X is measured from the
terminus, it follows that dV=dL ¼Wh Lð Þ or dV=dA ¼ h Lð Þ,
the ice thickness at the headwall. However, this holds for
any L, so it is permissible to write Wh Xð Þ ¼ dV=dL½ �L¼X .
Retreat, for example, would be equivalent to removing the

upper part of a glacier, and moving the remainder back until
it touches the headwall (Fig. 1). Thus an A–V relationship
specifies the thickness distribution along the glacier, and
therefore the shape. This can be generalized to non-uniform
width if the thickness h Xð Þ is replaced by the thickness
averaged across the glacier at a given X. The basic idea is
that an A–V relationship determines the ice thickness
distribution or puts strong constraints upon it.

The best-known example is

V ¼ cA� ð1Þ

where � is a constant. This is usually taken to represent an
ensemble of glaciers, although here we focus on a single
glacier (Chen and Ohmura, 1990; Bahr and others, 1997;
Lüthi, 2009), in which case the dependence of c upon slope
and other factors is accounted for. Differentiation gives

hðXÞ ¼ dV=dA ¼ �c AðXÞf g��1 ð2Þ

where h Xð Þ is now the thickness averaged across the glacier
at a given X, and AðXÞ is the map area below X. The implied
shape of this glacier when it has different sizes but constant
width is illustrated in Figure 1.

The functional relationship in the restricted approxima-
tion suggests that area responds instantly to volume, at least
in the simplest case of the block model discussed below.
This is reminiscent of perfect plasticity. One result is that in
this model the surface cannot respond correctly on short
timescales, such as those associated with the propagation of
kinematic waves, perhaps on the order of a decade for a
small valley glacier (e.g. Harrison and others, 2003). In what
we call the ‘unrestricted’ macroscopic approximation one
requires not a functional relationship between A and V but a
differential equation which includes time derivatives of A
(Harrison and others, 2003; Lüthi, 2009) and possibly of V .
The resulting flexibility in the surface configuration permits
the description of changes on relatively short timescales,
although at the expense of more parameters and a higher-
order governing differential equation. In the macroscopic
approximations the A–V relationship is usually taken to be
independent of climate, which ultimately implies that the
shape is taken to be the same in advance and retreat. This is
a potentially serious limitation, inherent in all restricted
approximations including the often-used Eqn (1).
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In the restricted approximation, the ice thickness distri-
bution specified by the A–V relationship, together with the
bed topography, determine the surface configuration of the

glacier. Once the mass-balance rate distribution _b is
specified, it can be integrated over this surface (which

changes with time) to give the glacier-wide balance rate _B.
Finally, to conserve mass this is set equal to the rate of
change of volume (using ice volume units for balance rate),
giving a simple first-order differential equation for the
response in the restricted approximation:

_B ¼ dV

dt
¼
Z

_b dA ð3Þ

where the integral is taken over the surface of the glacier.
Strictly speaking, the integral should be taken down to the
elevation of the equilibrium line if it lies below the terminus.
Otherwise glaciers would never nucleate from zero size
because there would be no glacier surface over which to

integrate. Notice that it is the integral of _b Að Þ which governs
dV=dt in Eqn (3). This is a result of having specified an A–V
relationship, and as consequence the approximation tends

to be insensitive to the spatial pattern of _b. The same cannot
be said for the unrestricted approximation, because it does
not force the same A–V constraint.

In what follows we focus on the restricted approximation,
preferring to sacrifice the detail of the fast component of
response for the resulting simplicity and the perspective
which it offers on the nature of glacier response.

2.2. Separation of climatic and geometric effects on
balance rate

A fundamental property of the response is that the glacier-
wide mass-balance rate depends not only upon climate, but
upon the instantaneous geometry of a glacier as well. It is
instructive to consider this issue from the point of view of the
restricted macroscopic approximation. In the spirit of that

approximation we can write the glacier-wide balance rate _B
as a function of some climate parameter (or parameters) C,
together with A and V :

_B ¼ _BðC ,A,V Þ ð4Þ
which implies that

d _B ¼ @ _B

@C
dC þ @ _B

@A
dAþ @ _B

@V
dV ð5Þ

Following Lüthi (2009) @ _B=@A can be identified with the

balance rate at the terminus _bt, and @ _B=@V with the balance
rate elevation gradient, which we take to be constant
(Appendix A). Also, A and V are not independent but are
related by a functional relationship in our restricted
macroscopic approximation. Therefore it is unambiguous
to define a ‘thickness parameter’ H as

dA

dV
� 1

H
ð6Þ

which may vary as the glacier evolves. This relationship
would be more complicated in the unrestricted approxima-
tion. At any rate, Eqn (5) in the restricted approximation
becomes

d _B ¼ @ _B

@C
dC þ

_bt
H
þ _g

 !
dV ð7Þ

Equation (7) gives a convenient separation of the effects on
balance rate of climate (first term on the right-hand side) and
of surface geometry (second term), although the separation

is not really complete because of the occurrence of _bt and _g
in the latter. The effect can be further decomposed into the

effects of the terminus position (the _bt=H term) and that of

surface elevation (the _g term). Since _bt is usually negative, at
least as long as the equilibrium line is above the terminus,
and the _g term is usually positive, their sum can have either
sign depending on which term dominates. In the block
model considered below, the separation of terminus position
and surface elevation effects is less obvious because it is
concentrated at the terminus, but the same formalism still
holds if thickness change is defined as volume change
divided by area.

2.3. Timescale and stability

Following Harrison and others (2001) and Lüthi (2009), it is
useful to define a volume timescale �V by

�V �
1

� _bt
H

� _g

ð8Þ

_bt is usually not constant but changes with climate and the
elevation of the terminus. This timescale is an extension of
that of Jóhannesson and others (1989), useful when the
balance rate can be expressed as a function of elevation.
Timescales have also received a great deal of attention from
Nye (1960), Weertman (1964), Bahr and others (1998),
Pfeffer and others (1998) and Oerlemans (2001), for
example. Essentially the same timescale occurs in the
unrestricted macroscopic approximation, and is implicit in
full numerical theories.

If the terminus position term � _bt=H dominates in Eqns (7)
and (8), �V will be positive; if the surface elevation term _g
dominates, �V will be negative; if they are equal it will be
infinite. It is easiest to see the net effect of these terms when
complications due to climate change are negligible, in other
words, in the constant-climate scenario. Then dC ¼ 0 in Eqn
(7) and

d _B � d
dV

dt

� �
¼ � 1

�V
dV (constant climate) ð9Þ

in which Eqn (8) has been used. If at some instant �V > 0 and

a glacier is advancing so that dV > 0, d _B will be negative.

This means that the balance rate _B is decreasing so the

Fig. 1. Longitudinal profiles showing preservation of shape during
advance or retreat. The thickness distribution is that implied by the
scaling relation, Eqn (1).
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advance occurs at a decreasing rate. Similarly, if �V > 0 but
the glacier is retreating, it is doing so at a decreasing rate.
Thus for positive �V we call the instantaneous response
‘stable’, and for negative �V, ‘unstable’. Stability could also
be discussed in terms of the sign of the second derivative of
volume, which is negative for stability (Eqn (9)). The
terminology applies only at a particular instant in time,
and could be more complicated in the face of strong rates of
climate change.

The timescale �V has another and simpler application
when the changes of interest are so small that �V is

approximately constant. Then, expanding _B in powers of
�V one gets

_B � _B0 � 1

�V
�V (small changes) ð10Þ

where _B0 is the ‘reference surface’ balance rate, the balance
rate as it would be if the geometry of the surface did not
change from its original value (Elsberg and others, 2001).
Equation (10) can also be obtained more formally starting

from Eqn (7). Using the fact that dV=dt ¼ d�V=dt ¼ _B, one
gets

d�V

dt
þ�V

�V
� _B0 (small changes) ð11Þ

In this situation �V has the conventional meaning of a time

constant. If in addition the climate and therefore _B0 are
constant, and initially the glacier is close to steady state with
climate, the solution is

�V � �V _B0 1� e�
t
�v

� � (small changes near steady

state and climate constant)
ð12Þ

Harrison and others (2001) noted that �V occurs not only as a
conventional time constant but also as part of the amplitude
of the response.

2.4. Characteristic elevations of the equilibrium line

An example of negative �V is of special interest. Consider a
special elevation of an equilibrium line low on a glacier
such that �V ¼ 1: This is possible because the magnitude of

� _bt in Eqn (8) would be relatively small because the
equilibrium line would be relatively close to the terminus.
Let us call this the ‘transition’ elevation of the equilibrium
line. Now imagine that the equilibrium line at some time is
actually lower, and that its elevation does not change with
time; �V would be negative and the response unstable by our
definition. As time goes on, the glacier would advance, a

larger ablation area would develop, � _bt would become
larger as the terminus becomes lower, and finally �V would
become positive, so the response stabilizes.

At the other extreme, there is a ‘critical’ equilibrium-line
elevation, this one high on the glacier, above which the
glacier would ultimately vanish (Lüthi, 2009). We call the
transition and critical elevations the ‘characteristic’ eleva-
tions of the equilibrium line. Their values depend on the A–
V relationship (the ‘model’), and are of most practical
interest for glaciers with small slope, as illustrated below.

2.5. Nonlinearity and other general properties of the
response

Another property of the response for large changes in volume
is its nonlinearity. It is worth noting that, with today’s rapidly
changing glaciers, a linearized response theory valid for
small changes may have limited usefulness. The nonlinearity

considered in simple models occurs because the balance
rate, even if it varies only linearly with elevation, is a linear or
more complicated function of horizontal position once it is
evaluated on the sloping surface of the glacier. Thus its

integral over the surface to give the glacier-wide value _B
produces a higher-order result (Oerlemans, 2003). Of course
there are other sources of nonlinearity, most obviously those
associatedwith the basal boundary condition (e.g. Jouvet and
others, 2011) and the nonlinear rheology. In the latter case,
the approximation of near-plasticity can be taken as
motivation for the constant thickness in the block model
discussed below.

Despite its limitations there are some interesting impli-
cations from this, the simplest type of nonlinearity. For
example, one can see in Eqn (7) that nonlinearity occurs if

� _bt depends upon V . In fact it does even if the climate is
constant, because the glacier terminus changes elevation.

Neglecting this effect (by holding � _bt constant in a process
of linearization) results in an overestimate of the amount of
advance and an underestimate of the amount of retreat, as
illustrated below.

It is interesting that the nonlinearity and other general
properties of response discussed above are independent of
the form of the A–V relationship, or ‘model’, and at least in
part, of the macroscopic approach itself. However, it has
been assumed implicitly in the above discussion that the
balance rate gradient _g is constant; some implications are
given in Appendix A. There are other general properties of
the response, such as slope dependence and sensitivity to
climate change, but they are discussed below in the context
of examples of the A–V models.

3. THE BLOCK ON A UNIFORM SLOPE WITH
CONSTANT CLIMATE

So far the approach has been general for any restricted
macroscopic system. We now consider a particular model, a
block on a uniform slope. It is the simplest model which can
be used to illustrate the most basic properties of glacier
response, and is therefore a good starting point despite
limitations due to its unrealistically steep face. These will be
considered further below.

3.1. Governing differential equation for the block
model

The bed topography is a uniformly inclined plane with small
slope � terminated by a vertical headwall. The width W is
constant. The A–V relationship is a functional one, so we are
assuming that the restricted macroscopic approximation is
valid. The relationship is

V ¼ HA ð13Þ

where H is a constant. Since according to the above
discussion the thickness is dV=dA, we see that this is a block
of constant thickness H, as shown in Figure 2. It would be
the special case of � ¼ 1 in Eqn (1).

The balance rate _b is assumed to be zero on the vertical
frontal cliff but is otherwise a linear function of elevation z:

_b ¼ _g z � zelað Þ ð14Þ

where zela is the elevation of the equilibrium line above
point O in Figure 2 and _g is a constant balance rate gradient
(Appendix A).
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On the surface of a block with low slope

z ¼ H � �x (on surface) ð15Þ
where x is the horizontal coordinate with zero at point O in
Figure 2. Substitution into Eqn (14) and integration with

respect to x (Eqn (3)) give the glacier-wide balance rate _B
(the terms have been reordered):

_B ¼ dV

dt
¼ _g H � zelað ÞWL� �W

L2

2

� �
ð16Þ

where L is the length of the glacier. It is simplest to eliminate
L, using V ¼ HA ¼ HLW , the A–V relationship for the
block. The result is

dV

dt
¼ _g H � zelað ÞV

H
� �

2WH2
V 2

� �
ð17Þ

which is the governing differential equation describing the
block response in terms of V . As anticipated above, it is
nonlinear.

3.2. Non-dimensional forms for the block model

The differential equation can be put in the simplified non-
dimensional form

dV �

dt�
¼ V � P � V �ð Þ ð18Þ

by the following definitions:

P � 1� zela
H

ð19Þ

and the units

tb �
1

_g
ð20Þ

Vb �
2WH2

�
ð21Þ

where the subscript b stands for block. The length unit is

Lb �
2H

�
ð22Þ

which follows from the Vb definition and V ¼ HWL for the
block. A useful result is easily confirmed:

L� ¼ V � ð23Þ
which means that V � could be replaced by L� in Eqn (18);
this is because the block is so simple. Dimensional and non-
dimensional units will both be used in what follows.
Equation (18) is the logistic equation, which describes
supply-limited growth.

It is straightforward to show that Vb is the volume and Lb
the length which are ultimately reached when the equi-
librium line is fixed and passes through point O in Figures 2
and 3, in other words, when zela ¼ 0 or equivalently, P ¼ 1.
Then the equilibrium line bisects the upper surface of the
block; this is because _g is constant. A block with this size
and slope could be considered ‘short’ in the sense that the
cliff face is still a prominent aspect of its morphology. In
contrast, if V � Vb (or L� Lb) the cliff face will not be so
prominent and we may hope that the block and models that
produce a more realistic terminus region will give roughly
the same predictions. This conjecture is supported by a more
realistic model described below. In summary, cases for
which

V �ðor L�Þ � 1 ð24Þ

(‘long’ glaciers) are likely the most reliable when making
semi-quantitative inferences about real glaciers using the
block model.

We see from the simplification resulting in Eqn (18) that it
is often more convenient to specify the elevation of the
equilibrium line not by zela but by the ‘equilibrium-line
parameter’ P defined by Eqn (19). P is the elevation of the
equilibrium line below the highest point of the block,
measured in ice thickness units H. P ¼ 0 when the
equilibrium line intersects the highest point of the block,
and unlike zela it increases when the equilibrium line is
lowered. For example, in a climate favorable to the glacier,
the equilibrium line would be low and P would be a
relatively large positive number. P is negative when the
equilibrium line intersects the headwall above the highest
ice. It is straightforward to work out values of P for
characteristic elevations of the equilibrium line, as shown
for the example L� ¼ V � ¼ 3 in Figure 3.

Finally, several timescales will be defined in what
follows, and like tb they are proportional to the factor 1= _g.

3.3 Solution and properties of the block model for
constant climate

3.3.1. Solution
We have defined the block model and now need to specify
the time dependence of the climate in terms of the elevation
of the equilibrium line zela or equivalently, the equilibrium-
line parameter P. Our first and simplest scenario is that of
constant climate, so zela (and P) are constant after time t ¼ 0.
The initial volume V0 is not necessarily in ‘steady state’ at
t ¼ 0, by which we mean ‘in adjustment with climate’ then.

Fig. 2. Longitudinal section of block with length L and thickness H
showing the equilibrium-line elevation zela with respect to the
highest bed point O. � is the slope of the bed.

Fig. 3. Short lines representing intersection of the equilibrium line
with the block surface, labeled by the corresponding value of the
equilibrium-line parameter P (Eqn (19)).
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It is worth noting that this does not necessarily imply a step
change in climate at t ¼ 0; in fact the climate could be the
same before and after t ¼ 0, but V0, a relic of climate
conditions prior to t ¼ 0, would not necessarily be in
adjustment with this climate. In either case the resulting
response is given by Eqn (18) with P constant. It has an exact
solution:

V � ¼ P

1þ P

V0
� � 1

� �
e�Pt�

ð25Þ

The existence of an exact solution simplifies our quest to
illustrate basic properties of response. An immediate
example is the behavior of V � implied by Eqn (25) for large
time. One can show from it (or directly from Eqn (18)) that

V � � V0
� � 1� P

V0
� e

�Pt� ðlarge Pt�Þ ð26Þ

which never approaches the common form 1� e�Pt
�
unless

P � V0
�, the special case in which the volume is always

near steady state (Eqn (12)).
Note that the response depends on P (constant in this

climate scenario) and of course the initial condition V0. We
recall that there is another climate parameter, the balance
rate gradient _g, but we take it to be constant in space
(Appendix A) and also in time, so we can absorb it into the
definition of the non-dimensional time t* via Eqn (20). The
solid curves in Figure 4 show the response predicted for an
initial non-dimensional volume V0

� ¼ 3 as a function of
t� � gt. This value is representative of several glaciers with
which we are familiar. The individual curves are labeled by
the equilibrium-line parameter P. The maximum P shown is
2V � þ 1 which ensures that the equilibrium line lies on or

above the block (Fig. 3). One sees that the block ultimately
vanishes for P � 0, which is when the equilibrium line lies
at or above the highest point of the block. The critical
elevation for the block is thus at P ¼ 0. Finally, we do not
expect numerically realistic results for small V � because of
Eqn (24).

The broken curves in Figure 4 demonstrate the role of
nonlinear effects in the response. They result from a version
of Eqn (18) that is linearized about the initial volume V0

�

(Appendix B), a choice made to approximate the response
when V � � V0

�. One sees, as anticipated above, that it
overestimates the amount of advance and underestimates
the amount of retreat.

3.3.2. Steady state
In a constant-climate scenario, steady-state volume and
length are ultimately reached after a sufficiently long time.
We call these V1

� ¼ L1
�. They are found by setting the

derivative equal to zero in Eqn (18):

V1
� ¼ P P � 0 ð27aÞ

V1
� ¼ 0 P � 1 ð27bÞ

Figure 5 shows these two values as a function of P. There are
two because of the nonlinearity of the theory, but both occur
only if 0 � P � 1 (Fig. 2). The lower or V0

� ¼ 0 branch of
the V1

� solution requires that the initial volume V0
� be

exactly zero. It terminates at P ¼ 1, because for P > 1 (the
equilibrium line below the base of the headwall) a glacier
would nucleate. The discussion of the lower branch is rather
academic, because it is unstable. Any small deviation from
it, even a single snowflake in the strict block model, will
cause growth to the upper branch. Formally this is because

Fig. 4. Dependence of non-dimensional volume of the block upon
non-dimensional time _gt for constant equilibrium-line elevations
zela and therefore constant equilibrium-line parameter P. Each
curve is labeled by its value of P . The initial non-dimensional
volume V0

� is 3. The solid curves are from the exact theory; the
broken curves from a version of the theory linearized about the
initial volume.

Fig. 5. Ultimate non-dimensional volume of the block V1
� resulting

when the equilibrium-line elevation zela, and therefore P, are
constant. The solid and dotted lines are from the exact theory; there
are two possible values in the range 0 � P � 1, depending upon
whether or not the original volume is zero, but the dotted one is
unstable. The broken curve is from a version of Eqn (18) linearized
about V0

� ¼ 3.
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dV=dt > 0 between the two branches. The broken curve in
Figure 5 shows the prediction of a version of the theory
linearized about the value P ¼ 3. It would be accurate only
near steady state, in which P � V0

� ¼ 3. We see again that it
overestimates the amount of advance and underestimates
the amount of retreat. It is also seen from the figure that the
critical elevation, the lowest equilibrium line (or maximum
P ) at which the block glacier ultimately vanishes, is P ¼ 0.

Although the time-dependent theory is nonlinear, Eqn
(27a) is linear. An interesting consequence is that the
magnitude of the ultimate response is symmetric in advance
and retreat. This means that if the block is initially in steady
state and experiences a climate change �P , the amount of
advance will be the same as the amount of retreat for ��P.
However, using the block amounts to using a restricted
approximation as defined above, in which the thickness H
would be the same in advance and retreat. The limitations of
the block or of any other restricted approximation, such as
Eqn (1), should be kept in mind as noted above.

3.3.3. Timescale and implications
The timescale �V for the block response can be found from
its definition in Eqn (8); one must first work out the elevation

of the terminus as a function of V in order to calculate _bt.
The result is

_g�V ¼
1

2V � � P
ð28Þ

We discussed above how in general the characteristics of the
response are determined by the sign of �V, which is easily
illustrated with this example, taking the climate to be
constant. For P > 2V � (low equilibrium line), �V < 0, so the
response is unstable until V grows to reverse this inequality
(at V � ¼ P=2) and stabilize the response. At this point the
equilibrium line would be at what we called the transition
elevation, which is at the top of the cliff face of the block
(Fig. 3). For all greater elevations of the equilibrium line
�V > 0 so the response would be stable. The critical
elevation, above which the glacier eventually vanishes,
corresponds to the minimum P at which V �

1 ¼ 0. This is at
P ¼ 0 (Eqn (27b)), which is when the equilibrium line is at
the highest point of the ice. However, this is a property of the
block and not a general conclusion. Note that the transition
elevation depends on V �, and therefore on the instantaneous
size of the glacier, but the critical elevation does not. As
noted above, stability could also be discussed in terms of the
sign of the second derivative of volume. For the block

d2V �=dt�2 ¼ �1= _g�V by Eqns (28) and (18).
Because of its dependence on V �, �V is usually time-

dependent, even when climate is constant. Near V � ¼ 0 Eqn
(28) gives

_g�V � � 1

P
ðnear V � ¼ 0Þ ð29Þ

Near steady state, for which P � V0
� � V �, we have

_g�V �
1

V0
� �

1

P
(near steady state) ð30Þ

3.3.4. Effective timescale in the constant-climate
scenario
From Eqn (26) it follows that �V is a timescale characterizing
the entire response by a simple exponential behavior

1� e�Pt
�
only when changes are small. It is instructive to

define a version of the timescale which is positive and

constant for any magnitude of change in the steady-state
climate scenario, using the block model. Our purpose is to
define an effective value which can be used to investigate
the response speed as a function of P and V0

� in the
constant-climate scenario.

To do so we introduce the volume change �V , the
difference between the volume at time t and its initial value:

�V � ¼ V � � V0
� ð31Þ

An effective timescale �E can be defined as the time at which
�V � reaches a value that can be set by the choice of a
parameter �:

�V � ¼ ��V1
� ð32Þ

where �V �
1 is the ultimate change in volume, V1

� � V0
�.

For example, if � ¼ 1=2, the timescale would be defined as
that required for the volume change �V � to reach half of its
ultimate value. The choice of � is rather arbitrary, but to
make the new timescale reduce to �V when the glacier is

close to steady state, we choose � ¼ 1� e�1 ¼ 0:632. This
is the e-folding time of Leysinger Vieli and Gudmundsson
(2004), except that we define it to be the same in advance
and retreat, and even when the glacier ultimately vanishes.

We first focus on the situation P � 0. Then V1
� ¼ P

(Eqn (27a)) and

�V1
� ¼ P � V0

�, P � 0 ð33Þ
Combining Eqns (31) and (32) gives

V � � V0
� ¼ � P � V0

�ð Þ, P � 0 ð34Þ
We can substitute for V � from Eqn (25) and solve for t�,
which we define to be the non-dimensional effective
timescale _g�E for this case, finally getting

_g�E ¼
1

P
ln 1þ �

1� �

P

V0
�

� �� �
, P � 0 ð35Þ

Notice that this applies to either advance or retreat as long as
the ultimate volume is non-negative, which is why it
requires P � 0. If the glacier is always near steady state,
P=V0

� � 1, �E � �V and Eqn (35) reduces to Eqn (30), as it
should. The expression corresponding to Eqn (35) for the
situation P � 0, in which V �

1 ¼ 0, is found to be

_g�E ¼
1

P
ln 1�

� P
V0

�

P
V0

� � ð1� �Þ

( )
, P � 0 ð36Þ

The non-dimensional effective timescale _g�E is shown as
a function of P and V0

� in Figure 6. One sees that, for a
given P , �E decreases with increasing V0

� so @�E=@V0
� < 0.

This means that for a given P the response is faster for larger
initial non-dimensional volume V0

� (e.g. Bahr and others,
1998; Lüthi, 2009). One also sees that �E decreases with
increasing Pj j (lower equilibrium line if P > 0; higher for
P < 0). In other words @�E=@ Pj j < 0 so the response is faster
for larger Pj j, given an initial volume V0

�. The results
depend on V0

� and P , both of which contain the slope, as
we shall see below. Thus comparisons apply to a block on a
given slope or blocks on equal slopes. Finally, the rates of
advance and retreat starting from a given P could be
compared, but like the amplitude of the ultimate response
discussed above (after Fig. 5) the result is sensitive to the use
of the block model and to other factors. A more rigorous
model solved numerically indicates that, for large enough
glaciers, retreat is faster than advance (Leysinger Vieli and
Gudmundsson, 2004).
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3.3.5. Dependence of block response upon slope
The use of non-dimensional variables greatly simplifies our
analysis, but it hides the dependence of the response upon
bed slope �. In addition, H itself must be a function of slope,
which is determined once the rheology of ice is specified.
We take advantage of the fact that

� � �ggravH� ð37Þ
where � is the basal shear stress, roughly 1 bar (�105 Pa) for
many mountain glaciers, and �ggrav is the weight density of

ice. Then the ‘rheological parameter’ eH defined by

eH � �

�ggrav
ð38Þ

is a constant, �10m. The slope dependence of H becomes

H �
eH
�
� 10

�
in metersð Þ ð39Þ

so the volume and length scales Vb and Lb (Eqns (21) and
(22)), together with the equilibrium-line parameter P (Eqn
(19)), can be rewritten as

Vb ¼
2W eH2

�3
ð40Þ

Lb ¼
2eH
�2

ð41Þ

P ¼ 1� �
zela
eH

ð42Þ

These relations indicate that the response is extremely
sensitive to the slope, especially when it is small. We recall
from Eqn (24) that the most realistic performance of the
block will be when L� Lb. From Eqn (41) Lb ¼ 65 km for
� ¼18 and 2.6 km for 58.

When P > 0, the volume and length of the block
eventually approach

V1 ¼ 2W eH2

�3
1� �zela

eH

� �
ð43Þ

L1 ¼ 2eH
�2

1� �zela
eH

� �
ð44Þ

as calculated from Eqn (27a) with the help of the scales

expressed in terms of eH. It is useful to define climate
sensitivities SV and SL as the negative derivatives of these
two quantities with respect to zela. A more physical meaning
of these sensitivities is given below but for the moment they
say how the ultimate size of a block glacier would vary if
one constant-climate regime (defined by a constant equi-
librium-line elevation zela) were replaced by another:

SV ¼
2W eH
�2

ð45Þ

SL ¼
2

�
ð46Þ

It follows that these two relations hold for finite changes
because of the linear dependence of Eqns (43) and (44) on
zela, which is in turn due to the linear dependence of
V1

� ¼ L1
� on P discussed above. In retrospect, the high

sensitivity for a low-slope glacier implied by these relations
makes sense because it is obvious that a small rise in
equilibrium line might completely remove the accumulation
area. S

h
, a normalized version of SV defined by S

h
� SV=A,

has the advantage of non-dimensionality and is interpreted
as the average thickness change per change in elevation of
the equilibrium line. It is

S
h
¼ 2eH
�2L

ð47Þ

When S
h
¼ 1, a 1m rise in equilibrium line would

ultimately result in the same average thickness decrease.
Temperature (T ) sensitivities can be obtained by multi-
plication with dzela=dT , which can be expressed in terms of
a characteristic lapse rate.

Although we have considered only the case of constant
slope �, nevertheless we can see that because of the inverse

dependence upon �2 and �, these equations imply a huge
change in sensitivity when a glacier advances down a steep
mountainside onto a relatively flat plane or valley. A
mountain glacier may achieve steady state while just
reaching the valley bottom, but a small additional lowering
of the equilibrium line will lead to an increase in H and
major growth, to the extent that the original mountain
glacier becomes relatively unimportant except for its role in
triggering the formation of a larger ice mass. This is an old
idea (e.g. Oerlemans 2002), which suggests a useful
generalization: when the slope varies, its value in the lower
glacier is the most important.

Figure 6 showed the dependence of the effective time-
scale �E for the block upon P and V0

�. We still need to take
explicit account of the implied slope � and size dependence
in these quantities, and it would be most informative to have
a simple, even if approximate, expression. To achieve
simplicity we consider the situation in which the block is
near steady state. Then _g�V � 1=V0

� (Eqn (30)). Use of Eqn
(21) and V ¼ LWH then gives

_g�E � _g�V �
2eH
�2L

(near steady state) ð48Þ

The quantity �2L determines the response time, at least

Fig. 6. Dependence of the non-dimensional effective timescale _g�E
for the block upon constant equilibrium-line parameter P and initial
non-dimensional volume V0

�.
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approximately. Thus although the larger of two glaciers on
equal slopes will have the smaller response time, it does not
follow in general that large glaciers respond faster than small
ones, because of the sensitivity to slope. Because large
glaciers tend to have small slopes, they tend to respond
relatively slowly (Leysinger Vieli and Gudmundsson, 2004;
Lüthi, 2009).

The horizontal bed limit � ¼ 0 is instructive. Then the
nonlinear term in Eqn (18) vanishes, as it must, because we
saw that slope was the source of the nonlinearity. The
solution is

V ¼ V0e
Pt� ð� ¼ 0Þ ð49Þ

If P > 0 the block grows indefinitely; if P < 0 it ultimately
vanishes. If P ¼ 0 it does not change from its initial value
(which from Eqn (19) requires zela ¼ H), but this is unstable
against small changes in P. In other words, for � ¼ 0 the
block is unstable against small changes in the equilibrium-
line elevation. This is the simplest example of the ‘instability’
of an ice sheet on a horizontal bed (Böðvarsson, 1955;
Weertman, 1961), although strictly speaking a block can
never represent a real ice mass on a horizontal bed, even of
ice-sheet scale, because Eqn (24) cannot be satisfied for
finite volume.

Finally, it is worth pointing out that glaciers are
characterized not only by slope but by elevation; zela and
P as used in our simple models refer to the elevation of the
equilibrium line above point O in Figure 3. To compare the
behavior of glaciers when zela is referred to some constant
datum such as sea level, one must take into account the
elevations of point O, which usually differ from glacier
to glacier.

4. THE BLOCK ON A UNIFORM SLOPE WITH
VARYING CLIMATE

4.1. Fast response

So far we have used the block model for the constant-
climate scenario. Next, we keep the block model but
consider a scenario in which the climate, as represented by
the parameter P, changes linearly with time. The motivation
is to consider a potentially useful approximation in the case
of slow climate change, in which the glacier might be
treated as if it were always in steady state, that is, in perfect
adjustment with climate. Then its response would be ‘fast’.
The block model can give an idea of the resulting error. The
block approximation for fast response would be

V � � PðtÞ ð50Þ
according to Eqn (18) with dV �=dt� ¼ 0. We compare this
limit of fast response with the exact response as calculated
numerically from Eqn (18) when P has the simple time
dependence

P ¼ P0 � R�t� ð51Þ
where P0 is the initial value of P and R� is a constant non-
dimensional rate of change defined by R� � dP=dt�. The
equilibrium line would be rising for positive R�. The fast
response for this case is then given by

V � ðfastÞ ¼ P0 � R�t� ð52Þ
This is shown in Figure 7 by the broken lines. The solid
curves are the exact responses calculated numerically from
Eqn (18) with P given by Eqn (51). The results are shown for
several values of R� and for an initial V0

� ¼ P0 ¼ 3, which
means that the block is in steady state initially. Because of
Eqn (24), we do not expect the curves to be realistic for
small V �.

An interesting feature of fast response is its connection to
the three sensitivity factors SV, SL and S

h
defined above.

These factors gave the ultimate difference of volume, length
or thickness in terms of the difference in the elevation of the
equilibrium line between two constant-climate regimes.
Now imagine one of these regimes changing into another so
slowly that the block remains in steady state with the
climate. This would require fast response. Then the volume
and equilibrium-line elevation in Eqn (43), for example,
would become well-defined functions of time. Differen-
tiation with respect to time yields the same sensitivity factor
as before, but now it relates the rate of change of volume to
the rate of change of the equilibrium-line elevation.
Although it is exact only in the limit of fast response, it
has a clearer physical meaning than our original definition.

4.2. The approximation of fast response

How good is the approximation of fast response? We saw
this in Figure 7 for some non-dimensional examples, but it
would be useful to have a criterion, even if approximate, to
guide the general case. To this end Eqns (18) and (52) can be
used to formulate a differential equation for the difference

v� ¼ V � � V �ðfastÞ ð53Þ
from which one can show that

v� � R�

P
¼ R�

P0 � R�t�
,

R�

P2
� 1 ð54Þ

but only if any initial transient, such as that shown in
Figure 7, has decayed. In that example P0 ¼ L0

� ¼ V0
� ¼ 3,

which means that initially the block was in steady state

Fig. 7. Evolution of non-dimensional volume V � of the block as a
function of non-dimensional time _gt when the elevation of the
equilibrium line varies linearly with time; the initial volume and
equilibrium-line parameter V0, P0ð Þ are the same (3,3), which
means that the glacier is initially in adjustment with climate. The
solid curves show the exact response for four different non-
dimensional rates R� of climate change. The broken lines show the
limit of ‘fast’ response. The dotted line is an analytical approxima-
tion to the response for R� ¼ 1.
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(Eqn (27a)). Even so, there is a small transient associated
with switching on the climate change at t� ¼ 0; one can
show that it decays on the timescale 1=P0. The transient can
be bypassed by setting the initial condition v� ¼ R�=P0.
Then for small time,

v� � R�

P0
1þ R�

P0
t�

� �
,

R

P2
� 1 ð55Þ

The V � resulting from Eqn (55) predicts a linear response,
but with a different intercept from the fast response case, and
a different slope. This is shown by the dotted line in Figure 7
for the example ðP0,R�Þ ¼ 3:0, 1:0ð Þ, which gives an
adequate fit. The deviations at small time are due to the
transient, and at large time are not significant because the
block model fails (Eqn (24)).

It is advantageous to express the intercept and slope in
terms of their ratios to the corresponding fast response
quantities. The result is simple:

V0
�

V0
�ðfastÞ � 1þ R�

P0
2

ð56Þ

dV0
�=dt�

dV0
�ðfastÞ=dt� � 1� R�

P0
2 ð57Þ

In other words, the approximation of fast response intro-
duces two errors: an offset in the intercept (the initial
volume), and an error in the rate of change (after the
transient). These ratios are the same with the dimensions
inserted on the left-hand sides, but we need to express R� in
terms of something more familiar, the rate of change of the
height of the equilibrium line r � dzela=dt. From the
definitions of P and R� (Eqns (42) and (51)) this gives

R�

P0
2 ¼

r�

P0
2 eH _g

ð58Þ

This single quantity describes both aspects of the error in the
fast approximation. Although this form is convenient for our
calculations in which P0 is specified, to see the full and
complex dependence upon slope �, one must substitute for
P0 �ð Þ using Eqn (42). The result is

R�

P0
2
¼ r�

1� zelað0Þ
eH

�

� �2

eH _g

ð59Þ

To put numbers into Eqn (58), assume a global warming
rate of 0.01K a–1 and a lapse rate of 0.065Km–1; this implies

r � 1:5m. Take _g ¼ 0:01 a–1, eH ¼ 10m and � =48=0.07
rad. Then R� � 1:0, which is why this value was singled out
for attention in Figure 7. For our P0 ¼ 3 example,

R�=P0
2 � 0:12. By Eqns (56) and (57) this means that in

this example the fast approximation gives an effective initial
volume (the intercept) too small by 12%, and an adjustment
rate dV �=dt too large by the same amount. This agrees with
the exact calculation in Figure 3, which justifies our

identifying r�=P0
2 eH _g as the single quantity that charac-

terizes, at least approximately, the wide range of behavior
seen in Figure 7. However, this quantity depends upon many
parameters. Also, one sees in the figure that, as time goes on,
the difference between the exact and fast responses may
become large. Thus we feel that the usefulness of the fast
approximation depends upon the application and should be
decided on a case-by-case basis.

5. THE PARABOLICGLACIERONAUNIFORM SLOPE

5.1. The model

A model with a curved surface avoids many of the
difficulties associated with the cliff face of the block. One
possibility would be to use the model described by Eqn (1).
However, because it requires the indefinite increase in
thickness with length, it is perhaps more realistic to require a
constant basal shear stress approximated by

� � �ggravH� ð60Þ
This is like Eqn (37), except that the ice surface slope � is no
longer equal to the bed slope � (which we keep constant),
and the ice thickness H is no longer constant. For small
slopes � can be related to � and H

� � �ggravH � þ dH

dx

� �
ð61Þ

For a given �, Eqn (61) defines the configuration of the
surface, which we call ‘parabolic’, although it is truly
parabolic only in the limit of vanishing �. When Eqn (24) is
satisfied, the predictions of block and parabola coincide.
The A–V relationship is a functional one as in the block
model, and only the constant-climate scenario has been
considered. Even then the details are tedious. Here we
simply describe what we judge to be one of the most
interesting differences from the block model, a non-zero
minimum sustainable size (Lüthi, 2009), which is deter-
mined by the critical elevation of the equilibrium line.

5.2. Critical elevation and length

Not surprisingly, the behavior of V1 is more complicated
than shown in Figure 5 for the block. In the parabolic model
there may not be any non-zero steady state V1 for constant
climate when the equilibrium line is high on the glacier. In
other words, the critical elevation is lower than the highest
ice, unlike the situation with the block. Recalling that zela is
measured up from point O in Figure 2, one finds that for the
block glacier the critical elevation is at the highest point of

the ice z
ðcritÞ
ela ¼ H or

z
ðcritÞ
ela ¼

eH
�

ðblockÞ ð62Þ

by Eqn (39), while for the parabolic glacier it is found to be

z
ðcritÞ
ela ¼ 0:273

eH
�

ðparabolaÞ ð63Þ

This is about 60m for a slope of 58, and 310m for 18, about a
quarter of that for the block on the same slope. In other
words, the critical elevation for the parabolic model is
considerably lower than for the block.

To the critical elevation of the equilibrium line in
Eqn (63) corresponds the steady-state length of the parabolic

glacier LðcritÞ1 :

LðcritÞ1 ¼ 0:346
eH
�2

ðparabolaÞ ð64Þ

It is about 350m for a bed slope of 58, and 11 km for a bed
slope of 18, compared with zero for the block. This defines a
highly slope-dependent minimum sustainable length under
constant-climate conditions. The corresponding accumu-
lation–area ratio at steady state is roughly 0.55 when
the balance gradient is constant. Equation (64) gives the
non-zero size which a parabolic glacier will reach when the
equilibrium line stabilizes just below the critical elevation. If
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the elevation is slightly higher, the parabolic glacier may still
have an accumulation area for a time, and perhaps even a
nearly healthy accumulation–area ratio, but its extinction is
assured even if the climate does not change. In common
with the block (Fig. 6), the parabolic glacier responds slowly
when the equilibrium line is near the critical elevation.

The parabolic glacier and the characteristic elevations of
its equilibrium line are shown in Figure 8. At left and center
one sees that the transition elevation, as well as the steady-
state elevation of the equilibrium line, depend on the size of
the glacier, while the critical elevation does not. At the right
the glacier has come to a steady state with the equilibrium
line fixed just below the critical elevation. It has the
minimum sustainable size. The transition elevation coin-
cides with these two.

5.3. Sensitivity factors

This behavior implies a highly variable and therefore
nonlinear behavior of the sensitivity factors in the vicinity
of the critical elevation, which are defined (as they were for
the block) as the negative derivatives of V1 and L1 with
respect to zela when the climate is constant or changes very
slowly. Figure 9 compares length sensitivities of block and
parabola. They coincide for glaciers that are long in the sense
that Eqn (24) is satisfied. This is about 2.6 km for a bed slope
of 58 and 65 km for a bed slope of 18. Perhaps there are real
glaciers with respectable accumulation–area ratios whose
equilibrium lines are above the critical level, but these may
not include the few whose mass balances are monitored,
because these tend to be relatively steep. The prediction is
sensitive to bed slope and to the model used. At any rate, as a
glacier retreats, its sensitivity to climate increases, at least if
there is no significant increase in bed slope or the relation
between balance rate and elevation. A more typical version
of the balance rate gradient than our constant _g version
lowers the critical elevation (Appendix A).

6. SUMMARY

The non-dimensional quantity 2eH=�2L, or its reciprocal,
occurs so often in the block model that it is worth assigning
a symbol for it:

K � �2L

2eH
ð65Þ

K has already occurred under a different name:
K ¼ L� ¼ V � by Eqns (41) and (23). There are several other

examples. One is the non-dimensional timescale near
steady state, _g�E � _g�V ¼ 1=K (Eqn (48)); this connection
is reminiscent of the observation that �V tends to determine
the amplitude as well as the timescale of the response
(Harrison and others, 2001). Another example is the
thickness sensitivity S

h
¼ 1=K (Eqn (47)). K also enters

the definition of a ‘long’ glacier, for which Eqn (24) can be
rewritten as K � 1. K is somewhat model-dependent, but
its behavior can be worked out for the more general
parabolic model. It is also best defined near steady state,
which some of the connections require. Nevertheless, its
common occurrence suggests that it has potential as a
scaling parameter. Its use would be to relate the responses
of different glaciers with different size and slope. Recalling

that eH is a rheological parameter (�10m by Eqn (39)), 2eH
in Eqn (65) is approximately constant, so the geometric

dependence of K is determined by �2L alone in the block
model. Thus this simple quantity can be taken as the
scaling candidate. In the block model the bed slope � is the
same as the surface slope �. This not true in general, but for
scaling purposes one can try to approximate � by the more
easily observable �.

We have now completed the program outlined in our
abstract, which was to provide insight into characteristic
aspects of glacier response. Most of the results are simple
although not immediately obvious. We first considered the
macroscopic approximation, and the general conclusions
which can be drawn from it without specifying a particular
model. Next we illustrated and extended these ideas with the
help of the simplest model, a block on a uniformly inclined
plane. We tried to keep its limitations in mind, considering
for example a more general model with a more realistic
terminus. It is our impression that, of all the response
properties described, the sensitivity to bed slope (or more

rigorously to 1=�2L) is the most important, especially since it
does not appear, at least explicitly, in some treatments of

Fig. 9. Length sensitivity SL (Eqn (46)) versus length L, normalized as
labeled, for both the block and the parabolic model glaciers. � is

the bed slope and eH is �10m.

Fig. 8. Profiles of a glacier with constant basal stress at three
different stages, together with the intersections of its surface with
the two characteristic elevations of the equilibrium line (critical
(crit.) and transition (trans.)), and of the equilibrium line at steady
state (s.s.). On the right the glacier has come to a steady state with
the equilibrium line just below the critical elevation.
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response. The simplicity of our approach is advantageous,
but the question is whether it affects what we have said about
the nature of response. The answer is necessarily somewhat
subjective, but we believe that the conclusions are substan-
tially correct. They are in essential agreement with those of
Lüthi (2009), although his approach was more quantitative
and his emphasis and coverage were somewhat different. We

are less confident about the usefulness of �2L (or Lüthi’s
version of it) as a scaling parameter. The most obvious reason
is that we have considered only simple glaciers. Finally, it
should be remembered that the price for simplicity, which
resulted from our use of the restricted macroscopic approx-
imation, is failure to predict the response accurately on short
timescales.
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APPENDIX A. VARIABILITY OF THE BALANCE RATE
GRADIENT

The simplicity of assuming a constant balance rate gradient
_g is evident, but at least in the block model it is
straightforward to allow for different _g’s in ablation and
accumulation areas ( _gabl and _gacc). It can be shown that to
the right-hand side of Eqn (18) one adds the term

P2

4

_gacc
_gabl

� 1

� �
and sets t� � _gablt. This new governing

equation, like the old, can be solved in convenient closed
form, and all the studies for the constant _g case repeated. An
interesting point is that the new term does not contribute any
new nonlinearity to the governing equation. We summarize
some of the results for the special case _gabl ¼ 2 _gacc in which
the above quantity to be added for the block becomes

�P2=8: The patterns in Figures 4–6 are shifted, although
there are few fundamental changes. First, in the constant-
climate scenario one finds that, instead of Eqn (27a),
V1

� ¼ 0:854P . But this is still linear, which means that the
symmetry in the ultimate amplitude in advance and retreat,
as discussed above with certain reservations, is preserved, at
least for the block. Second, the asymptotic approach to
steady state seen in Figure 4 is lost, although the significance
of this behavior as predicted by the block model is doubtful
in any case because of Eqn (24). Third, the critical elevation
of the equilibrium line is lowered (as it is also in the case of
the parabolic model); it becomes lower than the highest
point of the ice. Fourth, the structure of the curves of
Figure 6 is unchanged.

Finally, it is worth pointing out that in large ice masses _g
is a function not only of elevation but also of horizontal
position.

APPENDIX B. LINEAR APPROXIMATIONS

The role of the nonlinearity in the response to climate can be
judged by comparison with a linearized version of the
theory. This is obtained by expressing the volume as
V � ¼ Vr

� þ�Vr
� where Vr

� is some constant reference
volume, near which the approximation should be valid.
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There are an infinite number of linear approximations
because the choice of Vr

� is arbitrary. Substitution into
Eqn (18) for the block gives

d�Vr
�

dt�
þ 2Vr

� � Pð Þ�Vr
� þ�Vr

�2 ¼ PVr
� � Vr

�2 ðB1Þ

which is still exact. Linearity is obtained by neglecting the

�Vr
�2 term.

The effect of neglecting the �V �2
r term was illustrated in

Figure 4, where Vr
� ¼ V0

�. It can be seen from that figure,

and also from Eqn (B1), that the solution with �Vr
�2

neglected resembles a growing exponential for P > 2V0
�,

and thus the linear approximation fails completely.
P ¼ 2V0

� happens to be the value of P corresponding to
the transition elevation of the equilibrium line at the initial
volume. Rather similar conditions apply for Vr

� ¼ P, a
choice one would make to optimize the approximation near
(Eqn (27a)). In this case the approximation grows exponen-
tially for P < 0, which is when the equilibrium line is above
the critical elevation.
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