Prevalence of hyperhomocysteinaemia and its major determinants in rural Chinese hypertensive patients aged 45–75 years

Yu Wang¹, Xiaoying Li¹*, Xianhui Qin², Yefeng Cai³, Mingli He⁴, Liming Sun⁵, Jianping Li⁶, Yan Zhang⁶, Genfu Tang⁷, Binyan Wang², Ningling Sun⁸, Xin Xu⁹, Lisheng Liu¹⁰, Xiping Xu² and Yong Huo⁶*

¹Department of Geriatric Cardiology, PLA General Hospital, Beijing, People's Republic of China

²Institute for Biomedicine, Anhui Medical University, Hefei, People's Republic of China

³Department of Neurology, Guangdong Traditional Chinese Medicine Hospital, Guangzhou, People's Republic of China

⁴Department of Neurology, The First People's Hospital of Lianyungang City, Lianyungang, People's Republic of China

⁵Department of Cardiology, The Second Hospital of Lianyungang City, Lianyungang, People's Republic of China

⁶Department of Cardiology, Peking University First Hospital, Beijing, People's Republic of China

⁷School of Health Administration, Anhui Medical University, Hefei, People's Republic of China

⁸Department of Cardiology, People's Hospital of Peking University, Beijing, People's Republic of China

⁹Southern Medical University, Institute of Nephrology, Guangzhou, People's Republic of China

¹⁰Division of Hypertension, Fu-wai Hospital, Beijing, People's Republic of China

(Submitted 16 December 2011 – Final revision received 31 May 2012 – Accepted 3 June 2012 – First published online 31 July 2012)

Abstract

We aimed to investigate the prevalence of hyperhomocysteinaemia (total plasma homocysteine (tHcy) $\ge 10 \,\mu$ mol/l) and its major determinants in rural Chinese hypertensive patients. A cross-sectional investigation was carried out in Lianyungang of Jiangsu province, China. This analysis included 13946 hypertensive adults. The prevalence of hyperhomocysteinaemia was 51.6% (42.7% in women and 65.6% in men). The OR of hyperhomocysteinaemia were 1.52 (95% CI 1.39, 1.67) and 2.32 (95% CI 2.07, 2.61) for participants aged 55–65 and 65–75 v. 45–55 years; 1.27 (95% CI 1.18, 1.37) for participants with a BMI $\ge 25 \, v$. $<25 \,\text{kg/m}^2$; 1.14 (95% CI 1.06, 1.23) for participants with v without antihypertensive treatment; 1.09 (95% CI 1.00, 1.18) for residents inland v. coastal; 0.89 (95% CI 0.82, 0.97) and 0.83 (95% CI 0.74, 0.92) for participants with moderate and high v. low physical activity levels; 1.54 (95% CI 1.07, 1.35) and 3.81 (95% CI 2.17, 2.81) for participants with a glomerular filtration rate 60–90 and $<60 \, v$. $\ge 90 \,\text{ml/min per } 1.73 \,\text{m}^2$; and $1.20 \,(95\% \text{ CI } 1.07, 1.35)$ and $3.81 \,(95\% \text{ CI } 3.33, 4.36)$ for participants with CT and TT v. CC genotype at methylenetetrahydrofolate reductase 677C > T polymorphism, respectively. Furthermore, higher tHcy concentrations were observed in smokers of both sexes (men: geometric mean 12.1 (interquartile range (IQR) 9.2–14.5) v. 11.9 (IQR 9.3–14.0) μ mol/l, P=0.005; women: geometric mean 10.3 (IQR 8.3–13.0) v. 9.6 (IQR 7.8–11.6) μ mol/l, P=0.010), and only in males with hypertension grade 3 (v. grade 1 or controlled blood pressure) (geometric mean 12.1 (IQR 9.2–14.4) v. 11.7 (IQR 9.2–14.4) v. 11.7 (IQR 9.2–14.4) v. 11.7 (IQR 9.1–13.9), P=0.016) and in male non-drinkers (yes v. no) (geometric mean 12.3 (IQR 9.4–14.8) v. 11.7 (IQR 9.1–13.9), P=0.014). In conclusion, there was a high prevalence of hyperhomocysteinaemia in Chinese hypertensive adults, particularly in the inlanders, who may benefit greatly from tHcy-lower

Key words: Prevalence: Hyperhomocysteinaemia: Hypertension: Determinants: Chinese

Traditional risk factors are estimated to account for only part of the CVD risk⁽¹⁾. Non-traditional risk factors, such as increased fasting total plasma homocysteine (tHcy), have received great attention. Abundant studies have established elevated tHcy as a potent independent risk factor for coronary artery disease, stroke and deep vein thrombosis⁽²⁻⁴⁾. Furthermore, our previous meta-analysis⁽⁵⁾ suggested that tHcy-lowering therapy (mainly folic acid supplementation) could reduce the risk of stroke by 18–23%. Our recent meta-analysis⁽⁶⁾, which included fifteen randomised trials with prevention of stroke as one of the study endpoints and represented the largest number of subjects included in previously published papers from meta-analysis, also proved that folic acid supplementation significantly reduced the risk

* Corresponding authors: X. Li, fax +86 755 26733079, email lixy301@gmail.com; Y. Huo, fax +86 10 66530556, email huoyong@263.net.cn

Abbreviations: CSPPT, China Stroke Primary Prevention Trial; DBP, diastolic blood pressure; GFR, glomerular filtration rate; HTN, hypertension; *MTHFR*, methylenetetrahydrofolate reductase; SBP, systolic blood pressure; tHcy, total plasma homocysteine; WC, waist circumference.

1285

of stroke by 8% (n 55764; relative risk (RR) 0.92; 95% CI 0.86, 1.00; P=0.038). In the ten trials with no or partial folic acid fortification (n 43426), the risk of stroke was reduced by 11% (RR 0.89; 95% CI 0.82, 0.97; P=0.010). Folic acid supplementation⁽⁷⁾ also was found to reduce CVD risk in patients with end-stage renal disease or advanced chronic kidney disease (creatinine clearance <30 ml/min) by 15 and by 17% in trials that showed a larger decrease in the concentration of tHcy. Furthermore, folic acid supplementation⁽⁸⁾ could significantly reduce the progression of carotid intima-media thickness (weighted mean difference -0.04; 95% CI -0.07, -0.02; $P \le 0.001$) and the percentage reduction of tHcy was positively related to the effect size. Similarly, a recent meta-analysis proved that the methylenetetrahydrofolate reductase (MTHFR) 677C > T variant was associated with a larger effect on tHcy concentration in regions of low folate consumption than in regions with high dietary folate intake or with established programmes of folic acid fortification of flour for the prevention of neural tube defects. A similar pattern was noted for the genetic association with stroke risk⁽⁹⁾. However, a previous report⁽¹⁰⁾ from meta-analysis with eight randomised trials found that dietary supplementation with folic acid had no significant effects within 5 years on cardiovascular events. Therefore, additional large, randomised studies, particularly in regions with insufficient folic acid supplementation and high tHcy levels, should provide further important evidence for confirming the effect of tHcv-lowering therapy on stroke prevention.

There were significant concentration–response associations between plasma tHcy and mortality, and CVD with no apparent threshold concentration⁽¹¹⁾, which means that it is difficult to define a range of safe tHcy concentrations. However, in a community-based prospective cohort study of 2009 participants in China, participants with tHcy >9.47 µmol/l had a 2.3-fold higher risk for cardiovascular events (95% CI 1.24, 4.18; P=0.008)⁽¹²⁾. So, to be consistent with previous reports^(13,14), we defined hyperhomocysteinaemia as a tHcy concentration $\geq 10 \,\mu$ mol/l in the present study.

Stroke has been the leading cause of death in China, and its morbidity and mortality have been rapidly rising, particularly in rural areas⁽¹⁵⁾. Previous studies have reported that hypertension (HTN) and hyperhomocysteinaemia are the two most important modifiable risk factors for stroke. More importantly, it has been reported that an increased tHcy concentration showed a more than multiplicative effect on CVD risk in hypertensive subjects^(16,17). In a recent study⁽¹⁸⁾, individuals with a combination of elevated tHcy ($\geq 10 \,\mu$ mol/l) and HTN were substantially more likely to have prevalent stroke compared with individuals without either condition (men: OR 12.02, 95% CI 6.36, 22.73; women: OR 17.34, 95% CI 10.49, 28.64). However, to our knowledge, no previous publication has studied the prevalence of hyperhomocysteinaemia in Chinese hypertensive adults, particularly in rural areas. The present study was conducted to investigate the prevalence of hyperhomocysteinaemia and its major determinants in rural Chinese hypertensive patients.

Subjects and methods

Study population

The study subjects were participants of an ongoing China Stroke Primary Prevention Trial (CSPPT, clinicaltrials.gov identifier: NCT00794885). The CSPPT is a multi-centre randomised controlled trial designed to confirm that enalapril maleate and folic acid tablets combined is more effective in preventing stroke among patients with HTN when compared with enalapril maleate alone. Details regarding inclusion/exclusion criteria, treatment assignment and outcome measures of the trial have been described elsewhere (http://clinicaltrials.gov/ ct2/show/NCT00794885). In the present study, we included subjects from Lianyungang who participated in the doubleblinded treatment phase of the trial in which tHcy measurements were performed.

Briefly, we conducted a community-based screening in twenty townships within two counties (Ganyu, which is coastal, and Donghai, which is inland) in Lianvungang of Jiangsu province, China, from October 2008 to September 2009. The inclusion criteria were as follows: (1) aged 45-75 years and (2) seated systolic blood pressure (SBP) \geq 140 mmHg or diastolic blood pressure (DBP) \geq 90 mmHg at both of the two screening visits (with at least 24 h between the visits) or currently under antihypertensive treatment. Participants were excluded if they reported a history of myocardial infarction, stroke, heart failure, cancer or serious mental disorders; or they were unwilling to participate in the survey. The present study was approved by the Ethics Committee of the Institute of Biomedicine, Anhui Medical University, Hefei, China. Written informed consent was obtained from each participant before data collection.

Data collection procedures

In the screening phase, researchers and village doctors travelled to participating communities to screen local residents for hypertensive patients. Candidate hypertensive patients were then invited to the local study centres for a formal recruitment visit. At the beginning of the recruitment visit, each participant was asked to provide written informed consent in compliance with the Declaration of Helsinki and the requirements of the ethics committee.

Baseline data were collected by trained research staff according to the standard operating procedure. Each participant was interviewed using a standardised questionnaire designed specifically for the present study. The question about standard of living was phrased as follows: 'How does your standard of living compare to others?'; and a choice of three responses was given as follows: poor, fair and good. The question about physical activity was phrased as follows: 'How do you describe your daily physical activity level?'; and a choice of three responses was provided as follows: low, moderate and high. Finally, the question about fruit and green vegetable consumption was phrased as follows: 'How much fruit and green vegetables do you eat (count the annually averaged weekly intake of fruits and green vegetables)?'; and a choice of three responses regarding weekly

intake was given as follows: <1 jin (<500 g), 1-3 jin $(500-1500 \text{ g}) \text{ and } \ge 3 \text{ jin } (\ge 1500 \text{ g}).$

Anthropometric measurements, including height, weight and waist circumference (WC), were taken using the standard operating procedure. Height was measured without shoes to the nearest 0.1 cm on a portable stadiometer. Weight was measured in light indoor clothing without shoes to the nearest 0.1 kg. BMI was calculated as weight (kg)/height (m²). WC was measured as the minimum circumference between the inferior margin of the ribcage and the crest of the ileum.

Seated blood pressure measurements were obtained by trained research staff after subjects had been seated for 10 min using a mercury manometer, and using the standard method of calibration and appropriately sized cuffs, according to the standard operating procedure. Triplicate measurements on the same arm were taken, with at least 2 min between readings. Each patient's SBP and DBP were calculated as the mean of three independent measures. Blood pressure measured at visit 2 was used for analysis.

Blood sample collection and laboratory methods

After 12-15 h of fasting, a venous blood sample was obtained from each subject. Serum or plasma samples were separated within 30 min of collection and were stored at -70° C. Plasma tHcy was measured by an enzyme cycling method using a Hitachi 7020 Automatic Analyzer (Hitachi). Serum creatinine was measured by a modified kinetic rate Jaffe reaction method using a Dade Dimension Chemistry Analyzer (Siemens). The MTHFR 677C > T genotype was determined by the Taqman assay designed and manufactured by Applied Biosystems.

Statistical analysis

HTN was categorised into three grades: grade 1, SBP 140-159 and/or DBP 90-99 mmHg; grade 2, SBP 160-179 and/or DBP 100–109 mmHg; grade 3, SBP \geq 180 and/or DBP \geq 110 mmHg. Treated HTN was defined as receiving antihypertensive medication within the past 2 weeks. Current smoker was defined as having smoked at least one cigarette per d or eighteen packs or more in the last year. Current drinking was defined as drinking alcohol at least twice per week in the last year. Glomerular filtration rate (GFR) was estimated by using the Cockcroft-Gault equation adjusted for body surface area and corrected for the bias in the Modification of Diet in Renal Disease (MDRD) Study sample⁽¹⁹⁾:

 $GFR (ml/min per 1.73 m^2) = 0.8 \times ((140 - age) \times weight (kg))$ $\times 0.85$ (if female) $\times 1.73/(72)$ × body surface area × serum creatinine).

Body surface area was calculated using the DuBios method⁽²⁰⁾:

Body surface area $(m^2) = 0.007184 \times height (cm)^{0.725}$ \times weight (kg)^{0.425}.

Hyperhomocysteinaemia was defined as a tHcy concentration $\geq 10 \,\mu \text{mol/l}$.

Means and proportions were calculated for population characteristics by sex. The difference in population characteristics was compared using Student's t tests or χ^2 test. The adjusted OR and 95% CI of having hyperhomocysteinaemia were determined from logistic regression models that included age group (45–54, 55–64 and 65–75 years), sex, BMI ($\geq 25 v$. <25 kg/m²), cigarette smoking, alcohol drinking, GFR (>90, 60-90 and $< 60 \text{ ml/min per } 1.73 \text{ m}^2$), antihypertensive treatment status (treated and untreated), HTN grades (controlled blood pressure or grade 1 HTN, grade 2 HTN and grade 3 HTN), geographic region (coastal and inland), season, standard of living (poor, fair and good), fruit and green vegetable consumption (<1 jin (<500 g), 1-3 jin (500-1500 g) and ≥ 3 jin $(\geq 1500 \text{ g})$, education level (illiterate, primary level, and elementary or higher level), physical activity level (low, moderate and high) and MTHFR 677C>T polymorphism (CC, CT and TT). Both sex-specific and sex-combined regression analyses were performed using the above model. In the sex-combined model, an interaction term between sex and the genotype was added. Similar linear models for In-transformed tHcy concentrations were also analysed. All statistical analyses were performed using SAS 8.2 (SAS Institute).

Results

Overall, plasma tHcy was measured in 16441 participants aged 45-75 years with HTN. In the present study, study participants with vitamin use $(n \ 256)$, CVD $(n \ 474)$, cancer (n 36), diabetes (n 542), dyslipidaemia (n 371), or with any missing data (n 816) on antihypertensive treatment status, age, sex, height, weight, WC, smoking status, drinking status, standard of living, fruit and green vegetable consumption, education, physical activity level and MTHFR 677C > Tpolymorphism were excluded. The final analysis included 13946 participants (5421 men and 8525 women).

The population characteristics by sex are listed in Table 1. Men had significantly higher values for age, DBP, percentage of cigarette smoking and alcohol drinking, and levels of living standard and education, and had lower values for SBP, BMI and percentage of antihypertensive treatment.

The geometric mean of tHcy was 12.0 (interquartile range (IQR) 9·3-14·2) µmol/l in men and 9·6 (IQR 7·8-11·6) µmol/l in women. The prevalence of hyperhomocysteinaemia ($\geq 10 \,\mu$ mol/l) was 51.6% (women 42.7% and men 65.6%) (Table 2).

The results from the logistic regression analyses for hyperhomocysteinaemia are presented in Table 2. In general, age, male sex, higher GFR, T-allele of MTHFR 677C > T, BMI, inlanders and HTN treatment (but not HTN grade) were associated with an increased risk of hyperhomocysteinaemia, whereas the physical activity level was associated with decreased risk. Similar association patterns were observed in men and women. Similar findings were also observed in the regression analysis of In-transformed tHcy (Table 3). In addition, smokers in both men and women, men with grade 3 HTN and male non-drinkers had higher tHcy. Most importantly, a significant interaction between sex and the MTHFR 677C > T genotype was observed for both tHcy and hyperhomocysteinaemia. While the TT genotype was a significant

NS British Journal of Nutrition

Table 1. Population characteristics by sex

(Mean values and standard deviations; number of participants and percentages; geometric means and interquartile ranges (IQR))

	Tot	tal	Me	en	Wor	men	
	n	%	n	%	n	%	Р
n	139	46	54	21	85	25	
Age (years)							<0.001
Mean	59		60		59		
SD	7.	6	7.	7	7	·5	
Age group (years)	4270	30.6	1489	27.5	2781	32.6	< 0.001
45–55 55–65	6030	30·6 43·2	2301	27.5 42.4	3729	32·6 43·7	<0.001
65–75	3646	26.1	1631	30.1	2015	23.6	
SBP (mmHg)	0010	201	1001	001	2010	200	<0.001
Mean	168	8-5	16	7.0	16	9.5	
SD	20	·8	20	.7	20	.8	
DBP (mmHg)							<0.001
Mean	95		97		94		
SD	11	.9	12	.3	11	·6	
HTN grade	2005	00.0	1501	07 7	0404	00.0	0.57/
Controlled BP or grade 1*	3905 5602	28∙0 40∙2	1501 2167	27.7 40.0	2404 3435	28·2 40·3	0.574
Grade 2 Grade 3	4439	40·2 31·8	1753	40·0 32·3	2686	40·3 31·5	
GFR (ml/min per 1.73 m ²)	4439	31.0	1755	32.3	2000	31.5	<0.001
Geometric mean	77	.2	74	.1	79	.2	< 0 001
IQR	64.6-		62.5-		66.1-		
GFR group (ml/min per 1.73 m ²)							
≥90	3911	28.0	1155	21.3	2756	32.3	<0.001
60-90	7635	54.7	3184	58.7	4451	52.2	
<60	2400	17.2	1082	20.0	1318	15.5	
Homocysteine (µmol/l)		_		_	_	_	<0.001
Geometric mean	10		12		9		
IQR	8.2-	12.6	9.3–	14.2	7.8–	11.6	< 0.001
BMI (kg/m ²) Mean	25	6	24	0	26	. 0	<0.001
SD	3.		3-		3		
Waist circumference (cm)	0	0	0	0	0	,	0.075
Mean	85	·4	85	-5	85	i-2	0.010
SD	9.		9		9		
Current smoking	3200	22.9	2875	53.0	325	3.8	<0.001
Current drinking	3261	23.4	2983	55.0	278	3.3	<0.001
Antihypertensive treatment, treated	6443	46.2	2315	42.7	4128	48.4	<0.001
County	5007	10.0		40.4	0007		
Ganyu (coastal)	5667	40.6	2300	42.4	3367	39·5	0.001
Donghai (inland) Season	8279	59.4	3121	57.6	5158	60.5	
Spring and winter	9605	68.9	3847	71.0	5758	67.5	<0.001
Summer and autumn	4341	31.1	1574	29.0	2767	32.5	< 0.001
Living standards	1011	011	1071	20 0	2/0/	02.0	
Poor	1535	11.0	506	9.3	1029	12.1	<0.001
Fair	10822	77.6	4183	77.2	6639	77.9	
Good	1589	11.4	732	13.5	857	10.1	
Fruit and vegetable consumption							
<500 g/week	240	1.7	100	1.8	140	1.6	0.315
500–1500 g/week	2659	19.1	1060	19.6	1599	18.8	
\geq 1500 g/week	11 047	79.2	4261	78.6	6786	79.6	
Education	0066	CE O	2025	07 F	7021	90 E	< 0.00
Illiterate Primary level	9066 2064	65·0 14·8	2035 1256	37.5 23.2	7031 808	82·5 9·5	<0.001
Elementary or higher levels	2064	20·2	2130	23·2 39·3	686	9.5 8.0	
Physical activity	2010		2100	00.0	000	0.0	
Low	5458	39.1	2069	38.2	3389	39.8	0.169
Moderate	5490	39.4	2173	40.1	3317	38.9	0.00
High	2998	21.5	1179	21.7	1819	21.3	
MTHFR 677C > T polymorphism							
CC	3247	23.3	1274	23.5	1973	23.1	0.196
CT	7014	50.3	2677	49.4	4337	50.9	
TT	3685	26.4	1470	27.1	2215	26.0	

SBP, systolic blood pressure; DBP, diastolic blood pressure; HTN, hypertension; BP, blood pressure, GFR, glomerular filtration rate; MTHFR, methylenetetrahydrofolate reductase. * A total of 388 subjects with antihypertensive treatment and controlled BP were included.

1287

N⁵ British Journal of Nutrition

1288

Table 2. Adjusted* OR of having hyperhomocysteinaemia (total plasma homocysteine ≥10 µmol/l) in different subgroups

(Adjusted odds ratios and 95 % confidence intervals)

			Tota	I				Men	I				Wome	en	
	Preva	lence	Adjusted			Preva	llence	Adjusted			Preva	llence	Adjusted		
	n	%	OR	95 % CI	Р	n	%	OR	95 % CI	Р	n	%	OR	95 % CI	Р
Sex															
Women	3642	42.7	1.00	Reference											
Men	3558	65.6	2.25	1.89, 2.67	<0.001										
MTHFR 677CT*Men			1.22	1.01, 1.46	0.034										
MTHFR 677TT*Men			1.34	1.07, 1.68	0.012										
<i>MTHFR</i> 677C > T															
polymorphism															
CC	1322	40.7	1.00	Reference		672	52.7	1.00	Reference		650	32.9	1.00	Reference	
СТ	3242	46.2	1.20	1.07, 1.35	0.002	1650	61.6	1.46	1.27, 1.68	<0.001	1592	36.7	1.21	1.07, 1.36	0.002
тт	2636	71.5	3.81	3.33, 4.36	<0.001	1236	84·1	4.98	4·14, 5·98	<0.001	1400	63.2	3.89	3.40, 4.45	<0.001
GFR (ml/min per 1.73 m ²)															
\geq 90	1455	37.2	1.00	Reference		626	54.2	1.00	Reference		829	30.1	1.00	Reference	
60-90	4079	53.4	1.54	1.41, 1.68	<0.001	2059	64.7	1.44	1.24, 1.68	<0.001	2020	45.4	1.59	1.42, 1.78	<0.001
<60	1666	69.4	2.47	2.17, 2.81	<0.001	873	80.7	2.80	2.25, 3.49	<0.001	793	60.2	2.31	1.97, 2.71	<0.001
Age (years)															
45–55	1669	39.1	1.00	Reference		867	58.2	1.00	Reference		802	28.8	1.00	Reference	
55-65	3120	51.7	1.52	1.39, 1.67	<0.001	1457	63.3	1.13	0.97, 1.32	0.108	1663	44.6	1.79	1.59, 2.01	<0.001
65-75	2411	66.1	2.32	2.07, 2.61	<0.001	1234	75.7	1.78	1.48, 2.15	<0.001	1177	58.4	2.71	2.34, 3.14	<0.001
BMI (kg/m²)															
<25	3367	52.5	1.00	Reference		1899	64.7	1.00	Reference		1468	42.1	1.00	Reference	
≥25	3833	50.9	1.27	1.18, 1.37	<0.001	1659	66.7	1.28	1.13, 1.46	<0.001	2174	43.1	1.26	1.14, 1.39	<0.001
Current smoking															
No	5158	48.0	1.00	Reference		1680	66.0	1.00	Reference		3476	42.4	1.00	Reference	
Yes	2044	63.9	1.09	0.97, 1.22	0.101	1878	65.3	1.07	0.94, 1.22	0.297	166	51.1	1.18	0.92, 1.51	0.203
Current drinking															
No	5162	48.3	1.00	Reference		1638	67.2	1.00	Reference		3524	42.7	1.00	Reference	
Yes	2038	62.5	0.99	0.88, 1.11	0.907	1920	64.4	1.00	0.88, 1.14	0.994	118	42.4	0.91	0.69, 1.20	0.505
Antihypertensive treatment															
Untreated	3745	49.9	1.00	Reference		1977	63.7	1.00	Reference		1768	40.2	1.00	Reference	
Treated	3455	53.6	1.14	1.06, 1.23	0.001	1581	68.3	1.14	1.01, 1.29	0.040	1874	45.4	1.14	1.04, 1.25	0.007
HTN grade															
Controlled BP or grade 1†	2006	51.4	1.00	Reference		976	65.0	1.00	Reference		1030	42.8	1.00	Reference	
Grade 2	2877	51.4	1.01	0.92, 1.11	0.826	1428	65.9	1.10	0.95, 1.28	0.204	1449	42.2	0.95	0.84, 1.06	0.359
Grade 3	2317	52.2	1.00	0.91, 1.10	0.998	1154	65.8	1.09	0.94, 1.28	0.256	1163	43.3	0.93	0.82, 1.05	0.267
County															
Ganyu (coastal)	2698	47.6	1.00	Reference		1414	61.5	1.00	Reference		1284	38.1	1.00	Reference	
Donghai (inland)	4502	54.4	1.09	1.00, 1.18	0.047	2144	68.7	1.09	0.96, 1.24	0.200	2358	45.7	1.09	0.98, 1.22	0.094
Season	1500		4.00	D (00.4	4.00	D (0400	07.4	4.00	D (
Spring and winter	4526	47.1	1.00	Reference		2388	62.1	1.00	Reference		2138	37.1	1.00	Reference	
Summer and autumn	2674	61.6	1.91	1.75, 2.08	<0.001	1170	74.3	1.81	1.56, 2.10	<0.001	1504	54.4	1.96	1.76, 2.18	<0.001
Living standards				D (0- 0	4.00	D (467			D (
Poor	770	50.2	1.00	Reference	0.400	343	67.8	1.00	Reference	0.070	427	41.5	1.00	Reference	0.00-
Fair	5588	51.6	1.10	0.97, 1.24	0.130	2753	65.8	1.00	0.81, 1.24	0.976	2835	42.7	1.15	0.99, 1.33	0.067
Good	842	53.0	1.08	0.92, 1.27	0.322	462	63-1	0.89	0.68, 1.16	0.389	380	44.3	1.21	0.99, 1.48	0.069

NS British Journal of Nutrition

Table 2. Continued

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Prevalence Adjusted 95 % Cl P n % OR 95 % Cl P regetable 0 95 % Cl P P regetable 116 48.3 1.00 Reference 0.190 6 week 116 48.3 1.00 Reference 0.90, 1.61 0.190 6 yweek 5721 51.8 1.16 0.87, 1.54 0.284 2 yweek 5721 51.8 1.00 Reference 1 1 atv or higher levels 1576 56.0 1.00 Reference 1 1 0.941 8 atv or higher levels 1576 56.0 1.00 Reference 1 0.041 1 0.004 1 atv or higher levels 3047 55.8 1.00 Reference 1 0.004 1			Men				Women	nen	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	n % Adjusted OR 95 % Cl P regetable n % OR 95 % Cl P regetable 116 48.3 1.00 Reference 0.190 week 1363 51.2 1.20 0.90, 1.61 0.190 yweek 5721 51.8 1.16 0.87, 1.54 0.284 ary or higher levels 1153 55.9 1.00 Reference 0.941 ary or higher levels 1576 56.0 1.02 0.91, 1.14 1.000 ctivity 3047 55.8 1.00 Reference 0.004	Pre	valence			ے ا ا	evalence			
legetableegetable116 48.3 1.00 Reference 60 60.0 1.00 Reference 56 40.0 1.00 Referenceweek 1363 51.2 1.20 $0.90, 1.61$ 0.190 692 65.3 1.49 $0.95, 2.34$ 0.082 671 42.0 1.06 $0.72, 1.55$ yweek 5721 51.8 1.16 $0.87, 1.54$ 0.284 2806 65.9 1.34 $0.86, 2.07$ 0.194 2915 43.0 1.06 $0.74, 1.56$ yweek 5721 51.8 1.00 Reference 66.1 1.00 Reference $0.74, 1.56$ $0.74, 1.56$ yweek 5721 51.8 1.00 Reference 66.1 1.01 $0.86, 1.19$ 0.992 85.1 1.00 Reference 1153 55.9 1.00 Reference $0.91, 1.14$ 1.000 1362 63.9 1.07 $0.92, 1.24$ 0.902 232 44.2 1.00 Referencelevel 11576 56.0 1.02 $0.91, 1.14$ 1.000 1362 63.9 1.07 $0.92, 1.24$ 0.976 214 31.2 0.87 $0.72, 1.05$ ary or higher levels 1576 56.0 1.00 Reference 233 40.0 1.04 $0.86, 1.06$ evel 2733 49.8 0.89 $0.82, 0.97$ 0.009 1367 62.9 $0.71, 0.95$ 0.007 1366 41.2 0.08 $0.74, 0.62$ 0	regetable 116 48:3 1-00 Reference 60 60.0 1-00 Reference 56 40.0 1-00 Reference week 1363 51:2 1:20 0.90, 1-51 0.190 692 65.3 1:49 0.95, 2:34 0.082 671 42.0 1.06 0.72, 1:55 jwweek 5721 51:8 1:16 0.87, 1:54 0.284 2806 65.3 1:49 0.96, 2:07 0.194 2915 43.0 1.08 0.74, 1:56 jwweek 1153 55.9 1.00 Reference 1366 67.1 1.00 Reference 0.74, 1:56 ary or higher levels 1576 56.0 1.02 0.91, 1:14 1.000 1362 63.9 1.07 0.92, 1:24 0.976 214 31.2 0.72, 1:05 ary or higher levels 1576 56.0 1.02 0.91, 1:14 1.000 1362 63.9 1.07 0.92, 1:24 0.976 214 31.2 0.03 1.04 0.93, 1:23 ary or higher levels 1576 56.0 1.02 0.	egetable egetable regetable 116 48.3 1.00 Reference week 1363 51.2 1.20 0.90, 1.61 0.190 woek 5721 51.2 1.20 0.90, 1.61 0.190 øveek 5721 51.8 1.16 0.87, 1.54 0.284 ø/week 5721 51.8 1.16 0.87, 1.54 0.284 ø/week 5721 51.8 1.16 0.87, 1.54 0.284 ary or higher levels 1153 55.9 1.00 Reference 0.41 ary or higher levels 1576 56.0 1.02 0.91, 1.14 1.000 ctivity 3047 55.8 1.00 Reference 0.009	٩	ı			-		i	95 % CI	٩
ption till 48:3 1:00 Reference 60 60:0 1:00 Reference 56 40:0 1:00 Reference 00g/week 116 48:3 1:00 Reference 60 60:0 1:00 Reference 56 40:0 1:00 Reference 00g/week 5721 51:2 1:20 0:90, 1:61 0:190 66:5 1:34 0:86, 2:07 0:194 2915 43:0 1:08 0:74, 1:55 j/week 5721 51:8 1:16 0:87, 1:54 0:284 2806 65:0 1:00 Reference 0:74, 1:55 j/week 5721 51:8 1:16 0:87, 1:14 1:000 Reference 0:74, 1:56 0:74, 1:56 aty or higher levels 1576 56:0 1:00 Reference 0:96, 1:10 0:86, 1:10 0:89, 1:23 0:72, 1:25 aty or higher levels 1576 56:0 1:00 Reference 214 0:92 214 0:93 0:72, 1:05 <t< td=""><td>ption 56 40.0 1.00 Reference 56 40.0 1.00 Reference week 116 48.3 1.00 Reference 56 40.0 1.00 Reference 00g/week 5721 51.8 1.16 0.87, 154 0.190 650 1.34 0.96; 2.34 0.082 671 42.0 1.06 0.72, 155 week 5721 51.8 1.16 0.87, 154 0.284 2806 65.9 1.34 0.86, 2.07 0.194 2915 43.0 1.08 0.74, 156 week 1153 55.9 1.00 Reference 1366 67.1 1.01 0.86, 1.19 0.902 323 40.0 1.04 0.89, 1.23 aty or higher levels 1576 56.0 1.02 0.91, 1.14 1.000 1367 62.9 0.92 1.24 0.967 1.07 0.92 233 40.0 1.04 0.89, 1.23 aty or higher levels 1576 56.0 1.02</td><td>ption week 116 48.3 1.00 Reference 00g/week 1363 51.2 1.20 0.90, 1.61 0.190 j/week 5721 51.8 1.16 0.87, 1.54 0.284 4471 49.3 1.00 Reference level 1153 55.9 1.00 0.89, 1.11 0.941 ary or higher levels 1576 56.0 1.02 0.91, 1.14 1.000 ctivity 3047 55.8 1.00 Reference octivity 3047 55.8 1.00 Reference</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	ption 56 40.0 1.00 Reference 56 40.0 1.00 Reference week 116 48.3 1.00 Reference 56 40.0 1.00 Reference 00g/week 5721 51.8 1.16 0.87, 154 0.190 650 1.34 0.96; 2.34 0.082 671 42.0 1.06 0.72, 155 week 5721 51.8 1.16 0.87, 154 0.284 2806 65.9 1.34 0.86, 2.07 0.194 2915 43.0 1.08 0.74, 156 week 1153 55.9 1.00 Reference 1366 67.1 1.01 0.86, 1.19 0.902 323 40.0 1.04 0.89, 1.23 aty or higher levels 1576 56.0 1.02 0.91, 1.14 1.000 1367 62.9 0.92 1.24 0.967 1.07 0.92 233 40.0 1.04 0.89, 1.23 aty or higher levels 1576 56.0 1.02	ption week 116 48.3 1.00 Reference 00g/week 1363 51.2 1.20 0.90, 1.61 0.190 j/week 5721 51.8 1.16 0.87, 1.54 0.284 4471 49.3 1.00 Reference level 1153 55.9 1.00 0.89, 1.11 0.941 ary or higher levels 1576 56.0 1.02 0.91, 1.14 1.000 ctivity 3047 55.8 1.00 Reference octivity 3047 55.8 1.00 Reference									
week 116 48.3 1.00 Reference 60 60.0 1.00 Reference 56 40.0 1.00 Reference 00g/week 5721 51.2 1.20 $0.90, 161$ 0.190 692 65.3 1.49 $0.95, 2.34$ 0.082 671 42.0 1.06 $0.72, 1.55$ jweek 5721 51.8 1.16 $0.87, 154$ 0.284 2806 65.9 1.34 $0.96, 2.07$ 0.194 2915 43.0 1.06 $0.72, 1.56$ jweek 5721 51.8 1.16 $0.89, 1.11$ 0.941 830 66.1 1.00 Reference $0.74, 1.56$ level 1153 55.9 1.00 Reference 3105 44.2 1.00 Reference level 1156 66.0 1.01 $0.86, 1.19$ 0.902 233 40.0 1.00 Reference level 1156 56.0 1.00 Ref	week 116 48·3 1.00 Reference 60 60·0 1.00 Reference 56 40·0 1.00 Reference 00g/week 5721 51·2 1·20 0·30, 1·61 0·190 692 65·3 1.49 0·35, 2·34 0·082 671 42·0 1·06 0·74, 1·56 g/week 5721 51·8 1·16 0·87, 1·54 0·284 2806 65·3 1·49 0·36, 2·34 0·082 67/1 42·0 1·06 0·74, 1·56 g/week 5721 51·8 1·16 0·87, 1·14 1·00 Reference 0·36, 1·19 0·39, 1·11 0·301 1·10 Reference 3105 44·2 1·00 Reference level 1153 55·9 1·00 Reference 1·01 0·86, 1·19 0·92, 1·24 0·37 0·72, 1·05 0·72, 1·05 arry or higher levels 1576 56·0 1·00 Reference 3102 0·31 0·37 0·37 0·37 1·35 0·37	week 116 48.3 1.00 Reference 00g/week 1363 51.2 1.20 0.90, 1.61 0.190 j/week 5721 51.8 1.16 0.87, 1.54 0.284 j/week 5721 51.8 1.16 0.87, 1.54 0.284 j/week 5721 51.8 1.00 Reference 0.284 ave 1477 49.3 1.00 Reference 0.284 level 1153 55.9 1.00 0.89, 1.11 0.941 ary or higher levels 1576 56.0 1.02 0.91, 1.14 1.000 ctivity 3047 55.8 1.00 Reference 0.009									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00g/week 1363 51-2 1-20 0-90, 1-61 0-190 692 65-3 1-49 0-95, 2-34 0-082 671 42.0 1-06 0-72, 1-55 j/week 5721 51-8 1-16 0-87, 1-54 0-284 2806 65-9 1-34 0-86, 2-07 0-194 2915 43-0 1-06 0-74, 1-56 level 1153 55-9 1-00 Reference 1366 67-1 1-01 0-86, 1-19 0-902 3105 44-2 1-00 Reference ary or higher levels 1576 56-0 1-02 0-91, 1-14 1-000 1362 63-9 1-01 0-86, 1-124 0-902 323 40-0 1-04 0-89, 1-23 ary or higher levels 1576 56-0 1-02 0-91, 1-14 1-000 1362 63-9 1-07 0-92, 1-24 0-97 0-72, 1-05 ary or higher levels 1576 56-0 1-02 0-91, 1-14 1-000 1367 62-9 0-71, 0-95 0-07 </td <td>00g/week 1363 51-2 1-20 0-90, 1-61 0-190 j/week 5721 51-8 1-16 0-87, 1-54 0-284 j/week 5721 51-8 1-16 0-87, 1-54 0-284 j/week 5721 51-8 1-16 0-87, 1-54 0-284 i/web 1477 49-3 1-00 Reference 0-941 i/web 1153 55-9 1-00 0-89, 1-11 0-941 ary or higher levels 1576 56-0 1-02 0-91, 1-14 1-000 ctivity 3047 55-8 1-00 Reference 0-009</td> <td>ence</td> <td>. 0.09</td> <td></td> <td>ance</td> <td>56</td> <td></td> <td>,</td> <td>Reference</td> <td></td>	00g/week 1363 51-2 1-20 0-90, 1-61 0-190 j/week 5721 51-8 1-16 0-87, 1-54 0-284 j/week 5721 51-8 1-16 0-87, 1-54 0-284 j/week 5721 51-8 1-16 0-87, 1-54 0-284 i/web 1477 49-3 1-00 Reference 0-941 i/web 1153 55-9 1-00 0-89, 1-11 0-941 ary or higher levels 1576 56-0 1-02 0-91, 1-14 1-000 ctivity 3047 55-8 1-00 Reference 0-009	ence	. 0.09		ance	56		,	Reference	
	j/week 5721 51.8 1.16 0.87, 1.54 0.284 2806 65.9 1.34 0.86, 2.07 0.194 2915 43.0 1.08 0.74, 1.56 level 1153 55.9 1.00 Reference 1306 67.1 1.00 Reference 0.89, 1.14 0.941 830 66.1 1.01 0.86, 1.119 0.902 323 40.0 1.04 0.89, 1.23 any or higher levels 1576 56.0 1.02 0.91, 1.14 1.000 1362 63.9 1.07 0.92, 1.24 0.976 214 31.2 0.87 1.05 ctivity 3047 55.8 1.00 Reference 1436 69.4 1.00 Reference 0.74, 0.95 0.74, 0.95 0.85, 1.06 e 2733 49.8 0.83 0.74, 0.92 <0.001	J/week 5721 51.8 1.16 0.87, 1.54 0.284 4471 49.3 1.00 Reference level 1153 55.9 1.00 0.89, 1.11 0.941 ary or higher levels 1576 56.0 1.02 0.91, 1.14 1.000 ctivity 3047 55.8 1.00 Reference 2733 49.8 0.89 0.87 0.009	1.61 0.190	. 65.3					,	0.72, 1.55	0.760
4471 49·3 1.00 Reference 1366 67·1 1.00 Reference 3105 44·2 1.00 Reference level 1153 55·9 1.00 Reference 1366 67·1 1.01 0.86, 1·19 0.902 323 40·0 1.04 0.89, 1·23 ary or higher levels 1576 56·0 1.02 0.91, 1·14 1.000 1362 63·9 1·07 0·92, 1·24 0.976 214 31·2 0·87 0·72, 1·05 ctivity 3047 55·8 1·00 Reference 1436 69·4 1·00 Reference 0·82, 0·97 0·009 1367 62·9 0·82 0·71, 0·95 0·007 1366 41·2 0·05 0·86, 1·06 Reference e 2733 49·8 0·83 0·74, 0·92<	dvel 4471 49·3 1.00 Reference 1366 67·1 1.00 Reference 3105 44·2 1.00 Reference any or higher levels 1153 55·9 1.00 Reference 3105 44·2 1.00 Reference any or higher levels 1576 56·0 1.02 0.91, 1·14 1.000 1362 63·9 1.07 0.92, 1·24 0.976 214 31·2 0.87 1.05 ctivity 3047 55·8 1.00 Reference 1436 69·4 1.00 Reference 0.72, 1.05 0.72, 1.05 ctivity 3047 55·8 1.00 Reference 1420 87.4 0.957 0.95 0.85, 1.06 e 2733 49·8 0.82, 0.97 0.009 1367 62·9 0.71, 0.95 0.007 1366 41·2 0.95 0.85, 1.06 e 2733 49·8 0.83 0.74, 0.92 <0.001	4471 49.3 1.00 Reference level 1153 55.9 1.00 0.89, 1.11 0.941 any or higher levels 1576 56.0 1.02 0.91, 1.14 1.000 ctivity 3047 55.8 1.00 Reference an 2733 49.8 0.89 0.010	1.54 0.284	. 65.9					,	0.74, 1.56	0.690
4771 49.3 1.00 Reference 1366 67.1 1.00 Reference 3105 44.2 1.00 Reference 1153 55.9 1.00 0.89, 1.11 0.941 830 66.1 1.01 0.86, 1.19 0.902 323 40.0 1.04 0.89, 1.23 higher levels 1576 56.0 1.02 0.91, 1.14 1.000 1362 63.9 1.07 0.92, 1.24 0.976 214 31.2 0.87, 1.05 3047 55.8 1.00 Reference 1436 69.4 1.00 Reference 0.72, 1.05 2733 49.8 0.89 0.82, 0.97 0.009 1367 62.9 0.82 0.71, 0.95 0.007 1366 41.2 0.95, 0.95 0.85, 1.06 1420 47.4 0.83 0.74, 0.92<	4471 49.3 1.00 Reference 1366 67.1 1.00 Reference 3105 44.2 1.00 Reference 1153 55.9 1.00 0.89, 1.11 0.941 830 66.1 1.01 0.86, 1.19 0.902 323 40.0 1.04 0.89, 1.23 righer levels 1576 56.0 1.02 0.91, 1.14 1.000 1362 63.9 1.07 0.92, 1.24 0.976 214 31.2 0.87 1.05 3047 55.8 1.00 Reference 1436 69.4 1.00 Reference 0.74, 0.92 0.001 75, 1.05 2733 49.8 0.89 0.82, 0.97 0.003 1367 62.9 0.71, 0.95 0.007 1366 41.2 0.95 0.85, 1.06 1420 47.4 0.83 0.74, 0.92 0.001 755 64.0 0.91 0.76, 1.07 0.250 665 36.6 0.85, 1.06 1420 47.4 0.83 0.74, 0.92 0.001 755 64.0 0.91 0.76, 1.07 0.250 665	4471 49.3 1.00 Reference 1153 55.9 1.00 0.89, 1.11 0.941 higher levels 1576 56.0 1.02 0.91, 1.14 1.000 3047 55.8 1.00 Reference 2733 49.8 0.89 0.87 0.009									
1153 55-9 1.00 0.89, 1.11 0.941 830 66.1 1.01 0.86, 1.19 0.902 323 40.0 1.04 0.89, 1.23 higher levels 1576 56.0 1.02 0.91, 1.14 1.000 1362 63.9 1.07 0.92, 1.24 0.976 214 31.2 0.87 0.72, 1.05 3047 55.8 1.00 Reference 1436 69.4 1.00 Reference 1611 47.5 1.00 Reference 2733 49.8 0.89 0.82, 0.97 0.009 1367 62.9 0.82 0.71, 0.95 0.007 1366 41.2 0.95, 1.06 1420 47.4 0.83 0.74, 0.92 <0.001	1153 55-9 1.00 0.89, 1.11 0.941 830 66.1 1.01 0.86, 1.19 0.902 323 40.0 1.04 0.89, 1.23 higher levels 1576 56.0 1.02 0.91, 1.14 1.000 1362 63.9 1.07 0.92, 1.24 0.976 214 31.2 0.87 0.72, 1.05 3047 55.8 1.00 Reference 1436 69.4 1.00 Reference 0.72, 1.05 2733 49.8 0.89 0.82, 0.97 0.009 1367 62.9 0.71, 0.95 0.007 1366 41.2 0.95, 1.06 1420 47.4 0.83 0.74, 0.92 <0.001	1153 55.9 1.00 0.89, 1.11 0.941 higher levels 1576 56.0 1.02 0.91, 1.14 1.000 3047 55.8 1.00 Reference 2733 49.8 0.89 0.82 0.97 0.009	ence	67.1		ance	310	-		Reference	
higher levels 1576 56.0 1.02 0.91, 1.14 1.000 1362 63.9 1.07 0.92, 1.24 0.976 214 31.2 0.87 0.72, 1.05 3047 55.8 1.00 Reference 1436 69.4 1.00 Reference 1611 47.5 1.00 Reference 2733 49.8 0.82, 0.97 0.009 1367 62.9 0.82 0.71, 0.95 0.007 1366 41.2 0.95, 1.06 1420 47.4 0.83 0.74, 0.92 <0.001	higher levels 1576 56.0 1.02 0.91, 1.14 1.000 1362 6.3.9 1.07 0.92, 1.24 0.976 214 31.2 0.87 0.72, 1.05 3047 55.8 1.00 Reference 1436 69.4 1.00 Reference 1611 47.5 1.00 Reference 2733 49.8 0.89 0.82, 0.97 0.009 1367 62.9 0.82 0.71, 0.95 0.007 1366 41.2 0.95 0.68, 0.89 tetrahydrofate reductase; 6FR, glomerular filtration rate; HTN, hypertension; BP, blood pressure. 0.91 0.76, 1.07 0.250 665 36.6 0.78 0.68, 0.89	 higher levels 1576 56.0 1.02 0.91, 1.14 1.000 3047 55.8 1.00 Reference 2733 49.8 0.89 0.82 0.97 0.009 	1.11 0.941	66.1				-		0.89, 1.23	0.612
3047 55-8 1.00 Reference 1436 69.4 1.00 Reference 1611 47.5 1.00 Reference 2733 49-8 0.89 0.82, 0.97 0.009 1367 62.9 0.82 0.71, 0.95 0.007 1366 41.2 0.95 0.85, 1.06 1420 47.4 0.83 0.74, 0.92 <0.001	3047 55-8 1.00 Reference 1436 69-4 1.00 Reference 1611 47-5 1.00 Reference 2733 49-8 0.89 0.82, 0.97 0.009 1367 62-9 0.82 0.71, 0.95 0.007 1366 41-2 0.95 0.85, 1.06 1420 47.4 0.83 0.74, 0.92 <0.001	3047 55-8 1-00 Reference 2733 49-8 0.89 0.82 0.00	, 1.14 1.000	63.9						0.72, 1.05	0.136
2733 49-8 0-89 0-82, 0-97 0-009 1367 62-9 0-82 0-71, 0-95 0-007 1366 41-2 0-95 0-85, 1-06 1420 47-4 0-83 0-74, 0-92 <0-001 755 64-0 0-91 0-76, 1-07 0-250 665 36-6 0-78 0-68, 0-89 <	9 0.82 0.71, 0.95 0.007 1366 41.2 0.95 0.85, 1.06 0 0.91 0.76, 1.07 0.250 665 36.6 0.78 0.68, 0.89 <	2733 49.8 0.89 0.82 0.97 0.009	ence	69.4		ance	161			Reference	
1420 47·4 0·83 0·74, 0·92 <0·001 755 64·0 0·91 0·76, 1·07 0·250 665 36·6 0·78 0·68, 0·89 <	0 0.91 0.76, 1.07 0.250 665 36.6 0.78 0.68, 0.89 <		0.97 0.009	62.9						0.85, 1.06	0.323
	<i>MTHF</i> R, methylenetertahydrofolate reductase; GFR, glomerular filtration rate; HTN, hypertension; BP, blood pressure. • All variables wave inducted in the same model	1420 47.4 0.83 0.74 , 0.92 <0.001	0.92 < 0.001	64.0						0.68, 0.89	<0.001

independent risk factor in both sexes, TT in men was associated with an additional 22% increase in tHcy and 34% increase in OR for hyperhomocysteinaemia (Tables 2 and 3; Fig. 1).

Discussion

In the present study, the geometric mean tHcy concentration was $10.5 \,\mu$ mol/l (women 9.6 and men 12.0) and the median tHcy concentration was $10.1 \,\mu$ mol/l (women 9.4 and men 11.2). The prevalence of hyperhomocysteinaemia was $51.7 \,\%$ (women 42.8% and men 65.8%). These estimates are lower than those in a previous report of hypertensive adults in different Chinese populations (Ha'erbin, Shanghai, Shenyang, Beijing, Xi'an and Nanjing; median tHcy: $12.2 \,\mu$ mol/l)^(21,22)), and lie in the middle between the southerners and the northerners with respect to another study of 2471 Chinese adults aged $35-64 \,\text{years}^{(23)}$. The differences in tHcy levels described in various reports could be due to different population inclusion criteria, genetic backgrounds, as well as differences in risk factor profiles across regional areas.

Consistent with previous studies^(11,24), the present study found that a higher prevalence of hyperhomocysteinaemia or tHcy was associated with men, older age, overweight $(BMI \ge 25 \text{ kg/m}^2)$ and current smoking. However, the effect size of current smoking and current drinking on tHcy, about 4% increase and 3% decrease in tHcy, respectively, is relatively small. The relationship between alcohol consumption and tHcy concentration from previous reports had been inconclusive^(25,26). In the present study, current alcohol drinkers were significantly associated with decreased tHcy only in men. This is partly due to the percentage of current drinkers in women being very low (approximately 3%), hence a larger sample size is needed to detect such a small effect size. Since BMI and WC were highly correlated (Pearson's r 0.79), we did not include BMI and WC in the same regression model.

The present study also observed a 3% decrease in tHcy and an approximately 20% decrease in OR for hyperhomocysteinaemia in subjects with high physical activities. A recent meta-analysis reported that moderately or highly physically active people had a lower risk of stroke incidence or mortality than those with a low level of activity⁽²⁷⁾. Given the fact that elevated tHcy was more strongly associated with stroke than with IHD⁽²⁾, it would be interesting to test whether physical activity is an independent risk factor after taking into consideration of tHcy.

It is noteworthy that, in the present study, the inlanders had a higher tHcy and prevalence of hyperhomocysteinaemia, which is contrary to the results from a small study (*n* 208) in coastal West Africa⁽²⁸⁾. A possible explanation for the observation in the present study could be a higher betaine⁽²⁹⁾ and vitamin B₁₂⁽³⁰⁾ (rich in seafood) intake in coastal areas. Unfortunately, we did not have such data in the present study.

In the present study, although participants with antihypertensive treatment had slightly lower SBP (167.9 v. 169.1 mmHg, P=0.001) and DBP (95.1 v. 95.9 mmHg, P<0.001) than those without antihypertensive treatment,

N⁵ British Journal of Nutrition

Table 3. Relationships between homocysteine concentrations* and related factors in different subgroups†

(Geometric means, interquartile ranges (IQR, first to third quartiles) and 95% confidence intervals)

			Total					Men					Women		
	Geometric mean (µmol/l)	IQR (μmol/l)	Change in tHcy‡ (%)	95 % CI	Р	Geometric mean (µmol/l)	IQR (µmol/l)	Change in tHcy (%)	95 % CI	P	Geometric mean (µmol/l)	IQR (µmol/l)	Change in tHcy (%)	95 % CI	Р
Sex			,			. ,	. ,	• • •			. ,	. ,			
Women Men MTHFR 677CT*Men	9·6 12·0	7·8–11·6 9·3–14·2	Reference 41.9 0.7	37·8, 46·1 - 2·6, 4·1	<0.001 0.683										
MTHFR 677TT*Men MTHFR 677C > T			22.2	17.8, 26.9	0.000										
polymorphism			D (10.0		5 /				==	B (
CC CT	9·4 9·7	7.8-11.2	Reference 3.9	10.01	<0.001	10.3	8·5-12·2 9·0-12·7	Reference	17.70	0.000	8·8 9·1	7·5–10·6 7·7–11·0	Reference	00.00	< 0.001
CT TT	9.7 13.3	8·1–11·7 9·6–17·4	3.9 30-2	1·8, 6·1 27·2, 33·3	<0.001 <0.001	10·8 16·5	9.0-12.7	4·6 58·9	1·7, 7·6 53·9, 64·1	0.002 0.000	9-1 11-5	7·7-11·0 8·8-14·5	3.9 30.2	2·0, 6·0 27·4, 33·1	<0·001 <0·001
GFR (ml/min per 1·73 m ²)	10.0	5.0-17.4	50.2	27.2, 00.0	< 0.001	10.5	11.1-24.0	30.9	55.9, 04.1	0.000	11.5	0.0-14.0	50.2	27.4, 33.1	<0.001
≥90	9.3	7.5-11.1				10.8	8.4-12.7				8.7	7.2-10.4			
60-90	10.6	8.4-12.6	8.4	6.7, 10.1	<0.001	11.9	9.2-14.0	7.8	4.6, 11.1	<0.001	9.8	8.1-11.7	8-4	6.5, 10.4	<0.001
<60 Age (years)	12.2	9.5–14.7	19.0	17.1, 20.9	<0.001	13-8	10.5-16.4	21.3	17.7, 25.0	<0.001	11.0	8.9–13.4	17.1	15.0, 19.2	<0.001
45-55	9.6	7.6-11.4	Reference			11.4	8.7-13.4	Reference			8.7	7.3-10.3	Reference		
55-65	10.4	8.3-12.4	5.3	3.6, 7.0	<0.001	11.8	9.1–13.8	0.7	-2.3, 3.7	0.662	9.7	7.9-11.7	7.7	5.7, 9.7	<0.001
65–75 BMI (kg/m ²)	11.6	9.3-14.0	10.7	8.5, 12.9	<0.001	12.9	10.0-15.4	5.5	1.8, 9.3	0.003	10.7	8.7-12.9	13.8	11.0, 16.6	<0.001
<25	10.6	8.3-12.8	Reference			11.9	9.2-14.1	Reference			9.6	7.8-11.7	Reference		
≥25	10.4	8.2-12.6	3.8	2.4, 5.2	<0.001	12.1	9.3-14.3	4.2	1.7, 6.7	0.001	9.6	7.8-11.6	3.4	1.8, 5.1	<0.001
Current smoking															
No	10.1	8.1-12.1	Reference	10 50	-0.004	11.9	9.3-14.0	Reference	10.00	0.005	9.6	7.8-11.6	Reference	00.04	0.010
Yes Current drinking	11.9	9.1-14.3	3.8	1.8, 5.8	<0.001	12.1	9.2-14.5	3.5	1.0, 6.0	0.005	10.3	8.3-13.0	4.9	0.6, 9.4	0.010
No	10.2	8.1-12.2	Reference			12.3	9.4-14.8	Reference			9.6	7.8-11.6	Reference		
Yes	11.6	8.9-13.7	-2.7	-4.6, -0.7	0.007	11.7	9.1-13.9	-3.0	-5.3, -0.6	0.014	9.5	7.9–11.4	-2.8	-7.1, 1.6	0.207
Antihypertensive treatment		00 107		,	0 007				00, 00		00		20	, ,, , o	0 201
Untreated	10.4	8.2-12.4	Reference			12.0	9.3-14.2	Reference			9.5	7.7-11.4	Reference		
Treated HTN grade	10.5	8.3-12.7	-0.2	−1·5, 1·2	0.806	12.0	9.4-14.2	- 1.5	<i>−</i> 3·7, 0·9	0.224	9.7	7.9–11.9	0.6	-0·9, 2·2	0.423
Controlled BP or grade 1§	10.3	8.2-12.5	Reference			11.7	9.2-14.0	Reference			9.5	7.8–11.6	Reference		
Grade 2	10.5	8.2-12.5	1.0	-0.6, 2.6	0.217	12.1	9.3-14.3	2.6	-0.3, 5.5	0.078	9.6	7.7-11.6	-0.2	-2.1, 1.7	0.838
Grade 3 County	10.6	8.3-12.7	1.7	0.0, 3.4	0.055	12.1	9.2-14.4	3.7	0.7, 6.8	0.016	9.7	7.9–11.7	0.0	-2.0, 2.1	0.969
Ganyu (coastal)	10.1	8.0-12.1	Reference			11.5	8.9-13.7	Reference			9.2	7.6-11.1	Reference		
Donghai (inland)	10.8	8.4-12.9	3.5	2.0, 5.0	<0.001	12.4	9.4–14.7	3.5	1.0, 6.2	0.006	9.9	8.0-11.9	3.6	1.8, 5.4	<0.001
Season															
Spring and winter	10.1	8.0-12.1	Reference			11.7	9.0-13.8	Reference			9.2	7.5–11.1	Reference		
Summer and autumn	11.2	9.0-13.4	9.4	7.8, 11.0	<0.001	12.7	9.9-15.0	7.5	4.7, 10.4	<0.001	10.5	8.6-12.6	10.4	8.5, 12.4	<0.001
Living standards															
Poor	10.5	8.2-12.6	Reference			12.6	9.3-15.6	Reference			9.6	7.7-11.5	Reference		
Fair	10.4	8.2-12.6	0.4	– 1·7, 2·5	0.702	12.0	9.3-14.2	-1.7	2.2, -5.4	0.329	9.6	7.8-11.7	1.7	-0·8, 4·1	0.182
Good	10.6	8.3-12.3	0.2	-2·6, 3·1	0.878	11.7	9.1-13.7	-3.3	4·7, −10·7	0.114	9.7	8.0-11.5	2.7	-0·7, 6·2	0.119
Fruit and vegetable consumption															
<500 g/week	10.7	8.2-12.8	Reference			12.3	8.7-15.2	Reference			9.7	7.8–11.6	Reference		
500–1500	10.7	8.2-12.6	- 0.9	-5.8, 4.3	0.736	11.8	9.2-14.3	0.3	-8.1,9.4	0.948	9.6	7.8–11.5	- 1.4	-7.3, 5.0	0.669
g/week	.0 4	52 120	00	00,40	5,00		0 - 140	00	0 7, 0 4	0.040	00		1 7	,	5 000

https://doi.org/10.1017/S000714512003157 Published online by Cambridge University Press

K.

1290

Continued
ė
e
æ
Ë.

	Geometric mean (µmol/l)	IQR (µmol/l)	Change in tHcy‡ (%)	thcy‡ (%) 95 % Cl	ط	Geometric mean (µmol/l)	IQR (µmol/l)	Change in tHcy (%)	95 % CI	ط	Geometric mean (µ.mol/l)	IQR (µmol/l)	Change in tHcy (%)	95 % CI	ط
≥ 1500 g/week Education	10.5	8.3-12.6	- 1.5	- 1.5 - 6.3, 3.5	0.551	12.0	9.3-14.2	0.2	- 8.0, 9.0	0.972	9.6	7.8–11.6	- 2.2	- 8.0, 3.9	0.470
Illiterate	10.2	8.1-12.3	Reference			12.1	9.4-14.6	Reference			9.7	7.9-11.8	Reference		
Primary level	10.9	8.4-13.1	- 0.8	- 2.8, 1.1	0.403	12.1		- 0.6	- 3.6, 2.4	0.683	9.3	7.6-11.2	- 0.3	-2.9, 2.3	0-808
Elementary	11-0	8.5-13.1	0.1	- 1.8, 2.1	0.903	11.8	9.1-13.8	0.6	-2.2, 3.5	0.681	8.9	7-4-10-6	- 1.7	- 4.6, 1.2	0.245
or higher levels Physical activity															
Low	10.8	8.5-13.0	Reference			12.4	9.5-14.9	Reference			6.6	8.1-12.0	Reference		
Moderate	10.3	8.1-12.3	-2.1	-3.6, -0.6	0.006	11.7	9.1-13.9	- 3.3	-5.8, -0.7	0.014	9-5	7.7-11.4	- 1.2	- 3.0, 0.6	0.189
High	10.2	8.0-12.2	- 3.3	-5.1, -1.6	<0.001	11.8	9.1-13.9	- 3.1	-6.1, 0.1	0.056	9.2	7.6-11.1	- 3.5	-5.5, -1.3	0.002

IV.

variables were included in the same models

 \pm Calculated as (antilog β coefficient -1) × 100. § A total of 388 subjects with antihypertensive treatment and controlled BP were included

90 Prevalence of hyperhomocysteinaemia (%) 84.1 † 80 70 63·2 61.6 * 60 52.7 50 40 36.7 32.9 30 70 CC СТ ΤТ

Hyperhomocysteinaemia prevalence and determinants

Fig. 1. Prevalence of hyperhomocysteinaemia (total plasma homocysteine \geq 10 μ mol/l) by methylenetetrahydrofolate reductase 677C > T polymorphism and sex (men (□), n 5421; women (□), n 8525). * There was a significant interaction effect between sex and 677CT genotype (P < 0.05). † There was a significant interaction effect between sex and 677TT genotype (P < 0.05).

participants with antihypertensive treatment had a higher prevalence of hyperhomocysteinaemia. Whether this was a treatment side effect is still inconclusive^(31,32).

The *MTHFR* 677C > T polymorphism is the most important genetic determinant of plasma tHcy⁽³³⁾. Furthermore, previous studies^(34,35) suggested that age and sex may modify the contribution of the MTHFR 677C > T polymorphism to tHcy concentrations under conditions of lower folate status. For example, Papoutsakis et al.⁽³⁴⁾ reported that only males with the MTHFR 677TT genotype had tHcy that was significantly higher than tHcy levels of C-allele carriers (P=0.001). Russo *et al.*⁽³⁵⁾ observed that only in younger men (<math><55 years old),</sup> TT subjects had significantly higher tHcy concentrations than those with the CT or CC genotype (P < 0.05 for either of these genotypes). In the present study, subjects with MTHFR 677TT and CT genotypes (v. CC genotype) had higher tHcy concentrations in men or women. Also, there were significant interaction effects between the MTHFR C677T polymorphism and sex on the prevalence of hyperhomocysteinaemia. Most importantly, the frequency of the MTHFR 677TT genotype was 26.4 %, similar to the result (24.8%) found in a previous hypertensive adult study in different Chinese regions^(21,22), but higher than that in other countries⁽³⁶⁾. Another study has found that the MTHFR 677C > T polymorphism was one of the major determinants of stroke risk⁽⁹⁾. Thus, the high prevalence of the MTHFR 677TT genotype and its interaction effects with sex on the prevalence of hyperhomocysteinaemia may partly explain the high incidence of stroke, even with strict HTN control, in Chinese hypertensive adults, particularly in men^(15,37).

In summary, we simultaneously evaluated the effect of a major genetic polymorphism, lifestyle, region, socio-economic status and diet on the prevalence of hyperhomocysteinaemia in Chinese hypertensive adults. The inclusion or exclusion of participants with known CVD, diabetes and dyslipidaemia in the present analyses had little effect on the results. There are limitations of the present study. The data collected on food intake and lifestyle habit are quite limited; plasma levels of folic acid and other B vitamins are not available at this time; and our sample was from hypertensive adults in one region. So, the findings from the present study may not be directly generalisable to the general population. We mainly focused on the effect of lifestyle factors (smoking, alcohol drinking, physical activity, etc.), socio-economic status and genetic background on the prevalence of hyperhomocysteinaemia.

In conclusion, there was a high prevalence of hyperhomocysteinaemia in Chinese hypertensive adults, particularly in participants in inland (*v*. coastal) areas. Sex, age and the *MTHFR* genotype were the major risk factors, while BMI, GFR, smoking, alcohol drinking and physical activity were also significant determinants. Folic acid supplementation and the concomitant lifestyle change, including smoking cessation, obesity control and improvement in physical activity levels may help to decrease tHcy and reduce the CVD risk in this population.

Acknowledgements

The study was supported by the Ministry of Science and Technology of the People's Republic of China (2012zx09101-105); the Department of Development and Reform, Shenzhen (2010)1744; the Department of Science, Industry, Trade and Information Technology, Shenzhen. The sponsors did not participate in the design or conduct of the study, collection, management, analysis, and the interpretation of the data, or preparation, review and approval of the manuscript. The authors' contributions are as follows: Y. W., X. L., X. Q., Y. C., M. H., L. S., J. L., Y. Z., G. T., B. W., N. S., Xin Xu, L. L., Xiping Xu and Y. H. participated in the design of the study; Y. W., X. L., X. Q., Y. C., M. H., L. S., J. L., Y. Z., G. T., B. W., N. S., Xin Xu, L. L., Xiping Xu and Y. H. conducted the study; Y. W., X. L., X. Q., Xin Xu, Xiping Xu and Y. H. analysed the data; Y. W., X. L., X. Q., Y. C., M. H., L. S., J. L., Y. Z., G. T., B. W., N. S., Xin Xu, L. L., Xiping Xu and Y. H. wrote the paper. All authors read and approved the final manuscript. The authors declare that they have no competing interests.

References

- Tolonen H, Mähönen M, Asplund K, *et al.* (2002) Do trends in population levels of blood pressure and other cardiovascular risk factors explain trends in stroke event rates? Comparisons of 15 populations in 9 countries within the WHO MONICA Stroke Project. World Health Organization Monitoring of Trends and Determinants in Cardiovascular Disease. *Stroke* 33, 2367–2675.
- Wald DS, Law M & Morris JK (2002) Homocysteine and cardiovascular disease: evidence on causality from a metaanalysis. *BMJ* 325, 1202–1206.
- 3. The Homocysteine Studies Collaboration (2002) Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. *JAMA* **288**, 2015–2022.
- de Ruijter W, Westendorp RG, Assendelft WJ, *et al.* (2009) Use of Framingham risk score and new biomarkers to predict cardiovascular mortality in older people: population based observational cohort study. *BMJ* 8, 338–a3083.
- Wang X, Qin X, Demirtas H, *et al.* (2007) Efficacy of folic acid supplementation in stroke prevention: a meta-analysis. *Lancet* 369, 1876–1882.
- Huo Y, Qin X, Wang J, *et al.* (2012) Efficacy of folic acid supplementation in stroke prevention: new insight from a meta-analysis. *Int J Clin Pract* 66, 544–551.

- Qin X, Huo Y, Langman CB, *et al.* (2011) Folic acid therapy and cardiovascular disease in ESRD or advanced chronic kidney disease: a meta-analysis. *Clin J Am Soc Nephrol* 6, 482–488.
- 8. Qin X, Xu M, Zhang Y, *et al.* (2012) Effect of folic acid supplementation on the progression of carotid intima-media thickness: a meta-analysis of randomized controlled trials. *Atherosclerosis* **222**, 307–313.
- Holmes MV, Newcombe P, Hubacek JA, et al. (2011) Effect modification by population dietary folate on the association between MTHFR genotype, homocysteine, and stroke risk: a meta-analysis of genetic studies and randomised trials. *Lancet* 378, 584–594.
- Clarke R, Halsey J, Lewington S, *et al.* (2010) Effects of lowering homocysteine levels with B vitamins on cardiovascular disease, cancer, and cause-specific mortality: meta-analysis of 8 randomized trials involving 37,485 individuals. *Arch Intern Med* **170**, 1622–1631.
- Refsum H, Nurk E, Smith AD, *et al.* (2006) The Hordaland Homocysteine Study: a community-based study of homocysteine, its determinants, and associations with disease. *J Nutr* **136**, Suppl. 6, 1731S–1740S.
- Sun Y, Chien KL, Hsu HC, *et al.* (2009) Use of serum homocysteine to predict stroke, coronary heart disease and death in ethnic Chinese. 12-year prospective cohort study. *Circ J* 73, 1423–1430.
- 13. Stanger O, Herrmann W, Pietrzik K, *et al.* (2003) DACH-LIGA homocysteine (German, Austrian and Swiss Homocysteine Society): consensus paper on the rational clinical use of homocysteine, folic acid and B-vitamins in cardiovascular and thrombotic diseases: guidelines and recommendations. *Clin Chem Lab Med* **41**, 1392–1403.
- McCully KS (2007) Homocysteine, vitamins, and vascular disease prevention. *Am J Clin Nutr* 86, 15638–15688.
- 15. Zhao D, Liu J, Wang W, *et al.* (2008) Epidemiological transition of stroke in China. Twenty-one-year observational study from the Sino-MONICA-Beijing Project. *Stroke* **39**, 1668–1674.
- Pezzini A, Grassi M, Del Zotto E, *et al.* (2006) Interaction of homocysteine and conventional predisposing factors on risk of ischaemic stroke in young people: consistency in phenotype-disease analysis and genotype-disease analysis. *J Neurol Neurosurg Psychiatry* 77, 1150–1156.
- Graham IM, Daly LE, Refsum HM, *et al.* (1997) Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project. *JAMA* 277, 1775–1781.
- Towfighi A, Markovic D & Ovbiagele B (2010) Pronounced association of elevated serum homocysteine with stroke in subgroups of individuals: a nationwide study. *J Neurol Sci* 298, 153–157.
- 19. Levey AS, Coresh J, Greene T, *et al.* (2006) Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. *Ann Intern Med* **145**, 247–254.
- DuBois D & DuBois EF (1916) A formula to estimate the approximate surface area if height and weight be known. *Arch Int Med* 17, 863–871.
- Qin X, Li J, Cui Y, *et al.* (2012) Effect of folic acid intervention on the change of serum folate level in hypertensive Chinese adults: do methylenetetrahydrofolate reductase and methionine synthase gene polymorphisms affect therapeutic responses? *Pharmacogenet Genomics* 22, 421–428.
- 22. Qin X, Li J, Cui Y, *et al.* (2012) MTHFR C677T and MTR A2756G polymorphisms and the homocysteine lowering efficacy of different doses of folic acid in hypertensives Chinese adults. *Nutr J* **11**, 2.

- Hao L, Ma J, Zhu J, *et al.* (2007) High prevalence of hyperhomocysteinemia in Chinese adults is associated with low folate, vitamin B-12, and vitamin B-6 status. *J Nutr* 137, 407–413.
- 24. Jacques PF, Bostom AG, Wilson PWF, *et al.* (2001) Determinants of plasma total homocysteine concentration in the Framinghan Offspring cohort. *Am J Clin Nutr* **73**, 613–621.
- Ganji V & Kafai MR (2003) Demographic, health, lifestyle, and blood vitamin determinants of serum total homocysteine concentrations in the third National Health and Nutrition Examination Survey, 1988–1994. *Am J Clin Nutr* 77, 826–833.
- 26. de Bree A, Verschuren WM, Blom HJ, *et al.* (2001) Lifestyle factors and plasma homocysteine concentrations in a general population sample. *Am J Epidemiol* **154**, 150–154.
- 27. Lee CD, Folsom AR & Blair SN (2003) Physical activity and stroke risk: a meta-analysis. *Stroke* **34**, 2475–2481.
- 28. Amouzou EK, Chabi NW, Adjalla CE, *et al.* (2004) High prevalence of hyperhomocysteinemia related to folate deficiency and the 677C \rightarrow T mutation of the gene encoding methylenetetrahydrofolate reductase in coastal West Africa. *Am J Clin Nutr* **79**, 619–624.
- Craig SA (2004) Betaine in human nutrition. *Am J Clin Nutr* 80, 539–549.
- Vogiatzoglou A, Smith AD, Nurk E, *et al.* (2009) Dietary sources of vitamin B-12 and their association with plasma vitamin B-12 concentrations in the general population: the Hordaland Homocysteine Study. *Am J Clin Nutr* **89**, 1078–1087.

- Poduri A, Kaur J, Thakur JS, *et al.* (2008) Effect of ACE inhibitors and beta-blockers on homocysteine levels in essential hypertension. *J Hum Hypertens* 22, 289–294.
- 32. Westphal S, Rading A, Luley C, *et al.* (2003) Antihypertensive treatment and homocysteine concentrations. *Metabolism* **52**, 261–263.
- 33. Hustad S, Midttun Ø, Schneede J, *et al.* (2007) The methylenetetrahydrofolate reductase $677C \rightarrow T$ polymorphism as a modulator of a B vitamin network with major effects on homocysteine metabolism. *Am J Hum Genet* **80**, 846–855.
- 34. Papoutsakis C, Yiannakouris N, Manios Y, *et al.* (2006) The effect of MTHFR(C677T) genotype on plasma homocysteine concentrations in healthy children is influenced by gender. *Eur J Clin Nutr* **60**, 155–162.
- 35. Russo GT, Friso S, Jacques PF, *et al.* (2003) Age and gender affect the relation between methylenetetrahydrofolate reductase C677T genotype and fasting plasma homocysteine concentrations in the Framingham Offspring Study Cohort. *J Nutr* **133**, 3416–3421.
- 36. Wilcken B, Bamforth F, Li Z, *et al.* (2003) Geographical and ethnic variation of the 677C > T allele of 5,10 methylenetetrahydrofolate reductase (MTHFR): findings from over 7000 newborns from 16 areas world wide. *J Med Genet* 40, 619–625.
- 37. Kjeldsen SE, Julius S, Hedner T, *et al.* (2001) Stroke is more common than myocardial infarction in hypertension: analysis based on 11 major randomized intervention trials. *Blood Press* **10**, 190–192.

1293