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Morphodynamics of active nematic fluid surfaces
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Morphodynamic equations governing the behaviour of active nematic fluids on deformable
curved surfaces are constructed in the large deformation limit. Emphasis is placed on
the formulation of objective rates that account for normal deformations whilst ensuring
that tangential flows are Eulerian, and the use of the surface derivative (rather than the
covariant derivative) in the nematic free energy, which elastically couples local order
to out-of-plane bending of the surface. Focusing on surface geometry and its dynamical
interplay with the hydrodynamics, several illustrative instabilities are then characterised.
These include cases where the role of the Scriven–Love number and its nematic analogue
are non-negligible, and where the active nematic forcing can be characterised by an
analogue of the Föppl–von Kármán number. For the former, flows and changes to the
nematic texture are coupled to surface geometry by viscous dissipation. This is shown to
result in non-trivial relaxation dynamics for a nematic tube. For the latter, the nematic
active forcing couples to the surface bending terms of the nematic free energy, resulting in
extensile (active ruffling) and contractile (active pearling) instabilities in the tube shape, as
well as active bend instabilities in the nematic texture. In comparison to the flat case, such
bend instabilities now have a threshold set by the extrinsic curvature of the tube. Finally,
we examine a topological defect located on an almost flat surface, and show that there
exists a steady state where a combination of defect elasticity, activity and non-negligible
spin connection drive a shape change in the surface.

Key words: membranes, active matter, liquid crystals

1. Introduction

Two-dimensional fluid surfaces with nematic ordering are relevant for the characterisation
of a variety of biological and soft matter systems, ranging from liquid crystal shells
(Fernández-Nieves et al. 2007) to active composites of microtubules and kinesin motors at
an oil–water interface (Sanchez et al. 2012). Of particular current interest is the increasing
experimental evidence that nematic-like ordering plays a vital role in tissue mechanics
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(Saw et al. 2017) and morphogenesis (Maroudas-Sacks et al. 2021; Vafa & Mahadevan
2022), where the interplay between topological defects and active forces controls the
morphology of protrusions and extrusions (Metselaar, Yeomans & Doostmohammadi
2019; Hoffmann et al. 2022).

Mathematically, the development of theory that couples hydrodynamics to surface
geometry has led to many interesting predictions on the role of viscous forces in the
ordering and shaping of membranes in both isotropic (Steigmann 1999; Hu, Zhang &
Weinan 2007; Arroyo & DeSimone 2009; Rangamani et al. 2013; Sahu et al. 2020a;
Tchoufag, Sahu & Mandadapu 2022) and ordered (Napoli & Vergori 2016; Nestler &
Voigt 2022) fluids. Of particular note has been the inclusion of activity, leading to a variety
of interesting morphodynamical phenomena and instabilities (Salbreux & Jülicher 2017;
Bächer et al. 2021; Khoromskaia & Salbreux 2023; Rank & Voigt 2021; Alert 2022; Bell
et al. 2022; Hoffmann et al. 2022; Nestler & Voigt 2022; Salbreux et al. 2022; Vafa &
Mahadevan 2022) and even some attempts to construct rigorous shell theories of active
materials (da Rocha, Bleyer & Turlier 2022). Much of this work has been driven by
the desire to develop theories capable of describing the dynamics and morphogenesis of
biological tissues and organisms (Jülicher, Grill & Salbreux 2018; Al-Izzi & Morris 2021).

Despite such interest, there is still a lack of formal characterisation regarding how
geometry couples to dissipative and active forces in nematic fluid surfaces. To this end,
we develop a closed system of dynamical equations for nematic fluid surfaces in a manner
similar to the approach taken in Arroyo & DeSimone (2009) for isotropic fluid membranes.
We construct normal and tangential dissipative and reactive forces for the system subject
to a free energy that depends only on surface geometry, the order parameter and its
derivatives. We focus specifically on nematic liquid crystals in the one-constant limit
of the Frank free energy, and derive the general form of the so-called molecular field
and the resulting normal forces for surfaces of arbitrary geometry (and vector ordering).
Particular emphasis is placed on the formulation of objective rates that account for
normal deformations whilst ensuring that tangential flows are Eulerian, and the use of the
surface derivative (rather than the covariant derivative) in the nematic free energy, which
elastically couples local order to out-of-plane bending of the surface. Given the increased
interest in active interfaces, we also include an active Q-tensor term in the tangential stress
tensor. From these equations, we identify and discuss three dimensionless numbers that
characterise regimes where there is a non-trivial interplay between geometry, dissipation
and active forces.

To highlight how these numbers govern morphodynamics, we focus on some simple
concrete examples. In the first case, we consider a tube with no activity (and uniformly
ordered nematic parameter as a ground state) and derive the relaxation dynamics for
perturbations in the shape and order parameter. We then consider the case of active tubes,
where we show that under active forces, there are three characteristic types of instability,
depending on the value and sign of the activity (extensile versus contractile). Two of these
instabilities are in the tube shape: contractile forces give an active pearling-like instability
whose length scale is set by the bulk viscous time scale, whilst extensile forces (above a
threshold) lead to a ruffling instability whose length scale is set by the active stress. In
addition, we find an instability in the texture that acts to drive spontaneous bend. This
occurs for extensile activity in rod-like nematics, and for contractile activity in disk-like
nematics. Interestingly, although similar to known spontaneous bend instabilities in flat
geometries, the effects of curvature mean that the active forcing must exceed a finite
threshold even in the infinite system size. Finally, we examine steady states in shape driven
by active forcing of an almost flat surface in the presence of a topological defect, and show
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T = T αeα

V = vαeα + v(n)n̂

Figure 1. Schematic of a curved fluid surface with orientational order given by the director field T = Tαeα ,
which moves with a velocity in R

3 given by the vector field V = vαeα + v(n)n̂.

that this leads to protrusions at the defect whose morphology is controlled by the activity.
Specifically, increases in contractility lead to increased protrusion, whilst increases in
extensility act to suppress protrusions.

2. A theory of deformable nematic fluid surfaces

In this section, we construct a closed system of equations for the morphodynamics of
nematic fluid surfaces (figure 1). In general, certain conventions from differential geometry
will be adopted, such as the use of comma ‘,’ and semicolon ‘;’ subscripts to denote
partial and covariant differentiation, respectively. For the uninitiated, a brief non-rigorous
introduction to such notation is given in Appendix A. For a more complete treatment, we
refer the reader to Needham (2021) and/or Frankel (2011).

Our starting point is a two-dimensional (2-D) Riemannian manifold Mt, embedded
in R

3, and equipped with induced metric gαβ and second fundamental form bαβ ,
where α, β ∈ {1, 2} (and similarly for all Greek indices). The time-dependent position
R(uα(t), t) ∈ R

3 of each point u ∈ Mt implies a local velocity

dR
dt

= V = vαeα + v(n)n̂, (2.1)

where the eα = R,α are tangent to the surface at R, and n̂ is the unit normal. To account
for local order, each point is also associated with a vector T = Tαeα ∈ T (Mt), referred
to as the director, which lives in the tangent bundle of the manifold.

Throughout, the fluid is assumed to be in the low-Reynolds-number regime, therefore
inertial forces are neglected. As a result, the condition of force balance can be decomposed
as

f e + f d + f bs + f c + f a = 0, (2.2)

where f e are elastic forces, f d are dissipative forces, f bs are broken symmetry forces, f c

are forces from constraints, and f a are active forces.
We will also assume that the fluid is incompressible. As a result, the only dynamical

equation in our theory, in addition to the trivial (2.1), is for the director field Tα on the
surface. We write this as

DtTα = Jα
T + Jα

c , (2.3)

where Dt is the objective rate (calculated in § 2.2), Jα
T are dissipative currents resulting

from an Onsager expansion/thermodynamic flux-force relation, and Jα
c is the current

associated with the constraint of unit director magnitude.

2.1. Rate-of-deformation and vorticity tensors
A tensor of vital importance to fluid mechanics is the rate-of-deformation or strain-rate
tensor dαβ . The rate-of-deformation tensor is given by half of the time derivative of the
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metric on Mt (more formally, half of the Lie derivative with respect to the flow V ; Arroyo
& DeSimone 2009; Marsden & Hughes 1994). If we take the time derivative of the induced
metric, gαβ = eα · eβ , as defined in (A1), then we find

dgαβ

dt
= deα

dt
· eβ + deβ

dt
· eα = V ,α · eβ + eα · V ,β . (2.4)

Substituting for V ,α = (vβ ;α − v(n)bβ
α)eβ + (vβbαβ + v(n);α)n̂ (see (A13)) gives

dαβ = 1
2

dgαβ

dt
= 1

2

(
vβ;α + vα;β

)− v(n)bαβ. (2.5)

Alternatively, one can start from the expression for the rate-of-deformation tensor in R
3

and project back onto the manifold Mt:

dαβeα ⊗ eβ =
[

1
2 V ,α ⊗ eα + 1

2

(
V ,α ⊗ eα

)T]•
, (2.6)

where (·)• denotes projection onto Mt (i.e. contracting with tangent basis eβ ), which a
quick calculation verifies gives the same result. Note that V ∈ R

3 but V has support only
on Mt, and that the formal derivation of this requires some subtle constructions such as
extensions of vector fields (Lee 1997).

The vorticity tensor can be derived in an equivalent way, giving a result identical to that
from the flat geometry version:

Ωαβ = 1
2

(
vβ;α − vα;β

)
, (2.7)

which can be seen by noting that the terms of the antisymmetrised deformation tensor
proportional to bαβ vanish by symmetry under exchange of indices of the second
fundamental form.

Here, we will consider incompressible fluids, the condition for which is that the
rate-of-deformation tensor is traceless:

dα
α = ∇αvα − 2Hv(n) = 0. (2.8)

In the absence of normal flows, this reproduces the classic incompressibility condition
∇αvα = 0.

2.2. Objective rate of a vector field
The subject of objective rates is contentious in continuum mechanics, especially where
changing geometry is concerned (Marsden & Hughes 1994; Nitschke & Voigt 2022). The
challenge, in this case, is to ensure that tangential flows are Eulerian – i.e. coordinates are
not advected with the flow – yet also properly account for out-of-plane surface dynamics,
which are necessarily Lagrangian – i.e. coordinates are advected with surface movement
(Waxman 1984). We adopt a pragmatic approach, and choose a projected co-rotational
rate. That is, we take the co-rotational derivative in R

3, and project down onto the surface
so as to recover the co-rotational objective rates for fixed-curved and flat surfaces, while
still accounting for Lagrangian deformations of the surface in the normal direction.
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For a vector field T , which is confined to the tangent bundle of Mt – i.e. T = Tαeα ∈
T (Mt) – this takes the form

DtT • =
[

dT
dt

+ Ω · T
]•

= [
∂tT + vα(T ),α + Ω · T

]•
. (2.9)

The first term is given by

∂tT = ∂t
(
Tαeα

) = ∂tTαeα + Tα∂teα

=
(
∂tTα − v(n)Tβbβ

α
)

eα + Tαv(n);αn̂, (2.10)

where we have included only contributions from changing the basis vectors due to normal
velocities, since we are in an Eulerian frame tangentially and therefore tangential velocities
do not advect coordinates. The second term is given by

vα ∇α(T ) = vα
(
Tβeβ

)
,α

= vαTβ ;αeβ + Tβvαbαβ n̂, (2.11)

and finally the third term is simply given by

Ω · T = Ωα
βTβeα. (2.12)

Putting this all together and projecting back onto the manifold gives

DtTα = ∂tTα + vβTα;β + Ωα
βTβ − v(n)Tβbβ

α, (2.13)

which is identical to the equivalent expression in flat geometry, with the exception of the
final term.

To understand the origin of this term, consider a tube in cylindrical polar coordinates
that is expanding outwards with velocity v(n) = Ṙ, where R is the radius. There is no
tangential flow, and the director field is assumed to be of constant magnitude in the eθ

direction (i.e. T = Teθ ). In this case, the second fundamental form has one non-zero
component in the eθ direction. As a result, as R increases, so does the size of the basis
vector eθ , and we require that DtTθ = ∂tT + ṘT/R = 0 for the objective rate to be zero
(fixed size for T ), which gives T = T0 exp(−Ṙ/R).

2.3. Elastic forces
In general, we will consider surfaces with free energies of the form

F =
∫
Mt

F
(
gαβ, bαβ, Tα

)
dA, (2.14)

where dA = √|g| dx1 dx2 is the area element on the manifold. Whilst other free energies
fit into this class, for example the tilt field of a lipid monolayer (Selinger, MacKintosh &
Schnur 1996; Terzi & Deserno 2017), we will focus on the concrete example of the free
energy of a nematic liquid crystal. Here, we will make use of standard descriptions of
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liquid crystals to define the molecular field as

hα = − δF
δTα

, (2.15)

which we will make use of in order to derive the hydrodynamics of the ordered surface.
The force given by varying the surface shape is then given by

f e = f α
e eα + f (n)

e n̂ = −δF
δR

. (2.16)

In the case of nematic liquid crystals, the one-constant approximation to the Frank free
energy (Frank 1958; DeGennes & Prost 1993; Napoli & Vergori 2012, 2016) is given by

FLC =
∫
Mt

K
2

|∇̃sT |2 dA, (2.17)

where T = Tβeβ is the nematic order parameter (we choose to use Tβ here rather than
the usual nβ in the nematic liquid crystal literature, in order to avoid confusion with the
surface normal vector n̂) on the tangent bundle T (Mt), and ∇̃s is the surface derivative
(not the covariant derivative) (Napoli & Vergori 2012). The reason for our choice of the
surface derivative, as opposed to the covariant derivative, is so as to account correctly for
the bend due to extrinsic curvature. This is likely an important coupling for true active
nematic surfaces, but is perhaps less relevant for nematic-like material surfaces such as
epithelial tissues. The surface derivative can be written in terms of the covariant derivative
and second fundamental form as

∇̃sT = ∇αTβeα ⊗ eβ + Tβbαβeα ⊗ n̂, (2.18)

thus the full free energy is given by

FLC =
∫
Mt

K
2

[∇αTβ ∇αTβ + TβTγ bαβbαγ
]

dA. (2.19)

We will now compute the associated functional derivatives in the free energy (F ). The
functional derivative with respect to Tα gives the negative of the molecular field hα as

δFLC

δTα
= −hα = −K

[
	Tα + (

Kδγ
α − 2Hbα

γ
)

Tγ

]
. (2.20)

We will make use of the rate formulas calculated in Appendix A to perform functional
variations of the form

δgαβ = δt
d
dt

(
gαβ

)+ O(δt2),

δbαβ = δt
d
dt

(
bαβ

)+ O(δt2),

δΓ
γ
αβ = δt

d
dt

(
Γ

γ
αβ

)
+ O(δt2).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.21)

Using this, we find

δF =
∫
Mt

K
2

[
2δ(Γ β

αμ)Tμgαγ gβδTδ ;γ + Tβ ;αδ(gαγ )gβδTδ ;γ + Tβ ;αgαγ δ(gβδ)Tδ ;γ

+ 2δ(bαβ)gαδbδγ Tγ Tβ + TβTγ bαβbδγ δ(gαδ) − 2Hv(n)δt
(

Tβ ;αTβ
;α + TβTγ bαβbαγ

)]
dA.

(2.22)
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Focusing purely on the normal variation, we find

δF =
∫
Mt

Kδt
{[

(v(n)bα
γ );β − (v(n)bαβ);γ − (v(n)bγ

β);α
]

TαTβ ;γ + Tβ ;αTβ;γ bαγ v(n)

− Tβ ;αTγ ;αbγβv(n) + (bα
γ Tγ Tβ);βαv(n) − Tγ Tβ

(
2Hbαβbα

γ − Kbβγ

)
v(n)

+ TβTγ bαβbδγ bαδv(n) − H
[
Tβ ;αTβ

;α + TβTγ bαβbαγ
]
v(n)

}
dA. (2.23)

Notice that the first terms from the variation of the covariant derivative include
derivatives in the normal velocity. Integrating these by parts and pushing terms to the
boundary, we can find the following functional variation in the bulk of the surface:

δF =
∫
Mt

Kv(n)δt
{

bαβ(TαTβ ;γ );γ + bγ
β(TαTβ ;γ );α − bα

γ (TαTβ ;γ );β + Tβ ;αTβ;γ bαγ

− Tβ ;αTγ ;αbγβ + (bα
γ Tγ Tβ);βα − Tγ Tβ

(
2Hbαβbα

γ − Kbβγ

)+ TβTγ bαβbδγ bαδ

− H
[
Tβ ;αTβ

;α + TβTγ bαβbαγ
]}

dA + boundary terms. (2.24)

From this, and noting that the second and third terms cancel due to symmetry of TαTβ

and bαβ , we find the forces in the normal direction from the free energy as

f (n)
e = −K

{
bαβ(TαTβ ;γ );γ + Tβ ;α

(
Tβ;γ bαγ − Tγ ;αbγβ

)
+ (bα

γ Tγ Tβ);βα

− Tγ Tβ
(
2Hbαβbα

γ − Kbβγ

)+ TβTγ bαβbδγ bαδ − H
[
Tβ ;αTβ

;α + TβTγ bαβbαγ
]}

.

(2.25)

Note that the third term gives forces that go like the second derivative of the curvature
tensor, but traced out along the directions of the nematic order parameter. Such a term is
essentially an anisotropic bending rigidity that would not be found in the case where the
covariant derivative, rather than surface derivative, was used in the free energy (Napoli
& Vergori 2012; Santiago, Chacón-Acosta & Monroy 2019; Santiago & Monroy 2020).
This gives equations that are significantly different to many of those currently analysed
in the literature, both equilibrium and dynamical (Frank & Kardar 2008; Santiago 2018;
Hoffmann et al. 2022; Salbreux et al. 2022).

Similarly for the tangential variations, we find the elastic force

f α
e = −K

2

{(
TβTα;γ

)
;βγ

+
(

Tβ;γ Tβ;α
);γ −

(
Tβ;γ Tα;γ

);β − 2
(
bα

βbγ
μTμβ

)
;γ

− 2
(
bγ

μTμβ
)
;β bα

γ + (
TβTγ bμβbα

γ

);μ}
. (2.26)

This is essentially a generalised version of the Ericksen force (DeGennes & Prost 1993).
For simplicity, we will neglect this tangential component in our later examples as it leaves
the phenomenology of the equations unchanged. This approximation is taken in many
exact calculations in active hydrodynamics (Hoffmann et al. 2022; Giomi et al. 2014;
Kruse et al. 2004; Edwards & Yeomans 2009); however, in principle this term should be
included in full nonlinear solutions.
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2.4. Surface tension and director constraints
We consider two constraints upon our system whose contributions to the dynamical
equations can be derived generically from a Rayleigh dissipation functional (DeGennes
& Prost 1993; Doi 2011). However, we avoid a full variational treatment here for the
sake of brevity, and instead simply state the contributions whose derivation can be found
elsewhere (DeGennes & Prost 1993; Arroyo & DeSimone 2009; Marchetti et al. 2013).

The first constraint is that of constant area, or incompressibility, which is expressed
by (2.8). The corresponding Lagrange multiplier is the surface tension ζ , which acts
isotropically via stresses σ

(st)
αβ = ζgαβ . Taking the surface divergence of σ (st) gives the

following contribution to the force balance condition:

f c = ∇αζ eα + 2Hζ n̂. (2.27)

The second constraint is to fix the magnitude of the nematic director (DeGennes & Prost
1993). This is achieved by imposing

TαDtTα = 0, (2.28)

which implies TαTα = constant, with the constant specified by the initial conditions
on Tα (Kruse et al. 2005). We label the associated Lagrange multiplier by λ, and the
corresponding contribution to the director current (Prost, Jülicher & Joanny 2015) is just

Jα
c = −λTα. (2.29)

This term can be viewed from a variational perspective as either a constraint on the
Rayleigh dissipation functional of the form

∫
λTαDtTα dA, or a contribution to the

molecular field from a constraint on the free energy of the form
∫ 1

2λγ TαTα dA (DeGennes
& Prost 1993).

2.5. Constitutive relation and dissipative forces
The viscous stress tensor in the tangent bundle is given as an Onsager expansion (Doi
2011; DeGennes & Prost 1993) in the thermodynamic fluxes. At lowest non-trivial order,
it is given by

σαβ = 2ηdαβ + ν

2

(
Tαhβ + Tβhα

)
, (2.30)

where hα is the molecular field (2.20), dαβ is the rate-of-deformation tensor, η is the shear
viscosity, and ν gives the spin connection coefficients of the vector field (essentially the
ratio of anisotropic viscosity to isotropic viscosity DeGennes & Prost 1993). Here, stable
solutions require |ν| > 1, with ν < −1 corresponding to rod-like nematics, and ν > 1 to
disk-like nematics (Edwards & Yeomans 2009; Marchetti et al. 2013). Note that as we
consider only incompressible fluids, we discard the bulk viscosity terms and associated
spin connections (DeGennes & Prost 1993). The dissipative forces on our surface are then
given as

f d = ∇βσαβeα + σαβbαβ n̂. (2.31)

For the terms in the tangent bundle we find

∇βσαβ = 2ηdαβ ;β + ν

2

(
Tαhβ + Tβhα

)
;β , (2.32)
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where we can unpack the first term to

2ηdαβ ;β = η
(
vα;β + vβ;α − 2v(n)bαβ

)
;β

= ηΔvα + ηvβ ;αβ − 2η
(
v(n)bαβ

)
;β

, (2.33)

where Δ = ∇α∇α is the Bochner Laplacian. By making use of the Codazzi equation (A9)
and the contracted Gauss equation (A12), we find

2ηdαβ ;β = η

[
Δvα − 2

(
v(n)H

);α + Kvα + 2
(
2Hgαβ − bαβ

)
v(n);β

]
. (2.34)

Thus the tangential forces are given by

σαβ ;β = ν

2

(
Tαhβ + Tβhα

)
;β

+ η

[
Δvα − 2

(
v(n)H

);α + Kvα + 2
(
2Hgαβ − bαβ

)
v(n);β

]
. (2.35)

The normal forces are given by contracting the stress tensor with the second fundamental
form

σαβbαβ = 2ηbαβvβ;α − 4η(2H2 − K)v(n) + νTαhβbαβ. (2.36)

2.6. Broken symmetry terms
We can also include broken symmetry terms in the stress tensor that contribute nothing
to the overall dissipation as their dynamics are associated with Goldstone modes in the
system, hence the name ‘broken symmetry’ (DeGennes & Prost 1993; Kruse et al. 2005).
For vector fields, these contribute an antisymmetric part to the stress tensor of the form

σ
(bs)
αβ = 1

2

(
Tαhβ − Tβhα

)
. (2.37)

Note that these terms contribute to only the tangential forces as they vanish in the normal
due to the symmetry of the second fundamental form upon index relabelling. The broken
symmetry forces are thus given by

f bs = ∇βσ (bs)αβeα + σ (bs)αβbαβ n̂ = 1
2

(
Tαhβ − Tβhα

)
;β eα. (2.38)

2.7. Director terms
Expanding out in an Onsager fashion for the director rate in terms of nematic relaxation,
we find the couplings

Jα
T = γ −1hα − νdα

βTβ, (2.39)

which give terms in a similar manner to the flat case (Kruse et al. 2005). Note that the
constant ν is the same as for the director terms in the stress tensor by the Onsager reciprocal
relations. Adding this together with the constraint current (2.29) gives the full Onsager
expansion for the director rate as

DtTα = γ −1hα − νdα
βTβ − λTα. (2.40)
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2.8. Active terms
We consider a simple extension to the tangential stress tensor that represents the
dipolar-like active forces that are characteristic of many active nematic systems (Sanchez
et al. 2012; Marchetti et al. 2013). For a detailed introduction to active matter, we refer the
reader to the reviews Marchetti et al. (2013) and Ramaswamy (2017), and for active liquid
crystals in particular to Doostmohammadi et al. (2018).

Active liquid crystals have generated significant interest in recent years due to several
experimental realisations (Sanchez et al. 2012; Keber et al. 2014) that have revealed the
fascinating interplay between active stresses and geometry of the director, particularly in
the coupling of geometry of the surfaces to the dynamics of topological defects (Giomi
et al. 2014; Khoromskaia & Alexander 2017; Pearce et al. 2019; Pearce 2020). In addition
such systems have been suggested as minimal models for tissues (Blanch-Mercader et al.
2021a,b) and the actomyosin cell cortex (Kruse et al. 2005).

Here, we consider the standard form for the active nematic stress tensor:

σ
(a)
αβ = ΣQαβ = Σ

(
TαTβ − 1

2 gαβ

)
. (2.41)

For Σ > 0, such stresses are contractile in nature, and for Σ < 0, they are extensile. This
form represents the simplest form of anisotropic active stress; however, more complicated
couplings are possible (Naganathan et al. 2014; Salbreux & Jülicher 2017; Salbreux et al.
2022). The active forces from (2.41) are given by

f a = σ (a)αβ ;βeα + σ (a)αβbαβ n̂. (2.42)

2.9. Full dynamical equations
Putting together all our force balance terms, constraints and polarisation currents gives the
following system of equations, which are essentially ordered fluid versions of the equations
derived for isotropic fluid membranes in Arroyo & DeSimone (2009).

Polarisation dynamics:

DtTα = γ −1hα − νdα
βTβ − λTα. (2.43)

Tangential force balance:

1
2

(
Tαhβ − Tβhα

)
;β + η

[
Δvα − 2

(
v(n)H

);α + Kvα + 2
(
2Hgαβ − bαβ

)
v(n);β

]

+ ν

2

(
Tαhβ + Tβhα

)
;β + f α

e + ζ ;α + σ (a)αβ ;β = 0. (2.44)

Normal force balance:

2ηbαβvβ;α − 4η(2H2 − K)v(n) + νTαhβbαβ + 2Hζ + f (n)
e + σ (a)αβbαβ = 0. (2.45)

Constraint equations (constant director and incompressibility):

TαDtTα = 0, vα;α − 2Hv(n) = 0. (2.46)

Closure between surface velocity and geometry:

V = dR
dt

. (2.47)
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Morphodynamics of active nematic fluid surfaces

2.10. Dimensionless numbers
There is an interesting point to make regarding the normal force balance equation. It
contains the term ηbαβvβ;α , which describes the curvature-induced coupling between
viscous forces and shape. Such couplings have been discussed extensively for isotropic
fluid membranes (Al-Izzi, Sens & Turner 2020a; Sahu et al. 2020a). These phenomena
can be understood in terms of the dimensionless Scriven–Love number (Scriven 1960)

SL = O(ηbαβvβ;α)

O(bending forces)
= ηVL

K , (2.48)

where V and L are characteristic velocities and length scales, and we have assumed
that bending forces ∼ KL−3 (i.e., like the bending energy and Laplacian of the mean
curvature).

In addition, however, there is a new anisotropic coupling due to terms ∼ νTαhβbαβ

which, when compared to bending forces, could be thought of as a ‘liquid crystalline
Scriven–Love number’:

SL(LC) = O(νTαhβbαβ)

O(bending forces)
= ν. (2.49)

As such, the dimensionless number associated with out-of-plane liquid crystalline
dissipative forces is just the spin connection coefficient ν.

In addition to this, there is also the dimensionless active stress. As this is a number
comparing tangential stress to bending stress, we can consider it as an analogue of the
Föppl–von Kármán number Y that would typically compare stretching to bending forces
in passive shell theory (Audoly & Pomeau 2010). In our case, this is given by

Y(Active) = ΣL2

K . (2.50)

Note that this implies that in highly curved geometries, bending forces will suppress active
deformations.

3. Applications

To illustrate the potential interplay between geometry, ordering and flow, we provide some
concrete examples. We focus first on the case where activity is not present, but where the
highly curved geometry of a tube leads to couplings between the director and shape that
are not present in the flat or close-to-flat cases studied in Salbreux et al. (2022). We then
consider the ways in which active anisotropic stresses can drive tubes unstable, before
finally considering the effects of activity on a topological defect located at the centre of a
close-to-flat sheet.

3.1. Relaxation dynamics about a perturbed tube
We start with a simple example of a tube of radius r(θ, z, t) = r + ε u(θ, z, t), where ε is
some dimensionless parameter that will be considered small. Such tubes have been shown
in the case of isotropic membranes to have non-negligible Scriven–Love effects (Sahu
et al. 2020a). The surface is prescribed by the vector R = (r cos θ, r sin θ, z). We can thus
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calculate the induced basis and metric

[gαβ] =
(

r(r + 2εu) 0
0 1

)
+ O(ε2), (3.1)

and the second fundamental form

[bαβ] =
(

εu,θθ − εu − r εu,θz
εu,θz εu,zz

)
+ O(ε2). (3.2)

This gives mean and Gaussian curvature to first order as

H = ε

2

(
u,zz + 1

r2 u,θθ + 1
r2 u

)
− 1

2r
, (3.3)

K = −εu,zz

r
. (3.4)

We write the director field as T = (εTθ /r)eθ + (1 + εTz)ez + O(ε2), where we have
chosen the O(1) term to be the unit vector in the z direction such that the molecular field
vanishes for the unperturbed state (Napoli & Vergori 2012). Thus at lowest order, the
constraint equation on director unity becomes

∂tTz = 0, (3.5)

and all the dynamics are in the θ direction, i.e. perpendicular to the initial zeroth order
nematic ordering, as one would expect for the perturbative dynamics of a unit vector
field. We write the velocity as V = ε(vθ/reθ + vzez + ∂tun̂), so the continuity equation
becomes

∂tu
r

+ vθ
,θ

r
+ vz

,z = 0. (3.6)

The molecular field is given by

hαeα = Kε

(
Tθ

,zz + 1
r2 Tθ

,θθ − 1
r2 Tθ + 2

r2 u,θz

)
1
r

eθ + Kε

(
Tz

,θθ

r2 + Tz
,zz

)
ez, (3.7)

and can be substituted to then find the polarisation rate equation whose components are
given by

eθ : ε

[
− K

γ r

(
Tθ

,zz + Tθ
,θθ

r2 − Tθ

r2 + 2
u,θz

r2

)
+ 1

r

(
∂tTθ + 1

2
vθ
,z + 1

2r
vz
,θ

)

+ 1
r

(
λTθ + ν

2
vθ
,z + ν

2r
vz
,θ

)]
= 0, (3.8)

ez : λ− ε

[K
γ

(
1
r2 Tz

,θθ + Tz
,zz

)
+ ∂tTz + λTz + νvz

,z

]
= 0. (3.9)

The modified covariant Stokes equation (tangential force balance) is given componentwise
by

eθ :
ζ,θ (r − 2εu)

r3 + K(ν − 1)ε

2r3

(
r2Tθ

,zzz − Tθ
,z + Tθ

,θθz + 2u,θzz

)
+ ηε

r3

(
r2vθ

,zz + ∂tu,θ + vθ
,θθ

)
= 0, (3.10)

ez :
ηε

r2

(
r2vz

,zz − r∂tu,z + vz
,θθ

)
+ ζ,z = 0. (3.11)
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The normal components of force due to the liquid crystal free energy are more
complicated to calculate, however. Nevertheless, at O(ε), only the third term of (2.25)
contributes, giving

(
bα

γ Tγ Tβ
)
;βα

= ε

[
u,zzzz − 1

r2 Tθ
,zθ + 1

r2 u,zzθθ

]
+ O(ε2), (3.12)

which gives the shape equation

Kε

r2

(
r2u,zzzz − Tθ

zθ + u,zzθθ

)
− ζ

r2

[
ε
(

r2u,zz + u,θθ + u
)

− r
]

+ 2ηε

r2

(
∂tu + vθ

,θ

) = 0. (3.13)

Taking the case where ε = 0, we find a ground state with

λ = 0, (3.14)

ζ = 0, (3.15)

T = ez, (3.16)

as required. Note that as the bending energy term is anisotropic, it gives no characteristic
length scale of the tube as compared to the case of a lipid bilayer, for example, where
the ground-state radius of the tube is set by the ratio of isotropic bending energy to
surface tension (r0 = √

κ/2ζ ) (Zhong-Can & Helfrich 1989; Nelson, Powers & Seifert
1995; Gurin, Lebedev & Muratov 1996; Fournier & Galatola 2007; Powers 2010; Boedec,
Jaeger & Leonetti 2014).

We now take ζ = εζ , λ = ελ, and take the Fourier transform in space
f̄q,m = (1/4π2)

∫
dz dθ f (z, θ) exp(−imθ − iqz). Using each of (3.5), (3.6), (3.10), (3.9)

and (3.13) leaves simply two dynamical equations for ūqm and T̄θ
qm, which are given in

dimensionless form as

∂t̃

(
T̄θ

qm
ūqm

)
= A ·

(
T̄θ

qm
ūqm

)
=
(

A11 A12
A21 A22

)
·
(

T̄θ
qm

ūqm

)
, (3.17)

where componentwise,

A11 = m2 (− (Q2 (4η̄ + ν2 + 1
)+ 1

))− Q2 (Q2 + 1
) (

4η̄ + (ν − 1)2)
4Q2 ,

A12 = m
(
m4 − 2m2 ((ν − 1)Q2 + 1

)+ (1 − 2ν)Q4 − 2Q2 (4η̄ + (ν − 1)2))
4Q

,

A21 = m
(−2νQ2 (m2 + Q2 + 1

)+ m2 + Q2)
4Q3 ,

A22 = −m6 + m4 (3Q2 − 2
)+ m2Q2 (4ν + 3Q2 − 2

)+ Q6

4Q2 ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.18)

where time has been normalised by t = τ t̃ with τ = ηr2/K, η̄ = η/γ , Q = rq, and ū has
been non-dimensionalised by r. Note that the off-diagonal elements couple linearly in mQ.
That is, the sign of T̄θ

qm selects a handedness of coupling to the shape deformations.
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Figure 2. Relaxation rates for a perturbed liquid-crystal tube. Here, Λi are the two eigenvalues of the growth
matrix given in (3.17), that is, the growth rate of the spatial Fourier modes with time non-dimensionalised by
τ = ηr2/K, where η is the 2-D viscosity, r is the tube radius, and K is the liquid crystalline elastic modulus.
These are plotted against dimensionless wavenumber Q = qr (z direction Fourier variable) for the first four
integer modes in m (the θ Fourier variable). The dimensionless viscosity is η̄ = 1, and the spin connection is
ν = −1.5.

In contrast to the case of a flat membrane, this shows that in highly curved environments,
the relaxation of shape and orientational ordering cannot be decoupled even in the case
when the ground state has no intrinsic curvature. This is true for all the modes on the
tube, with the exception of the m = 0 case where the ordering and shape decouple. In
figure 2, we plot the negatives of the eigenvalues {Λ1, Λ2} of the matrix A as functions of
wavenumber Q for the first m = 0, 1, 2, 3 modes. These can be interpreted as the passive
relaxation modes that return perturbations back to the ground state.

3.2. Active nematic liquid crystals
In this subsection, we will consider the effects of a non-zero active stress on the stability
of nematic tubes, and on the morphology of a surface with a +1 defect located at the
origin. In particular, we will examine the effects of changing the sign of the active stress
(i.e. contractile versus extensile) on the morphology and surface instabilities.

3.2.1. Active ruffling and pearling instabilities in tubes
Using our equation for the active stress, we can find that the normal part of the active force
for a tube is given by

f a · n̂ = σ (a)αβbαβ = Σ
[
ε
(
r2u,zz − u,θθ − u

)+ r
]

2r2 , (3.19)

and the tangential parts by

(I − n̂ ⊗ n̂) · f a = σ (a)αβ ;β eα = ΣεTθ
,z

r
eθ +

Σε
(

2rTz
,z + Tθ

,θ + u,z

)
r

ez. (3.20)

where I is the identity matrix in R
3.
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Morphodynamics of active nematic fluid surfaces

Following a similar procedure as before, we now find a different ground-state surface
tension at ε = 0 for the unperturbed tube of ζ = Σ/2 + O(ε). Now following the same
procedure as before, of Fourier transforming the equations around this ground state, we
can find the dynamical equations for shape and alignment. Here, we will consider only the
axisymmetric deformations (m = 0) for simplicity. This leads to the following equations
for ūq and T̄θ

q :

∂t̃ T̄
θ
q = −(Q2 + 1)

(
(ν − 1)2 + 4η̄

)− 2(ν − 1)Σ̄

4
T̄θ

q , (3.21)

∂t̃ ūq = −Q4 + (Q2 − 1)Σ̄

4
ūq, (3.22)

where t = τ t̃, with τ = ηr2/K, η̄ = η/γ , Σ̄ = Σr2/K, Q = rq, and ū has been
non-dimensionalised by r. Note that Σ̄ is essentially a ratio of surface forces to bending
energy and can thus be viewed as an ‘active Föppl–von Kármán number’ that we discussed
earlier.

First, we will consider the second equation describing the shape dynamics. The growth
rate for the shape perturbation, ūq, is given by

Λu(Q, Σ̄) = −Q4 + (
Q2 − 1

)
Σ̄

4
. (3.23)

This can be driven unstable for

Σ̄ ≤ −Q4

Q2 − 1
. (3.24)

For the case of an extensile active stress (Σ < 0), this leads to an instability of a finite
range of Q > 1 peaked around a specific wavelength; see figure 3. The fastest growing
mode of this instability is found at Q� =

√
−Σ̄/2, and as this occurs at Q > 1, leads to

ruffling-like undulations in the membrane. This makes sense heuristically as the extensile
stresses are pointing along the tube thus generating forces that act to increase the surface
area of the tube, hence the ruffling.

In the case of contractile stresses (Σ > 0), we find an instability with fastest growing
mode in the Q → 0 limit; see figure 4(a). This instability is analogous to a classical
Rayleigh–Plateau instability (Rayleigh 1892; Tomotika 1935) and similar to the pearling
instabilities seen in fluid membrane tubes (Gurin et al. 1996; Boedec et al. 2014;
Narsimhan, Spann & Shaqfeh 2015). In reality, such an instability does not occur at
infinite length scales as the dissipative time scale in the ambient media damps the
longer-wavelength modes. We can approximate the bulk dissipation by modifying our
shape dynamics equation as (Nelson et al. 1995; Gurin et al. 1996; Powers 2010; Al-Izzi
et al. 2020b; Boedec et al. 2014)

Λu(Q, Σ̄) = −Q4 + (
Q2 − 1

)
Σ̄

4 + 8Q−2L̃−1
SD

, (3.25)

where L̃SD = η/(ηbr) is the dimensionless Saffman–Delbrück length, and ηb is the
ambient viscosity (Saffman 1975; Saffman & Delbrück 1975). Here, this leads to a
long-wavelength instability as the contractile stress tries to minimise the surface to
volume ratio of the tube. This gives a finite wavelength to the fastest growing mode
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Figure 3. Extensile instability causes a ruffling-like deformation in the shape of the tube. Here, Λu(Q, Σ̄)

is the growth rate of the spatial Fourier modes, with time non-dimensionalised by τ = ηr2/K, where η is
the 2-D viscosity, r is the tube radius, and K is the liquid crystalline elastic modulus. The active stress is
non-dimensionalised as Σ̄ = Σr2/K. Inset shows a representative example of such an instability.

set by the Saffman–Delbrück length; see figure 4(b). This instability is similar to the
isotropic contractile instabilities found previously in fluid membranes (Mietke, Julicher
& Sbalzarini 2019).

We now turn our attention to the growth rate of the director deviations, which is given
by

ΛT(Q, Σ̄, η̄, ν) = −
(
Q2 + 1

) (
4η̄ + (ν − 1)2)− 2(ν − 1)Σ̄

4
. (3.26)

This can also have a change in sign when in the extensile or contractile regime, depending
on the sign of ν (ν < −1 corresponds to rod-like nematics, and ν > 1 to disk-like). The
stability condition is given by

Σ̄ ≥ (Q2 + 1)
(
4η̄ + (ν − 1)2)

2(ν − 1)
, (3.27)

which leads to a spontaneous bend instability in the longest wavelengths of the tube; see
figure 5. This instability is well known in flat geometry in the case of extensile stress and
rod-like nematics (ν < −1), where it is known to lead to active turbulence (Marchetti et al.
2013).

In the limit Q → 0, this criterion becomes Σ̄ ≥ (4η̄ + (ν − 1)2)/2(ν − 1), in
comparison to the flat case where the instability is thresholdless (Marchetti et al. 2013).
This is due directly to the correct use of the surface derivative as the texture needs
sufficient active stress to overcome the elastic stress the bend induces by forcing the texture
to bend around the tube. Because of this threshold, it is interesting to note that the shape
instability precedes the bend instability, suggesting that it should be possible to generate
shape changes before one sees active turbulence. The interplay between this instability
and the shape equations beyond linear order is likely a very rich topic as this director
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Figure 4. Contractile instability causes a pearling-like deformation in the shape of the tube. Here, Λu(Q, Σ̄)

is the growth rate of the spatial Fourier modes, with time non-dimensionalised by τ = ηr2/K, where η is
the 2-D viscosity, r is the tube radius, and K is the liquid crystalline elastic modulus. The active stress
is non-dimensionalised as Σ̄ = Σr2/K. (a) Instability in the absence of an ambient fluid. (b) Instability
when an approximation to ambient hydrodynamics in the long-wavelength limit is used. Here, L̃SD = η/ηbr
is the dimensionless Saffman–Delbrück length given by the ratio of 2-D to three-dimensional viscosity (ηb)
non-dimensionalised by tube radius. Inset shows an example growth of a surface undulation for the case with
bulk fluid.

40

(a) (b) 10

5

0

–5

–10

20

0

–20

–40

0 0.5 1.0 1.5

Q
2.0 2.5 3.0 0 0.5 1.0 1.5

Q
2.0 2.5 3.0

Λ
T

(Q
, 
Σ̄

 ,
 η̄

 =
 1

, 
ν
 =

 –
1
.5

)

Λ
T

(Q
, 
Σ̄

 ,
 η̄

 =
 1

, 
ν
 =

 1
.5

)

Σ̄  = 0

Σ̄  = –10

Σ̄  = –30

Σ̄  = 0

Σ̄  = 10

Σ̄  = 30

Figure 5. (a) Extensile bend instability in texture on the surface of the tube with rod-like nematics.
(b) Contractile bend instability in texture on the surface of the tube with disk-like nematics. Here, ΛT (Q, Σ̄)

is the growth rate of the spacial Fourier modes, with time non-dimensionalised by τ = ηr2/K, where η is
the 2-D viscosity, r is the tube radius, and K is the liquid crystalline elastic modulus. The active stress
is non-dimensionalised as Σ̄ = Σr2/K. The dimensionless viscosity is η̄ = 1, and the spin connection is
(a) ν = −1.5, and (b) ν = 1.5. Insets show an example of the bend instability at the longest wavelength of the
tube.

instability would likely couple to helical deformation modes leading to a spontaneous
chiral symmetry breaking. However, such a topic is beyond the scope of the analysis in
this paper.
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3.2.2. Active topological defect deformations
Here, we consider a planar membrane in polar Monge coordinates, where the surface
is parametrised by the Cartesian vector R = (r cos θ, r sin θ, εz). For simplicity, we will
consider only axisymmetric steady states, thus z(r, θ) = z(r). The metric and second
fundamental form are given as

[gαβ ] =
(

1 0
0 r2

)
+ O(ε2), (3.28)

[bαβ] =
(

εz,rr 0
0 rεz,θ

)
+ O(ε2), (3.29)

up to first order in ε. Thus we find H = (ε/2)((1/r)z,r + z,rr) + O(ε2) and K = 0 +
O(ε2). We take the polarisation texture to be T = cos φ er + (1/r) sin φ eθ , where φ is a
constant such that there is a +1 topological defect located at r = 0. The continuity equation
then yields vr = 0, so we are left to solve for z(r, t), ζ(r, t), λ(r, t) and vθ (r, t).

At lowest order in ε, the equations are independent of ż, so we look for steady states
in the nematic order parameter. Our choice of T trivially satisfies the unit magnitude
constraint. We now make use of the fact that at lowest order, the tangential force balance
and polarisation equations are just given by their flat counterparts (that is, they have no
O(ε) term), and the shape equation is given entirely by O(ε) terms (Kruse et al. 2005;
Hoffmann et al. 2022).

The polarisation equations become

(ν cos(2φ) − 1)

(
vθ
,r − vθ

r

)
= 0, (3.30)

ν sin(φ) cos(φ)

(
vθ
,r − vθ

r

)
+ λ+ K

γ r2 = 0, (3.31)

which, assuming ν > 1 (disk-like nematics), gives

φ = ±1
2

arccos
[

1
ν

]
, (3.32)

λ = − K
r2γ

− ν sin(φ) cos(φ)

[
vθ
,r − vθ

r

]
. (3.33)

Substituting the solution for φ into the tangential force balance gives

ζ,r + Kν

r3 + Σ

νr
= 0, (3.34)

r

(
ηvθ

,r + ηrvθ
,rr ±

√
1 − 1

ν2 Σ

)
− ηvθ = 0, (3.35)

for which solutions are

ζ = Kν

2r2 − Σ

ν
log

[
r

rmax

]
+ ζ0, (3.36)

vθ = ∓ Σ

2η

√
1 − 1

ν2 r log
[

r
rmax

]
, (3.37)
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where ζ0 + Kν/2r2
max is the surface tension at r = rmax (figure 6). This solution is identical

to that found in Kruse et al. (2004), and is one of the classical results of polar active gel
theory in a flat geometry. Notice that the surface tension diverges as r → 0 due to the
presence of the defect. This divergence in shape can be avoided by introducing a short
wavelength cut-off rc, or by considering a more general Landau–de Gennes free energy
that allows for a nematic isotropic phase transition (DeGennes & Prost 1993).

Substituting our solution for the surface tension into the normal force balance equation
yields the dimensionless shape equation

z,r

r3

(
7 − ν

(
2ζ̄0r2 + 5

)
+ 2r2Σ̄ log(r) + r

(√
ν2 − 1 + rΣ̄

))
− z,rr

r2

(
r2(2ζ̄0ν + Σ̄) − 2r2Σ̄ log(r) + 4

)

+ (ν + 1)

(
z,rrrr + 2

r
z,rrr

)
= 0, (3.38)

where lengths have been non-dimensionalised by rmax, and energies by K. We can solve
this equation numerically from the boundary (r = 1 in our dimensionless units) up to a
small cut-off rc. We solve with zero mean curvature and derivative in curvature at r =
rmax = 1 – at lowest order, this is z′(rmax) = −z′′(rmax) = z′′′(rmax) = c = Const. – and
fix z(rmax) = 0 at the boundary. The constant c essentially prescribes the contact angle at
the boundary. To solve this numerically, we make use of Mathematica (WolframResearch,
Champaign, IL).

Solutions to this for varying values of active stress are plotted in figure 7 with ζ̄0 = 1.0,
ν = 1.5, rc = 0.03 and c = −0.05. For Σ̄ = 0, we find a convex cusp solution where the
stress from the defect causes the surface to buckle. Note that this is qualitatively similar
to the full nonlinear pseudo-sphere cusp found in (Frank & Kardar 2008), although the
quantitative details of our shape differ significantly due to our inclusion of the extrinsic
curvature term in the Frank free energy, and thus the anisotropic bending energies in our
shape equation (fourth- and third-order terms) making a full analytical nonlinear solution
of our equations impossible. For the extensile case, the protrusion decreases in height.
The reason for this is due directly to our inclusion of the extrinsic terms in the Frank
free energy and the convex shape of the passive solution. Extensile stresses lead to active
forces that act to increase bend, in this case bend due to the deformation along the surface,
thus pushing the surface down and suppressing the deformation. The opposite is true in
the contractile case, where the active forces act to flatten bend, thus pushing the surface
upwards. A simple example of these types of effect was discussed in the context of an
active fingering instability in Alert (2022). In addition, we show that as the spin connection
ν (or liquid crystalline Scriven–Love number) is increased, the spiral defect texture goes
from aster-like to vortex-like as ν goes to ∞. As this happens, the bend along the surface
goes to zero, and the height of the defect, z(rc), converges in the extensile, contractile and
passive cases, as expected.

Note that our results here are different from those seen in Hoffmann et al. (2022),
where the effects of contractile and extensile forces are switched. This is straightforward
to understand since Hoffmann et al. (2022) did not consider the extrinsic coupling of
the director, and in addition included an isotropic bending energy. This causes the passive
shape to be regularised around the defect and to be concave near the defect where the active
forces are strongest, leading to a switch in sign of the normal force due to activity when
compared to our convex passive shape. Such subtle interplay between passive and active
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Figure 6. (a) Defect surface tension ζ(r) as a function of radius r about a +1 defect centred on r = 0. Inset is
defect texture. (b) Velocity field around the defect. Here, we have introduced a small cut-off radius at r = 0.03,
where lengths are non-dimensionalised by the radius of the boundary rmax = 1. Surface tension is given by
ζ̄0 = ζ0r2

max/K = 1.0, spin connection is ν = 1.5, rc = 0.03 and c = −0.05, where c essentially defines the
contact angle at the boundary. The active stress is non-dimensionalised by Σ̄ = σ rmax/K. We plot for both
positive (contractile) and negative (extensile) values of active stress to show promotion/suppression of the
deformation in each case.
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Figure 7. (a) Surface heights z(r) as a function of radius r about a +1 defect centred on r = 0. Here, we
have introduced a small cut-off radius at r = 0.03, where lengths are non-dimensionalised by the radius
of the boundary rmax = 1. Surface tension is given by ζ̄0 = ζ0r2

max/K = 1.0, spin connection is ν = 1.5,
rc = 0.03 and c = −0.05, where c essentially defines the contact angle at the boundary. The active stress is
non-dimensionalised by Σ̄ = σ rmax/K. We plot for both positive (contractile) and negative (extensile) values
of active stress to show promotion/suppression of the deformation in each case. Inset is an example surface
with the texture shown on top. (b) Maximum defect height z(rc = 0.03) plotted against spin connection ν (or
liquid crystalline Scriven–Love number) in the passive, contractile and extensile cases.

stresses suggests a rich phenomenology of possible nonlinear solutions to such systems,
and that it may be possible for both extensile and contractile systems to achieve a similar
morphology by the varying of passive parameters.

It is interesting to note that the contractile protrusions we find are similar to those
seen during Hydra morphogenesis in the underlying contractile actomyosin network
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(Maroudas-Sacks et al. 2021; Vafa & Mahadevan 2022). There, the +1 defects form the
basis of protrusions that develop into ‘limbs’.

4. Discussion

In this paper, we have developed a fully covariant hydrodynamic theory of active
nematic fluids on deformable surfaces, deriving equations for normal and tangential force
balance along with an equation for order parameter dynamics. Focusing on the case
of the one-constant Frank free energy, we identify three dimensionless numbers: two
Scriven–Love numbers associated with the ratio of normal viscous forces to bending
forces, and an active analogue of the Föppl–von Kármán number, comparing tangential
active stress to bending forces.

We then consider the relaxation dynamics, in shape and order parameter, of a nematic
tube with no active forcing, showing that there is a non-trivial coupling between shape
and director relaxation in the case of the non-axisymmetric modes. Motivated by the recent
interest in active nematic fluids as models of morphogenetic processes, we further consider
the effect of an active Q-tensor term on tube morphology. Here, we show that there are
several new instabilities in both the contractile and extensile cases, which we compare to
similar cases in flat geometry liquid crystals and isotropic fluid membranes. Finally, we
consider the effect of activity on the surface morphology around a +1 topological defect,
where anisotropic stresses drive or suppress protrusion of the defect, dependent on whether
stresses are contractile or extensile, respectively.

An interesting extension of the problems considered here would be the effect of
1/2-integer defects on the shape. In addition to breaking axisymmetry, this presents an
additional complication in that +1/2-integer defects are known to self-propel in active
liquid crystals (Giomi et al. 2014). We speculate that such effects would persist (at least
in the small deformation limit) and would lead to self-propelled travelling waves in the
shape. We aim to explore this phenomenology in detail in future work.

More generally, we believe that the framework developed here has applications in a
wide range of systems, bridging length and time scales. Our chief interest throughout was
to develop the equations in a clear, systematic way that laid bare the basic phenomenology
without recourse to biological specifics. With the addition of relevant concentration fields
describing morphogens, growth factors and other signalling molecules, these equations
could form the basis for a nematic theory of deformable epithelial tissues (Jülicher et al.
2018; Al-Izzi & Morris 2021). There are also additional areas of potential application
in the field of lipid bilayer dynamics; when augmented with isotropic bending energy
terms, these equations could form the basis for a dynamic theory of tilt-chiral lipid
bilayers, extending earlier work considering only energetics (Selinger et al. 1996). It is
also plausible that this is the natural framework to model a fluid bilayer coupled to a thin
layer of active filaments, e.g. actin (Simon et al. 2019), microtubules (Keber et al. 2014) or
engineered filaments such as DNA filaments (Jahnke et al. 2022).

A major open challenge in the field of covariant hydrodynamics is developing general
stable numerical methods to provide solutions beyond the linear perturbation regime or
simple axisymmetric cases (Mietke et al. 2019). A large body of work exists for such
problems in the case of passive and active isotropic fluids based on unfitted finite elements,
arbitrary Lagrangian–Eulerian finite elements or isogeometric analysis (Barrett, Garcke &
Nürnberg 2016; Torres-Sánchez, Millán & Arroyo 2019; Vasan et al. 2020; Sahu et al.
2020b), but to our knowledge, this has yet to be extended to nematic fluids on moving
curved surfaces. It is important to note that the equations derived here would likely need to
be modified to describe the Q-tensor dynamics rather than the nematic order parameter T
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so as to deal correctly with 1/2-integer defects numerically. Solving such tensor PDEs on
curved surfaces is challenging, with issues relating to the discontinuity of basis functions
across elements, although some progress has been made recently in approximating tensor
fields numerically using local Monge approximations (Torres-Sánchez, Santos-Oliván &
Arroyo 2020).

Current methods for solving nemato-hydrodynamics are often hybrid lattice Boltzmann
codes (Denniston, Orlandini & Yeomans 2001; Binysh et al. 2020), and such methods have
been used along with phase fields to approximate interface dynamics (Metselaar et al.
2019; Hoffmann et al. 2022). We believe that it would also be useful to develop tools to
solve the full covariant equations of a deformable mesh using finite element methods so as
to provide numerical methods that more clearly map to a geometric analytical framework,
and thus provide a clearer conceptual link between hydrodynamics and geometry. We
therefore welcome further work in this area.
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Appendix A. Preliminary differential geometry

In this appendix, we define some preliminary objects from differential geometry that we
will make use of in the main derivation. We consider a surface Mt ⊂ R

3 that is locally
isomorphic to R

2 and changes continuously in time (i.e. the geometry of our interface
throughout time is given by a one-parameter family of diffeomorphisms). This assumption
neglects any topological changes in the surface, and for simplicity we will also consider
surfaces without boundary.

We define the embedding of Mt in R
3 by the vector R(x1, x2), where we assume that

locally one can write this as a function of two parameters (x1, x2). Within this framework,
it is possible to define an induced tangent basis on the manifold by taking derivatives
with respect to these coordinates, eα = R,α , where the subscript ‘,’ denotes partial
differentiation. Note that in general, these basis vectors are neither unit nor orthogonal.
From here, we can define an induced metric as

gαβ = R,α · R,β = eα · eβ, (A1)

where gαβ is the metric tensor. It has an inverse gαβ defined by gαβgαγ = δβ
γ , and it

defines an inner product with respect to two vectors in the tangent bundle of Mt, and
as such defines a mapping between the tangent bundle and cotangent bundle on Mt.
This latter point means that we can use the metric to map between vectors x = xαeα and
covectors x = xαeα = xβgαβeα , i.e. we can use the metric to raise and lower indices.

The metric is sufficient to describe all intrinsic properties of a manifold; however, if we
also want to know about extrinsic properties – as in fact we must if we want to describe how
our surface is embedded within R

3 – then we also require knowledge about how the normal
to the surfaces changes. We define a unit normal vector as n̂ = e1 × e2/|e1 × e2|, where
× is the cross-product in R

3. The extrinsic curvature is then defined as the negative of the
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rate of change of the normal in the direction of the tangent basis, and using orthogonality
of n̂ with eα , we can write

bαβ = eα,β · n̂, (A2)

where mean and Gaussian curvatures are given by H = bα
α/2 and K = det(bα

β),
respectively.

Using orthogonality of the normal with the basis vectors, and dotting in R
3 with eα , we

find the Weingarten relation

n̂,α = −bβ
αeβ. (A3)

And defining the connection Γ
γ
βα = eα,β · eγ , we can find Gauss’s formula

eα,β = Γ
γ
αβeγ + bαβ n̂; (A4)

we thus define covariant differentiation in the tangent bundle in terms of this connection.
The covariant derivative of a rank ( p, q) tensor is given by

∇γ Tα1···αp
β1···βq = Tα1···αp

β1···βq,γ + Γ
α1
γ δ Tδ···αp

β1···βq + · · · + Γ
αp
γ δ Tα1···δ

β1···βq

− Γ δ
γβ1

Tα1···αp
δ···βq − · · · − Γ δ

γβq
Tα1···αp

β1···δ. (A5)

On a torsion-free Riemannian manifold, the connection is simply given by the
Christoffel symbols, which can be written in terms of the metric as

Γ
γ
αβ = 1

2 gγ δ
(
gδβ,α + gδα,β − gαβ,δ

)
. (A6)

A standard measure of intrinsic curvature of a manifold is given by the Riemann tensor,
which essentially measures the commutation of two covariant derivatives on a vector (and
is thus intimately related with parallel transport of vectors on surfaces). The Riemann
tensor is defined as

Rτ
αγβ = Γ τ

αβ,γ − Γ τ
αγ,β + Γ δ

αβΓ τ
δγ − Γ δ

αγ Γ τ
δβ. (A7)

For a d-dimensional surface equipped with a metric and extrinsic curvature
tensor to be embeddable in a (d + 1)-dimensional manifold, the metric and second
fundamental form must satisfy some constraints. These constrains are called the
Gauss–Mainardi–Codazzi–Peterson equations, and in the case of a 2-D surface embedded
in R

3 are given by

Rτ
αβγ = bτ

γ bαβ − bτ
βbαγ , (A8)

bαβ;γ − bαγ ;β = 0. (A9)

With some index manipulation, one can show that in two dimensions, the Ricci tensor
(a contraction of the Riemann tensor), and Ricci scalar are related to the Gaussian
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curvature by

Rαβ = Rγ
αγβ = Kgαβ, (A10)

R = Rαβgαβ = 2K. (A11)

Using this and contracting the Gauss equation (A8) gives

Kgαβ = 2Hbαβ − bα
γ bγβ. (A12)

The manifold Mt is under a flow given by the velocity field V = vαeα + v(n)n̂ ∈ R
3.

We can calculate the rate of change of the basis vectors under this flow as

d
dt

(eα) = V ,α = vβ
,αeβ + vβeβ,α + v(n)

,αn̂ + v(n)n̂,α

=
(
vβ ;α − v(n)bβ

α

)
eβ +

(
vβbαβ + v(n);α

)
n̂, (A13)

where we have used the Weingarten equation n̂,α = −bβ
αeβ , and the Gauss formula

eα,β = Γ
γ
αβeγ + bαβ n̂. Note that here we have included terms that are advected with the

tangential flow, which are important when considering quantities defined in a Lagrangian
frame (e.g. the rate-of-deformation tensor); however, when considering objects defined in
an objective/Eulerian frame; we will account for only changes due to the normal velocity
(as in changes that explicitly change the surface geometry). There are more concise ways
to write these derivatives in a mixed Lagrangian–Eulerian manner, but this makes use of
Lie derivatives, so we avoid it here for the sake of simplicity.

We now proceed to calculate the time derivative of the normal vector n̂. The first
point to note is that (d/dt)(|n̂|2) = 0 implies n̂ · (d/dt)(n̂) = 0, i.e. there are no normal
components. Next, using the fact that eα · n̂ = 0 (by construction), we find

d
dt

(n̂) = −V ,α · n̂gαβeβ = −
(
vβbβ

α + v(n);αgαβ
)

eα. (A14)

In deriving the exact form of each of the functional derivatives, the following geometric
identities will prove useful (A21, A22 and A23). Throughout this paper, we make use of
rate equations for geometric quantities in order to compute functional derivatives because
we believe that this simplifies computations somewhat as we will be computing only first
variations in the energy.

Starting from the definition of the second fundamental form (A2), we have

d
dt

(bαβ) =
(

d
dt

eα,β

)
· n̂ + eα,β · d

dt
n̂. (A15)

Examining the first term, we find

d
dt

eα,β · n̂ = V ,αβ · n̂, (A16)

where

V ,αβ =
[(

vγ ;α − v(n)bγ
α

)
eγ +

(
vγ bαγ + v(n)

,α

)
n̂
]
,β

=
(
vγ ;α − v(n)bγ

α

)
,β

eγ +
(
vγ ;α − v(n)bγ

α

)
eγ,β

+ (
bαγ vγ

)
,β

n̂ + v(n)
,αβ n̂ +

(
vγ bαγ + v(n)

,α

)
n̂,β . (A17)
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Dotting with n̂ and making use of the Gauss’s formula and the Weingarten equation, (A4)
and (A3), we find

V ,αβ · n̂ =
(
vγ ;α − v(n)bγ

α

)
bγβ + (

bαγ vγ
)
,β

+ v(n)
,αβ. (A18)

Making use of the equation for the normal vector dynamics, (A14), dotting with eα,β ,
and making use of Gauss’s formula, we find

eα,β · d
dt

n̂ = −Γ
γ
αβvδbγ δ − Γ

γ
αβv(n)

,γ . (A19)

The equation for the time derivative of bαβ then becomes

d
dt

bαβ =
(
vγ ;α − v(n)bγ

α

)
bγβ + (

bαγ vγ
)
;β + v

(n)
;αβ. (A20)

Finally, we make use of (A12) to give bα
γ bγβ = 2Hbαβ − Kgαβ , and the symmetry

under exchange of indices of bαβ and the Codazzi equation (A9) to rewrite bαγ ;βvγ =
vγ bαβ;γ , and we find

d
dt

bαβ = vγ bαβ;γ + bαγ vγ ;β + bγβvγ ;α + v
(n)
,α;β − v(n)

(
2Hbαβ − Kgαβ

)
. (A21)

The rate of the area element is given by (Frankel 2011; Arroyo & DeSimone 2009)

ḋA = −2Hv(n) dA. (A22)

Finally, the rate of change of the Christoffel symbols is given by (Frankel 2011)

d
dt

Γ
γ
αβ = 1

2
gγ δ

((
d
dt

gαδ

)
;β

+
(

d
dt

gβδ

)
;α

−
(

d
dt

gαβ

)
;δ

)
. (A23)
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