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Dynamical Analysis of a Stage-Structured
Model for Lyme Disease with Two Delays

Dan Li and Wanbiao Ma

Abstract. In this paper, a nonlinear stage-structured model for Lyme disease is considered. _e
model is a system of diòerential equations with two time delays. We derive the basic reproductive
rate R0(τ1 , τ2). If R0(τ1 , τ2) < 1, then the boundary equilibrium is globally asymptotically stable. If
R0(τ1 , τ2) > 1, then there exists a unique positive equilibrium whose local asymptotic stability and
the existence of Hopf bifurcations are established by analyzing the distribution of the characteristic
values. An explicit algorithm for determining the direction of Hopf bifurcations and the stability of
the bifurcating periodic solutions is derived by using the normal form and the center manifold the-
ory. Some numerical simulations are performed to conûrm the correctness of theoretical analysis.
Finally, some conclusions are given.

1 Introduction

In the natural world, many species have a life history that takes them through two
stages: the juvenile stage and the adult stage. Individuals in each stage are identical
in biological characteristics and some vital rates (rates of survival, development, and
reproduction) of individuals in a population almost always depend on stage structure.
Aiello and Freedman [1] suggested and analyzed a stage structuremodel with constant
maturation time delay for single species, see [1,2,12,15]. _e authors in [17] considered
a model with maturation delay and completely studied the stability properties and
bifurcation analysis.

Lyme disease is the world’s most common bacterial tick-borne infection [11]. Lyme
disease is caused by a spirochete (Borrelia burgdorferi) which is most commonly pre-
sent in ticks [3]. Analyzing the spread of vector-borne disease can be relatively com-
plex when the vector’s acquisition of a pathogen and subsequent transmission to a
host occur in diòerent life stages. A contemporary example is Lyme disease. _e pro-
cesses underlying the spread of Lyme disease involve a spirochete, a tick (with larval,
nymph and adult stages), and two (or more) vertebrate hosts. For more ecological
background, see [3, 5, 6, 16].

_e life cycle of ticks encompasses several stages over a period of two years. _e
eggs hatch in the summer and become larvae. If a larva is successful in feeding on a
host, it molts into a nymph. _e nymphs that survive the winter and that are able to
ûnd a bloodmeal during the spring, molt into adults. Adult female ticks deposit eggs.
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Ticks are assumed to hatch uninfected. _e ticks in their larval and nymphal stages
prefer to feed on mice whereas the adults prefer deer. Ticks that are unable to ûnd a
host die oò [5, 6]. A long-lived tick vector acquires infection during the larval blood
meal and transmits it as a nymph.

Mostmodels for vector-borne diseases ignore vector population dynamics. Caraco
et al. [5] model a vector-borne disease where the vector’s stage structure eòects the
transmission dynamics. Zhao [19] studied the global dynamics of this spatial model
for Lyme disease. Zhang and Zhao [18] proposed a reaction-diòusion model to study
transmission dynamics of Lyme disease while taking into account seasonality. Next,
we introduce in detail the model proposed by Caraco et al. [5] Let M(t) and m(t)
be densities of susceptible and pathogen-infected mice, V(t) be densities of larvae
infesting susceptiblemice,N(t) and n(t)be the densities of susceptible and infectious
questing nymphs, A(t) and a(t) be the densities of uninfected and pathogen-infected
adult ticks, respectively. _en the model proposed by Caraco et al. for Lyme disease
is governed by the following system:

(1.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṁ(t) = rM(M(t) +m(t))( 1 − (M(t) +m(t))
KM

) − µMM(t)

− αMβMM(t)n(t),
ṁ(t) = αMβMM(t)n(t) − µMm(t),
V̇(t) = (A(t) + a(t))(αH f H − c(A(t) + a(t))) − V(t)(αM(M(t)

+m(t)) + µV + D),
Ṅ(t) = V(t)(αMM(t) + D) + (1 − β)αMm(t)V(t) − N(t)(µN

+ αM(M(t) + n(t)) + γP),
ṅ(t) = βαMm(t)V(t) − n(t)(µN + αM(M(t) +m(t)) + γP),
Ȧ(t) = αM(M(t) + (1 − β)m(t))N(t) − µAA(t),
ȧ(t) = αM((M(t) +m(t))n(t) + βN(t)m(t)) − µAa(t).

All parameters are positive constants and have the following biological interpretations
[5]: rM is the intrinsic rate of mice, KM is carrying capacity, µM is the mortality rate
among mice, αM is the rate at which juvenile ticks attack mice, βM (0 < βM < 1) is a
mouse’s susceptibility to pathogen infectionwhenbitten by an infectious nymph, αH is
the rate at which adult ticks attack deer, the total population sizes of deer is a constant
denoted by H, c denotes the scales self-regulation in tick reproduction, f denotes the
larvae hatching per adult tick-deer interaction in absence of tick self-regulation, D is
the rate at which larval ticks attack hosts other than mice, µV is the mortality rate per
larva, β (0 < β < 1) is a tick’s susceptibility to infection when feeding on an infected
mouse, γP is the rate at which nymphs bite humans, µA is the mortality rate per adult
tick.

https://doi.org/10.4153/CMB-2015-063-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-063-x


Dynamical Analysis of a Stage-Structured Model 365

As mentioned in [19], let M̄ = M + m, V̄ = V , N̄ = N + n, Ā = A + a. In view of
system (1.1), we obtain the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̄M(t) = rMM̄(t)( 1 − M̄(t)
KM

) − µMM̄(t),

˙̄V(t) = Ā(t)(αH f H − cĀ(t)) − V̄(t)(αMM̄(t) + µV + D),
˙̄N(t) = V̄(t)(αMM̄(t) + D) − N̄(t)(µN + αMM̄(t) + γP),
˙̄A(t) = αMM̄(t)N̄(t) − µAĀ(t).

Sometimes mathematical models in epidemiology can be formulated as systems of
autonomous diòerential equations that can be rewritten as smaller asymptotically au-
tonomous systems with a limit system that is considerably easier to handle than the
original one. By a standard result on logistic type equation, it is easily to show that
the mice population are asymptotically constant Q, i.e.,

lim
t→+∞

M̄(t) = KM( 1 − µM

rM
) ≜ Q .

_is gives rise to the following limiting system [5], the population dynamics of a single
species with three stages is modeled by the system

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

˙̄V(t) = Ā(t)(αH f H − cĀ(t)) − V̄(t)(αMQ + µV + D),
˙̄N(t) = V̄(t)(αMQ + D) − N̄(t)(µN + αMQ + γP),
˙̄A(t) = αMQN̄(t) − µAĀ(t).

In population dynamics, the need to incorporate a time delay is o�en the result of the
existence of some stage-structure. _us, we propose the following model.
(1.2)
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

˙̄V(t) = Ā(t)(αH f H − cĀ(t)) − e−µV τ1(αMQ + D)V̄(t − τ1) − µV V̄(t),
˙̄N(t) = e−µV τ1(αMQ + D)V̄(t − τ1) − e−µN τ2(αMQ + γP)N̄(t − τ2) − µN N̄(t),
˙̄A(t) = e−µN τ2αMQN̄(t − τ2) − µAĀ(t).

Here the population is divided into three stage structure, i.e., larval, nymph and adult.
_e larva that was born at t − τ1 and still survives at time t, transforming from larva
to nymph, is given by the term e−µV τ1(αMQ + D)V̄(t − τ1). _e nymph which was
born at t − τ2 and still survives at time t, transforming from nymph to adult is given
by the term e−µN τ2αMQN̄(t − τ2).

To reduce the number of system parameters, we non-dimensionalize system (1.2)
with the following scaling:

x(t) = V̄(t)
c

, y(t) = N̄(t)
c(αMQ + D) , z(t) = Ā(t),

ā = αH f H
c

, D̄ = αMQ + D,

d̄ = αMQ + γP, b̄ = αMQc(αMQ + D).
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Using the above variables and dropping bars from the resulting equation, we obtain

(1.3)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) = (a − z(t))z(t) − e−µV τ1Dx(t − τ1) − µVx(t),
ẏ(t) = e−µV τ1x(t − τ1) − e−µN τ2dy(t − τ2) − µN y(t),
ż(t) = e−µN τ2by(t − τ2) − µAz(t).

_e dynamics of system (1.3) will be investigated in a suitable phase space and a
bounded feasible region. We denote by C the Banach space of continuous functions
ϕ∶ [−σ , 0] → R3 with the sup-norm

∥ϕ∥ = max{ sup ∣ϕ1(θ)∣, sup ∣ϕ2(θ)∣, sup ∣ϕ3(θ)∣} ,

where −σ ≤ θ ≤ 0, ϕ = (ϕ1 , ϕ2 , ϕ3), and σ = max{τ1 , τ2}. Further, let

C+ = {ϕ = (ϕ1 , ϕ2 , ϕ3) ∈ C , ϕ i ≥ 0, for all θ ∈ [−σ , 0], i = 1, 2, 3} .

_e initial conditions of system (1.3) are given as

(1.4) x(θ) = ϕ1(θ), y(θ) = ϕ2(θ), z(θ) = ϕ3(θ), θ ∈ [−σ , 0],

where ϕ = (ϕ1 , ϕ2 , ϕ3) ∈ C+.
By using the basic theory of delay diòerential equations (see, for example, [8]), it

is not diõcult to show that for the initial conditions given above, the solution

(x(t), y(t), z(t))

of the system (1.3) corresponding to initial conditions (1.4) exists, is unique, nonneg-
ative, and bounded on [0,+∞).

_e organization of this paper is organized as follows. In Section 2, suõcient con-
ditions for the global stability of the trivial equilibrium are established. By analyzing
the corresponding characteristic equations, we investigate the stability of the positive
equilibrium and existence ofHopf bifurcation. In Section 3, the direction and stability
of periodic solutions bifurcating from the Hopf bifurcation of (1.3) are determined by
using the normal form theory and center manifold argument presented in Hassard et
al. [9]. Some numerical simulations are carried out to illustrate the analysis results in
Section 4. Some conclusions are given in Section 5.

2 Stability Analysis and Hopf Bifurcation

_e dynamics of the ticks are described by the quantity

R0(τ1 , τ2) =
ab

µA(D + µV eµV τ1)(d + µN eµN τ2) .

_e quantity R0(τ1 , τ2) is called the basic reproduction number. If we initially con-
sider one larva, then the basic reproductive number of the ticks is the average number
of the next generation larvae that this produces. _is has the rather obvious biologi-
cal interpretation that if the product of the losses from each tick stage is greater than
the product of the gains to each tick stage, then the ticks will die out; if not, they will
persist.
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_ere are two possible equilibria in this model. _ere is the boundary equilibrium
E0 = (0, 0, 0) where no ticks are sustained, and if R0(τ1 , τ2) > 1, system (1.3) has a
positive equilibrium E∗ = (x∗ , y∗ , z∗) where

x∗ = µA(d + µN eµN τ2)eµV τ1

b
z∗ ,

y∗ = µAeµN τ2

b
z∗ ,

z∗ = a − µA(D + µV eµV τ1)(d + µN eµN τ2)
b

.

First, we discuss the stability of E0 = (0, 0, 0).

_eorem 2.1 For any τ1 ≥ 0 and τ2 ≥ 0 such that R0(τ1 , τ2) ≤ 1, E0 is globally
asymptotically stable.

Proof We assume that R0(τ1 , τ2) ≤ 1 and prove that E0 is globally asymptotically
stable. Using the following Lyapunov function, which has been widely used in the
mathematical biology literature (see [7, 10, 13] and references therein),

W(x , y, z) =W1(t) +W2(t) +W3(t)

with

W1(t) = x(t) + (D + µV eµV τ1)y(t) + (D + µV eµV τ1)(d + µN eµN τ2)
b

z(t),

W2(t) = µV ∫
t

t−τ1

x(s) ds,

W3(t) = (D + µV eµV τ1)µN ∫
t

t−τ2
y(s) ds.

_en W(t) ≥ 0, W(t) = 0 if and only if x(t) = 0, y(t) = 0, z(t) = 0, and W is a
positive deûnite inûnity functional. _e derivative of W along solutions of system
(1.3) is

W
′

∣(1.3) = ( µA(D + µV eµV τ1)(d + µN eµN τ2)
b

(R0(τ1 , τ2) − 1) − z(t)) z(t) ≤ −z(t)2 .

It can be seen that if R0(τ1 , τ2) ≤ 1, then dW(t)
dt ≤ 0 and dW(t)

dt = 0 if and only if
z(t) = 0. It is easy to show that E0 is the largest invariant set in {(x , y, z)∣ dW(t)dt = 0} .
_erefore, when R0(τ1 , τ2) ≤ 1 the boundary equilibrium E0 is globally asymptoti-
cally stable from the Lyapunov–Lasalle invariance principle.

_eorem 2.2 For any τ1 ≥ 0 and τ2 ≥ 0 such that R0(τ1 , τ2) > 1, E0 is unstable.

Proof _e characteristic equation of system (1.3) at E0 is

(2.1) λ3 + b2λ2 + b1λ + b0 + (q2λ2 + q1λ + q0)e−λτ1

+ (p2λ2 + p1λ + p0)e−λτ2 + (r1λ + r0)e−λ(τ1+τ2) = 0.
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where
b2 = µV + µN + µA, b1 = µAµV + µAµN + µV µN , b0 = µV µN µA,
q2 = De−µV τ1 , q1 = (µA + µN)De−µV τ1 , q0 = µN µADe−µV τ1 ,
p2 = de−µN τ2 , p1 = (µA + µV)de−µN τ2 , p0 = µV µAde−µN τ2 ,

r1 = Dde−(µV τ1+µN τ2) , r0 = (DdµA − ab)e−(µV τ1+µN τ2) .
For τ1 = τ2 = 0, we have that

b2 + q2 + p2 > 0, b0 + q0 + p0 + r0 > 0,

and

(b2 + q2 + p2)(b1 + q1 + p1 + r1) − (b0 + q0 + p0 + r0) > 0,

since R0(0, 0) > 1. _is shows that the roots of (2.1) have negative real parts for τ1 =
τ2 = 0. If R0(τ1 , τ2) > 1, let

g(λ) = λ3 + b2λ2 + b1λ + b0 + (q2λ2 + q1λ + q0)e−λτ1

+ (p2λ2 + p1λ + p0)e−λτ2 + (r1λ + r0)e−λ(τ1+τ2) .
Note that

g(0) = µA(D + µV eµV τ1)(d + µN eµN τ2)( 1 − R0(τ1 , τ2)) e−(µV τ1+µN τ2) < 0
by R0(τ1 , τ2) > 1 and limλ→+∞ g(λ) = +∞. It follows from the continuity of the
function g(λ) on (−∞,+∞) that the equation g(λ) = 0 has at least one positive root.
Hence, the characteristic equation (2.1) has at least one positive real root. Hence, E0
is unstable if R0(τ1 , τ2) > 1.

Next we discuss the stability of E∗ and the existence of the local Hopf bifurcation.
We shall regard τ1 and τ2 as parameters to study the stability switches of the positive

equilibrium E∗ when R0(τ1 , τ2) > 1. _e characteristic equation of system (1.3) at E∗
is

(2.2) λ3 + b2λ2 + b1λ + b0 + (q2λ2 + q1λ + q0)e−λτ1

+ (p2λ2 + p1λ + p0)e−λτ2 + (r1λ + r∗)e−λ(τ1+τ2) = 0,

where r∗ = (DdµA−b(a−2z∗)) e−(µV τ1+µN τ2). Obviously, system (1.3) has two delays,
τ1 and τ2 in coeõcients. _en the analysis is very complicated if we choose the two
delays as parameters. Hence, in this section we discuss that τ1 = 0 and τ2 ≥ 0. Next,
we discuss the case of τ1 ≥ 0 and τ2 = 0.
For τ1 = τ2 = 0, the characteristic equation (2.2) can be rewritten as follows

(2.3) λ3 + (b2 + q2 + p2)λ2 + (b1 + q1 + p1 + r1)λ + b0 + q0 + p0 + r∗ = 0.
By the Routh-Hurwitz criterion we know that if

b0 + q0 + p0 + r∗ > 0

and

(b2 + q2 + p2)(b1 + q1 + p1 + r1) − (b0 + q0 + p0 + r∗) > 0
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hold, then all roots of (2.3) have negative real parts.
If R0(0, 0) > 1 holds, then b0 + q0 + p0 + r∗ > 0. If

R0(0, 0) < R0(0, 0) = 2+ (b2 + q2 + p2)(b1 + q1 + p1 + r1) − (b0 + q0 + p0 + DdµA)
µA(D + µV)(d + µN)

holds, then (b2+q2+p2)(b1+q1+p1+r1)−(b0+q0+p0+r∗) > 0. Consequently, when
1 < R0(0, 0) < R0(0, 0), E∗ is locally asymptotically stable in the case of τ1 = τ2 = 0.

Returning to (2.2), when R0(0, τ2) > 1, there exists E∗, i.e., when τ2 ∈ [0, τ̄2), there
exists the positive equilibrium E∗ where

τ̄2 =
1
µN

ln( ab
µN µA(D + µV)

− d
µN

) .

Equation (2.2) takes the general form

(2.4) P(λ, τ2) + Q(λ, τ2)e−λτ2 = 0

with

P(λ, τ2) = λ3 + (b2 + q2)λ2 + (b1 + q1)λ + b0 + q0 ,

Q(λ, τ2) = p2λ2 + (p1 + r1)λ + p0 + r∗ .

(2.5)

In the following, we investigate the existence of purely imaginary roots λ = iω(ω > 0)
to equation (2.4). Equation (2.4) takes the form of a third-degree exponential polyno-
mial in λ with all the coeõcients of P and Q depending on τ2. Beretta and Kuang [4]
established a geometrical criterionwhich gives the existence of purely imaginary roots
of a characteristic equation with delay-dependant coeõcients.

In order to apply the geometrical criterion due to Beretta and Kuang, we can easily
verify the following conclusions for all τ2 ∈ [0, τ̄2),
(i) P(0, τ2) + Q(0, τ2) ≠ 0,
(ii) P(iω, τ2) + Q(iω, τ2) ≠ 0,
(iii) lim sup{ ∣ Q(λ ,τ2)

P(λ ,τ2)
∣ ; ∣λ∣ → ∞, Reλ ≥ 0} < 1,

(iv) F(ω, τ2) ∶= ∣P(iω, τ2)∣2 − ∣Q(iω, τ2)∣
2 has a ûnite number of zeros,

(v) Each positive root ω(τ2) of F(ω, τ2) = 0 is continuous and diòerentiable in τ2
whenever it exists.

Now let λ = iω(ω > 0) be a root of (2.4). Substituting it into (2.4) and separating
the real and imaginary parts yields

(2.6) ω3 − (b1 + q1)ω = (p1 + r1)ω cosωτ2 − (−p2ω2 + p0 + r∗) sinωτ2 ,

(b2 + q2)ω2 − (b0 + q0) = (−p2ω2 + p0 + r∗) cosωτ2 + (p1 + r1)ω sinωτ2 .
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From (2.6) it follows that
(2.7)

sinωτ2 =

(p1 + r1)((b2 + q2)ω2 − (b0 + q0))ω
− (−p2ω2 + p0 + r∗)(ω2 − (b1 + q1))ω

(p1 + r1)2ω2 + (−p2ω2 + p0 + r∗)2 ,

cosωτ2 =

((b2 + q2)ω2 − (b0 + q0))(−p2ω2 + p0 + r∗)
+ (p1 + r1)(ω2 − (b1 + q1))ω2 − (−p2ω2 + p0 + r∗)(ω2 − (b1 + q1))ω

(p1 + r1)2ω2 + (−p2ω2 + p0 + r∗)2 ,

where we deliberately omit the dependence of the parameter on τ2.
By the deûnitions of P(λ, τ2) and Q(λ, τ2) as in (2.5), and applying property (i),

(2.7) can be written as

sinωτ2 = Im( P(iω, τ2)
Q(iω, τ2)

) , cosωτ2 = −Re( P(iω, τ2)
Q(iω, τ2)

) ,

which yields ∣P(iω, τ2)∣2 = ∣Q(iω, τ2)∣2 . _at is,

(2.8) F(ω, τ2) = ω6 + a2(τ2)ω4 + a1(τ2)ω2 + a0(τ2) = 0,

where

a2(τ2) = (b2 + q2)2 − 2(b1 + q1) − p2
2 ,

a1(τ2) = −2(b2 + q2)(b0 + q0) + (b1 + q1)2 + 2p2(p0 + r∗) − (p1 + r1)2 ,

a0(τ2) = (b0 + q0)2 − (p0 + r∗)2 .

Let z = ω2. _en

(2.9) h(z) = z3 + a2(τ2)z2 + a1(τ2)z + a0(τ2) = 0.

A�er some simpliûcation, we have

a2(τ2) = µ2
N + µ2

V + µ2
A + D2 + 2µVD − (de−µN τ2)2 ,

a1(τ2) = (µN µA)2 + (µV µA)2 + (µN µV)2 + (DµA)2 + (DµN)2 + 2DµV(µ2
A + µ2

N)
+ 2abde−2µN τ2 − 4µAde−2µN τ2(D + µV)(d + µN eµN τ2)
− d2e−2µN τ2(µ2

V + µ2
A + D2 + 2µVD),

a0(τ2) = ( abe−µN τ2 − µA(D + µV)(de−µN τ2 + µN))
× (−abe−µN τ2 + µA(D + µV)(de−µN τ2 + 3µN)) .

From [14], we have the following results.
(i) When a0(τ2) < 0, (2.9) has at least one positive root. From the expression of

a0(τ2), it is easy to obtain that if R0(0, 0) > R∗0 ∶= 1 + 2 µN
d+µN

, then there exists
τω ∈ [0, τ2) such that a0(τ2) < 0, τ2 ∈ [0, τω), where τω = τ̄2 − ln 3

µN
.

(ii) When a0(τ2) ≥ 0 and△ = a2
2(τ2) − 3a1(τ2) < 0, (2.9) has no positive real root.

_erefore (2.4) has no purely imaginary root.
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(iii) When a0(τ2) ≥ 0, (2.9) has positive roots if and only if z = (−a2(τ2)+
√
∆)/3 >

0 and h(z) ⩽ 0. By the analysis of condition (i), we know that when R0(0, 0) ≤
R∗0 , then a0(τ2) ≥ 0.

For case (i) and case (iii), for simplicity, we assume that (2.9) has a unique positive
root denoted by X and (2.8) has a positive root given by ω =

√
X.

Deûne

I = { τ2 ∈ [0, τ̄2) ∶ R0(0, 0) > R∗0 or 1 < R0(0, 0) ≤ R∗0 ,

z = (−a2(τ2) +
√
∆)/3 > 0 and h(z) ⩽ 0} .

For τ2 ∈ I, there exists an ω = ω(τ2) > 0 such that F(ω(τ2), τ2) = 0. _en let
θ(τ2) ∈ [0, 2π) be deûned for τ2 ∈ I by

sin θ(τ2) =

(p1 + r1)((b2 + q2)ω2 − (b0 + q0))ω
− (−p2ω2 + p0 + r0)(ω2 − (b1 + q1))ω

(p1 + r1)2ω2 + (−p2ω2 + p0 + r0)2 ,

cos θ(τ2) =

((b2 + q2)ω2 − (b0 + q0))(−p2ω2 + p0 + r0)
+ (p1 + r1)(ω2 − (b1 + q1))ω2

(p1 + r1)2ω2 + (−p2ω2 + p0 + r0)2 .

And the relation between the argument θ and ωτ2 for τ2 > 0 must be

ωτ2 = θ(τ2) + 2nπ, n = 0, 1, 2, . . . .

Hence we can deûne the maps: τn ∶ I → R+0 given by

τn(τ2) = τ2 −
θ(τ2) + 2nπ

ω(τ2)
, τn > 0, n = 0, 1, 2, . . . ,

where the positive root ω of (2.9) exists in I.
Let us introduce the functions

Sn(τ2) = τ2 −
θ(τ2) + 2nπ

ω(τ2)
, n = 0, 1, 2, . . . ,

which are continuous and diòerentiable in τ2.
_e following theorem is from [4].

_eorem 2.3 Assume that the function Sn(τ2) has a positive root τ02 ∈ I for some
n ∈ N0, then a pair of simple purely imaginary roots ±iω∗ of equation (2.4) exists at
τ = τ02 , and

δ(τ02) ∶= Sign{ d Re(λ)
dτ2

∣
λ=iω∗

} = Sign{ dSn(τ2)
dτ2

∣
τ2=τ02

} .

_erefore, this pair of simple conjugate purely imaginary roots crosses the imaginary
axis from le� to right if δ(τ02) > 0, and crosses the imaginary axis from right to le� if
δ(τ02) < 0.
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We can easily observe that S0(τ2) < 0. Moreover, for all τ2 ∈ I, S0(τ2) > Sn(τ2)
with n ∈ N . _erefore, if S0 has no zero in I, then the function Sn has no zero in I,
and if the function Sn(τ2) has positive zeros τ2 ∈ I for some n ∈ N , there exists at
least one zero satisfying dSn(τ2)

dτ2
> 0.

Applying_eorem 2.3 and theHopf bifurcation theorem for functional diòerential
equations [8], we can conclude the existence of a Hopf bifurcation as stated in the
following theorem.

_eorem 2.4 Assume R0(0, τ2) > 1; for system (1.3), the following conclusions hold.
(i) If the function S0(τ2) has no positive zero in I, then the positive equilibrium E∗ is

locally asymptotically stable for all τ2 ≥ 0.
(ii) If the function Sn(τ2) has positive zeros in I, there exists τ02 , for some n ∈ N,

such that the positive equilibrium E∗ is asymptotically stable for τ2 ∈ [0, τ02) and
becomes unstable for τ2 staying in some right neighborhood of τ02 , with a Hopf
bifurcation occurring when τ2 = τ02 .

In addition, in the case of τ1 ≥ 0 and τ2 = 0, we have the following results. When
τ1 ∈ [0, τ̄1), there exists E∗ where

τ̄1 =
1
µV

ln( ab
µV µA(d + µN) −

D
µV

) .

Equation (2.2) takes the general form

(2.10) P(λ, τ1) + Q(λ, τ1)e−λτ1 = 0.

Using the same methods as previously, we obtain

(2.11) F(ω, τ1) = ω6 + c2(τ1)ω4 + c1(τ1)ω2 + c0(τ1) = 0,

where

c0(τ1) = ( abe−µV τ1 − µA(De−µV τ1 + µV)(d + µN))
× (−abe−µV τ1 + µA(De−µV τ1 + 3µV)(d + µN)) .

Let z = ω2. _en

(2.12) g(z) = z3 + c2(τ1)z2 + c1(τ1)z + c0(τ1) = 0.

From [14], we have the following results.
(i) When c0(τ1) < 0, (2.12) has at least one positive root. From the expression of

c0(τ1), it is easy to obtain that if R0(0, 0) > R∗∗0 ∶= 1 + 2 µV
D+µV

, then there exists
τ∗ω ∈ [0, τ̄1) such that c0(τ1) < 0, τ1 ∈ [0, τ∗ω) where τ∗ω = τ̄1 − ln 3

µV
.

(ii) When c0(τ1) ≥ 0 and△∗ = c22(τ1)− 3c1(τ1) < 0, (2.12) has no positive real root.
_erefore (2.10) has no purely imaginary root.

(iii) When c0(τ1) ≥ 0, (2.12) has positive roots if and only if

z∗ = (−c2(τ1) +
√
∆∗)/3 > 0

and g(z∗) ⩽ 0. By the analysis of condition (i), we know that if R0(0, 0) ≤ R∗∗0 ,
then c0(τ1) ≥ 0.
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For case (i) and case (iii), for simplicity, we assume that (2.12) has a unique positive
root denoted by X∗ and (2.11) has a positive root given by ω =

√
X∗.

Deûne

I∗ = { τ1 ∈ [0, τ̄1) ∶ R0(0, 0) > R∗∗0 ; or 1 < R0(0, 0) ≤ R∗∗0 ,

z∗ = (−c2(τ1) +
√
∆∗)/3 > 0, and g(z∗) ⩽ 0} .

For τ1 ∈ I∗, there exists an ω = ω(τ1) > 0 such that F(ω(τ1), τ1) = 0. _en let
θ(τ1) ∈ [0, 2π) be deûned for τ1 ∈ I∗ by

sin θ(τ1) =

(q1 + r1)((b2 + p2)ω2 − (b0 + p0))ω
− (−q2ω2 + q0 + r0)(ω2 − (b1 + p1))ω

(q1 + r1)2ω2 + (−q2ω2 + q0 + r0)2 ,

cos θ(τ1) =

((b2 + q2)ω2 − (b0 + p0))(−q2ω2 + q0 + r0)
+ (q1 + r1)(ω2 − (b1 + p1))ω2

(q1 + r1)2ω2 + (−q2ω2 + q0 + r0)2 .

Using the samemethods as [4], let us introduce the functions Sn(τ1) = τ1− θ(τ1)+2nπ
ω(τ1)

,
n = 0, 1, 2, . . . , that are continuous and diòerentiable in τ1.

_eorem 2.5 Assume that the function Sn(τ1) has a positive root τ01 ∈ I∗ for some
n ∈ N0. _en a pair of simple purely imaginary roots ±iω∗∗ of equation (2.10) exists at
τ = τ01 and

δ(τ01 ) ∶= Sign{ d Re(λ)
dτ1

∣
λ=iω∗∗

} = Sign{ dSn(τ1)
dτ1

∣
τ1=τ01

} .

_erefore, this pair of simple conjugate purely imaginary roots crosses the imaginary
axis from le� to right if δ(τ01 ) > 0 and crosses the imaginary axis from right to le� if
δ(τ01 ) < 0.

We can easily observe that S0(τ1) < 0. Moreover, for all τ1 ∈ I∗, S0(τ1) > Sn(τ1)
with n ∈ N . _erefore, if S0 has no zero in I∗, then the function Sn has no zero in I∗

and if the function Sn(τ1) has positive zeros τ1 ∈ I∗ for some n ∈ N , there exists at
least one zero satisfying dSn(τ1)

dτ1
> 0.

_eorem 2.6 Assume R0(τ1 , 0) > 1, for system (1.3), the following conclusions hold:
(i) If the function S0(τ1) has no positive zero in I∗, then the positive equilibrium E∗

is locally asymptotically stable for all τ1 ≥ 0.
(ii) If for some n ∈ N the function Sn(τ1) has positive zeros in I∗, then there exists

τ01 , such that the positive equilibrium E∗ is asymptotically stable for τ1 ∈ [0, τ01 )
and becomes unstable for τ1 staying in some right neighborhood of τ01 with a Hopf
bifurcation occurring when τ1 = τ01 .
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3 Direction and Stability of the Hopf Bifurcation

In the previous section, we obtain the conditions which guarantee that system (1.3)
undergoes the Hopf bifurcation at the positive equilibrium E∗ under the conditions
of _eorem 2.4 (ii). In this section, using the normal form theory and the center
manifold argument presented by [9] we can establish an explicit formula for deter-
mining the direction and stability of periodic solutions bifurcating from the positive
equilibrium E∗ at a Hopf bifurcation value. We obtain the conditions which guaran-
tee that system (1.3) undergoes the Hopf bifurcation at the positive equilibrium E∗

when τ2 = τ02 . In this section, using the normal form theory and the center mani-
fold argument presented by Hassard et al. [9], we can establish an explicit formula
to determine the direction and stability of periodic solutions bifurcating from the
positive equilibrium E∗ at a Hopf bifurcation value, say τ2 = τ02 . Furthermore, let
τ̄2 = τ02 + µ, µ ∈ R. _en µ = 0 is the Hopf bifurcation value for (1.3). We choose
the phase space as C = C([−τ02 , 0], R3); system (1.3) is transformed into the following
functional diòerential equation in C.
(3.1) u̇t = Lµ(ut) + f (µ, ut),
where ut(θ) = u(t + θ) ∈ C, and Lµ ∶C → R3, F∶R × C → R3 are given, respectively,
by Lµϕ = Aϕ(0) + Bϕ(−τ02), where

A =
⎛
⎜
⎝

−(D + µV) 0 a − 2z∗
1 −µN 0
0 0 −µA

⎞
⎟
⎠
, B1 =

⎛
⎜⎜
⎝

0 0 0
0 −de−µN τ02 0
0 be−µN τ02 0

⎞
⎟⎟
⎠
,

f (µ, ϕ) =
⎛
⎜
⎝

−ϕ2
3(0)
0
0

⎞
⎟
⎠
,

where ϕ = (ϕ1 , ϕ2 , ϕ3)T .
By the Riesz representation theorem, there exists a function η(θ , µ) of bounded

variation for θ ∈ [−τ02 , 0], such that

Lµϕ = ∫
0

−τ02
dη(θ , µ)ϕ(θ) , (ϕ ∈ C([−τ02 , 0], R3)) .

In fact, we can choose η(θ , µ) = Aδ(θ) − Bδ(θ + τ02), where

δ(θ) =
⎧⎪⎪⎨⎪⎪⎩

τ02 , θ = 0,
0, θ ≠ 0.

For ϕ ∈ C1([−τ02 , 0], R3) deûne the operator A(µ) as

A(µ)ϕ(θ) =
⎧⎪⎪⎨⎪⎪⎩

ϕ̇(θ), θ ∈ [−τ02 , 0),
∫

0
−τ∗2

dη(ξ, µ)ϕ(ξ), θ = 0.

For ϕ ∈ C1([−τ02 , 0], R3), let

R(µ)ϕ(θ) =
⎧⎪⎪⎨⎪⎪⎩

0, θ ∈ [−τ02 , 0),
f (µ, ϕ), θ = 0.
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_en system (3.1) is equivalent to the following operator equation

u̇t = A(µ)ut + R(µ)ut ,

where ut = (x(t + θ), y(t + θ), z(t + θ))T(−τ02 ≤ θ ≤ 0).
For ψ ∈ C1([0, τ02], (R3∗) and ϕ ∈ C([−τ02 , 0], R3) deûne

A∗ψ(s) =
⎧⎪⎪⎨⎪⎪⎩

−ψ̇(s), s ∈ (0, τ02],
∫

0
−τ02

dηT(t, 0)ψ(−t), s = 0,

⟨ψ, ϕ⟩ = ψ̄(0)ϕ(0) − ∫
0

−τ02
∫

θ

ξ=0
ψ̄(ξ − θ) dη(θ)ϕ(ξ) dξ,

where η(θ) = η(θ , 0). We know that A∗ and A = A(0) are adjoint operators.
From the discussion in Section 2, we know that ±iω∗ are eigenvalues of A(0) and

therefore they are also eigenvalues of A∗.
It is not diõcult to verify that the vectors

q(θ) = (q1(0), q2(0), 1)T e iω
∗θ (θ ∈ [−τ02 , 0])

q∗(s) = D̄( 1, q∗2(0), q∗3 (0)) e iω
∗s (s ∈ [0, τ02])

are eigenvalues of A(0) and A∗ corresponding to the eigenvalue iω∗ and −iω∗, re-
spectively. Furthermore, let ⟨q∗(s), q(θ)⟩ = 1 and ⟨q∗(s), q̄(θ)⟩ = 0 , where

q1(0) =
a − 2z∗

iω∗ + µV + D
, q2(0) = b(iω∗ + µA)e(iω

∗
+µN)τ02 ,

q∗2(0) = −iω∗ + µV + D, q∗3 (0) =
ā − 2z∗

−iω∗ + µA
,

D = {q1(0) + q̄∗2(0)q2(0) + q̄∗3 (0) − τ02q2(0)(dq̄∗2(0) − bq̄∗3 (0))e−(iω
∗
+µN)τ02}−1 .

Nowusing the same notations as inHassard et al. [9], we can obtain the coeõcients
that will be used to determine the important quantities:

g20 = −2{q1(0) + q̄∗2(0)q2(0) + q̄∗3 (0) − τ02q2(0)(dq̄∗2(0) − bq̄∗3 (0))e−(iω
∗
+µN)τ02}−1,

g11 = −2{q1(0) + q̄∗2(0)q2(0) + q̄∗3 (0) − τ02q2(0)(dq̄∗2(0) − bq̄∗3 (0))e−(iω
∗
+µN)τ02}−1,

g02 = −2{q1(0) + q̄∗2(0)q2(0) + q̄∗3 (0) − τ02q2(0)(dq̄∗2(0) − bq̄∗3 (0))e−(iω
∗
+µN)τ02}−1,

g21 = −2{q1(0) + q̄∗2(0)q2(0) + q̄∗3 (0) − τ02q2(0)(dq̄∗2(0) − bq̄∗3 (0))e−(iω
∗
+µN)τ02}−1,

× (W(3)
20 (0) + 2W(3)

11 (0)) ,

where

W20(θ) =
ig20

ω∗
q(0)e iω

∗θ + i ḡ02
3ω∗

q̄(0)e−iω∗θ + E1e2iω
∗θ ,

W11(θ) = −
ig11

ω∗
q(0)e iω

∗θ + i ḡ11

ω∗
q̄(0)e−iω∗θ + E2 ,

https://doi.org/10.4153/CMB-2015-063-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-063-x


376 D. Li and W. Ma

and

E1 =
⎛
⎜⎜
⎝

2iω∗ + µV + D 0 −a + 2z∗

−1 2iω∗ + µN + de−(2iω
∗
+µN)τ02 0

0 −be−(2iω∗+µN)τ02 2iω∗ + µA

⎞
⎟⎟
⎠

−1
⎛
⎜
⎝

−2
0
0

⎞
⎟
⎠
,

E2 =
⎛
⎜⎜
⎝

µV + D 0 −a + 2z∗

−1 µN + de−µN τ02 0
0 −be−µN τ02 µA

⎞
⎟⎟
⎠

−1
⎛
⎜
⎝

−2
0
0

⎞
⎟
⎠
.

Furthermore, substituting E1 and E2 into W20(θ) and W11(θ), respectively, g21 can
be expressed by the parameters. Based on the above analysis, we can see that each g i j
can be determined by the parameters. _us we can compute the following quantities:

C1(0) =
i

2ω∗
(g20g11 − 2∣g11∣2 −

1
3
∣g02∣2) +

g21

2
, µ2 = −

Re{C1(0)}
Re λ′(τ02)

,

T2 = −
Im{C1(0)} + µ2Imλ′(τ02)

ω∗
, β2 = 2Re{C1(0)}.

Hence, we have the following result.

_eorem 3.1 (i) µ2 determines the direction of the Hopf bifurcation. If µ2 > 0
(resp., < 0), the Hopf bifurcation is supercritical (resp., subcritical).

(ii) β2 determines the stability of the bifurcation periodic solutions. _e bifurcation
periodic solutions are orbitally stable (resp., unstable) if β2 < 0 resp.,(> 0).

(iii) T2 determines the period of the bifurcating periodic solutions. _e period increases
(resp., decreases) if T2 > 0 (resp., < 0).

4 Numerical Simulations

In this section, we carry out some simulations of system (1.3) to illustrate the theoret-
ical results obtained in Section 2.
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Figure 1: _e plot of Sn(τ2), n = 0, 1.
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Figure 2: _e positive equilibrium E∗ of the system (11) is locally asymptotically stable for τ2 =

5 < τ02 (see (a)-(c)), unstable and there exists a stable periodic solution for τ2 = 14 ∈ (τ02 , τ1
2)

(see (d)-(f)). _e initial conditions are ϕ1 ≡ 1000, ϕ2 ≡ 1000 and ϕ3 ≡ 1000.

Choosing parameters as αH = 0.0055, f = 0.01, H = 600, c = 0.000105, αM = 0.02,
Q = 3, µV = 0.08, D = 0.0001, µN = 0.06, γP = 0.005, µA = 0.02. For τ1 = 0
and τ2 ≥ 0, the functions Sn(τ2) are plotted in Figure 1. In Figure 1 , there are two
Hopf bifurcation values for τ2, say τ02 < τ1

2. _e ûrst occurs when S0(τ2) crosses 0 at
τ2 = τ02 = 11.0345 and the second occurs when S0(τ2) crosses 0 at τ2 = τ1

2 = 93.3577.
_e stability of the endemic equilibrium E∗ switches at τ02 and τ1

2. In Figures 2 (a)–(f)
we show the trajectory plots of the (x(t), y(t), z(t))with the initial functions for two
values of τ2 = 5(< τ02) and τ2 = 14(∈ (τ02 , τ1

2)). We show that the positive equilibrium
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Figure 3: _e plot of Sn(τ1), n = 0.

E∗ is asymptotically stable for both τ2 = 5 and a stable periodic solution appears for
τ2 = 14.
For τ1 ≥ 0 and τ2 = 0, the functions Sn(τ1) are plotted in Figure 3 where there are

two Hopf bifurcation values for τ1, say τ01 < τ1
1 . _e ûrst occurs when S0(τ1) crosses 0

at τ1 = τ01 = 8.2317 and the second occurs when S0(τ1) crosses 0 at τ1 = τ1
1 = 118.37418.

_e stability of the endemic equilibrium E∗ switches at τ01 and τ1
2. In Figures 4(g)–(l)

we show the trajectory plots of the (x(t), y(t), z(t))with the initial functions for two
values of τ1 = 2(< τ01 ) and τ1 = 10(∈ (τ01 , τ1

1)). We show that the positive equilibrium
E∗ is asymptotically stable for both τ1 = 2 and a stable periodic solution appears for
τ1 = 10.

5 Conclusion

In this paper, we study a nonlinear three stage-structured model for Lyme disease
with two delays. We show that for any τ1 ≥ 0 and τ2 ≥ 0 such that R0(τ1 , τ2) ≤ 1,
the boundary equilibrium E0 of system (1.3) is globally asymptotically stable. Next
we study the eòect of delay on the stability of the positive equilibrium. To analyze
the characteristic equation with two delays, we ûrst focus on the case when one of
the delay τ1 equals to zero and obtain a critical value for the delay τ2. When τ2 < τ02 ,
all roots of the characteristic equation have negative parts and when τ2 = τ02 , purely
imaginary roots appear. Secondly, we focus on the case when one of the delay τ2
equals to zero and obtain a critical value for the delay τ1. When τ1 < τ01 , all roots of the
characteristic equation have negative parts and when τ1 = τ01 , purely imaginary roots
appear. Next, by using the centermanifold and normal forms theory, regarding τ2 as a
parameter, we investigate the direction and stability of the Hopf bifurcation. Explicit
algorithms for determining the direction of the Hopf bifurcation and the stability of
the bifurcating periodic solutions are derived. Finally, we carry out some numerical
simulations to support the analysis results.
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Figure 4: _e positive equilibrium E∗ of the system (11) is locally asymptotically stable for
τ1 = 2 < τ01 (see (g)-(i)), unstable and there exists a stable periodic solution for τ1 = 10 ∈ (τ01 , τ1

1)

(see (j)-(l)). _e initial conditions are ϕ1 ≡ 1000, ϕ2 ≡ 1000 and ϕ3 ≡ 1000.
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