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Impulsive impact of a body fully submerged
in an open container
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An impulsively starting motion of a cylindrical body submerged below a calm water
surface in an open container of arbitrary shape is considered. This work generalizes the
case of an infinite-depth liquid studied by Semenov et al. (J. Fluid Mech., vol. 919, 2021,
R4). Particular attention is paid to the interaction between the body, the free surface and
the container. The integral hodograph method is employed to derive the complex velocity
potential in a parameter plane. The boundary-value problem is reduced to a system of
integral equations, which is solved numerically. The velocity field, the pressure impulse
on the body and the container wall and the added mass just after the impact are determined
for a wide range of depths of submergence and container geometries and for various
cross-sectional shapes of the body, such as a flat plate, a circle and a rectangle.
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1. Introduction

The impulsive impact of an incompressible liquid is a violent nonlinear event, which
usually lasts for a very short period of time, but extremely large hydrodynamic loads
on structures can be generated. A green water impact on a ship deck, the slamming of
a ship bottom and a wave impact on offshore platforms or the coastline are well-known
examples. In particular, a high-speed hydrofoil craft, whose foil system is fully submerged,
may experience sudden vertical impacts caused by waves hitting the main body of the craft.

The problem of the impulsive motion of a body submerged below a free surface has a
long history, which goes back to the work of Havelock (1927, 1936), who extended the
work of Lamb (1913) with the application of a linearized free-surface boundary condition.
Remarkable developments of the impulse theory were made in the works of von Kármán
(1929) and Wagner (1932) devoted to impacts of floating bodies with application to
seaplane landing and ship slamming. There is also a large body of research dealing with the
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impulse motion concept with application to wave impacts on marine and coastal structures
(Cooker & Peregrine 1995), ship slamming (Korobkin & Pukhnachov 1988), the impulsive
vertical motion of a body initially floating on a flat free surface (Iafrati & Korobkin 2005),
dam-break flows (Korobkin & Yilmaz 2009), impulsive sloshing in containers and tanks
(Tyvand & Miloh 2012) and drops that hit a solid or liquid surface in an impulsive impact
(Hjelmervik & Tyvand 2017).

Tyvand & Miloh (1995) studied an unsteady nonlinear free-surface flow generated by
the impulsive start of motion of a submerged cylinder using the method of small-time
series expansion, taking into consideration orders high enough to account for the leading
gravitational effects on the surface elevation and to predict the hydrodynamic force acting
on the cylinder. More recently, the similar problem of a free-surface motion generated
by a submersed elliptical cylinder was considered by Kostikov & Makarenko (2018) and
Martin Pardo & Nedić (2021), accounting for fully nonlinear boundary conditions on the
free surface. They reduced the boundary-value problem to a system of integral equations,
which is solved numerically.

Tyvand, Mulstad & Bestehorn (2021) applied the impulsive concept to study a nonlinear
Cauchy–Poisson problem with impulsive surface forcing, in which an incompressible
liquid with an initially horizontal surface is instantaneously put into motion by an
impulsive surface pressure distribution turned on and off during an infinitesimal time
interval. A solution based on the impulsive concept may lead to an infinite velocity where
a free surface meets a solid body. In such cases, the impulse solution is used as an outer
solution, which has to be matched with an inner solution in the vicinity of the contact line
using the method of matched asymptotic expansions (King & Needham 1994; Needham,
Billingham & King 2007).

Most of the studies mentioned above dealt with an impulsive motion in an unbounded
liquid domain. By contrast, we consider the impulsive motion of a body fully submerged
in an open container or channel with walls, which may significantly affect the forces acting
on the body. Applications include offshore structure installation processes, operations in
the pool of an atomic power plant etc.

The formulation of the problem allows us to consider arbitrary shapes of the submerged
body and the container. The case of an infinite-width container, or a channel of finite
depth, is obtained as the special case where the sidewalls of the container are extended
to infinity. The pressure impulse on the body and the container surfaces, the velocity on
the free surface and the added mass are determined for a rectangular and a semicircular
container and for a finite-depth channel; for various cross-sectional shapes of the body,
such as a flat plate, a circle and a rectangle; and in a wide range of distances between the
body, the free surface, the bottom of the channel and the container walls.

2. Boundary-value problem

A sketch of the physical domain is shown in figure 1(a). A body with characteristic length
L is submerged in a container below a calm free surface of a liquid. Both the body and
the container are symmetric about the Y-axis, and therefore only half of the flow region is
considered. Before the time of impact, t = 0, the body and the liquid are at rest. At time
t = 0+ the body is suddenly set into motion with acceleration a directed downwards so
that during an infinitesimal time interval �t → 0, the velocity of the body reaches the
value U = a�t.

We define a Cartesian coordinate system XY attached to the body and a coordinate
system X′Y ′ attached to the container. The body and the container are assumed to have
an arbitrary shape, which is defined by the slope of the body boundary, δb = δb(S), and
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Figure 1. (a) Sketch of the physical z-plane; (b) the parameter plane, or ζ -plane; (c) sketch illustrating the
definition of the angles β, γ and δc.

the slope of the container, δc = δc(S), as functions of the arclength coordinate S along
the solid boundary. The liquid is assumed to be ideal and incompressible, and the flow is
irrotational. Gravity and surface tension effects during the impact are ignored.

We introduce complex potentials W(Z) = Φ(X, Y)+ iΨ (X, Y) and W ′(Z) = Φ ′(X, Y)+
iΨ ′(X, Y) with Z = X + iY in the coordinate systems XY attached to the body and X′Y ′
attached to the container, respectively. In these systems, the velocity fields during the
impact 0 < t < �t are related as follows:

dW
dZ

= dW ′

dZ
− iat. (2.1)

Integrating equation (2.1), we find

W ′ = W + iUZ (2.2)

just after the impact. The relation between the potentials Φ ′ and Φ is obtained by taking
the real part of (2.2),

Φ ′ = Φ − UY. (2.3)

By integrating Bernoulli’s equation

∂Φ ′

∂t
+ p′

ρ
+ |V ′|2

2
= f (t) (2.4)

over an infinitesimal time interval �t → 0, the pressure impulse is obtained as

Π ′ =
∫ �t

0
p′ dt = −ρΦ ′ = −ρΦ + ρUY. (2.5)

Here, p is the hydrodynamic pressure and f (t) is an arbitrary function of time.
The added mass M′ can be modelled as the effective mass of the liquid moving with the

body; therefore, the kinetic energy of the liquid per unit length normal to the plane can be
expressed as

T = 1
2 M′U2 = 1

2 m′ρL2U2, (2.6)

where ρ is the density of the liquid and m′ is the added mass coefficient. On the other
hand, the kinetic energy of the liquid generated by the impact can be expressed in terms of
the velocity potential:

T = 1
2
ρ

∫
R

∇Φ ′∇Φ ′ dR = −1
2
ρ

∫
Ab+Ac

Φ ′ ∂Φ ′

∂n
dA, (2.7)

where R is the liquid domain, Ab is the body surface and Ac is the container surface.
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On the container surface ∂Φ ′/∂n = 0. By using the kinematic boundary condition on
the body surface,

∂Φ ′

∂n
= Uny, (2.8)

we rewrite (2.7) using dimensionless quantities normalized to U, L and ρ, i.e. v = |V|/U,
x = X/L, y = Y/L, s = S/L, h̄ = h/L, H̄ = H/L, lc = Lc/L and φ(s) = Φ(S)/(LU), and
the area element dA = L ds per unit length normal to the plane of the flow. This yields

T = −1
2
ρL2U2

∫ sC

sA

φ′(s) cos(n, y) ds = 1
2

m′ρL2U2, (2.9)

where sA and sC are the arclengths of points A and C in figure 1(a). By using (2.3) in
dimensionless form, from (2.6) and (2.9) we obtain that the added mass coefficients m′
and m in the systems of coordinates X′Y ′ and XY are related as follows:

m′ = m − a∗, (2.10)

where

m′ = −2
∫ sC

sA

φ′(s) cos(n, y) ds, m = −2
∫ sC

sA

φ(s) cos(n, y) ds,

a∗ = −2
∫ sC

sA

y(s) cos(n, y) ds.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.11)

Here, a∗ is the dimensionless cross-sectional area of the body. The added mass m accounts
for the buoyancy force caused by the acceleration of the container. The factor ‘2’ accounts
for the force acting on the part of the body symmetric about the y-axis.

In the following, we have to determine the velocity potential of the flow φ(s) in the
system of coordinates XY , in which the container suddenly starts to move upward with
velocity U.

3. Conformal mapping

At the first step, we choose the first quadrant of the ζ -plane in figure 1(b) as an
auxiliary parameter region as was suggested by Michell (1890) and Joukovskii (1890). The
conformal mapping theorem allows us to arbitrarily choose the locations of three points,
which are point O at the origin, ζ = 0, point E at infinity, ζ = ∞, and point B at ζ = 1.
The positions of points A (ζ = a), C (ζ = c) and D (ζ = d) are to be determined from the
solution of the problem and physical considerations.

We formulate boundary-value problems for the complex velocity function, dw/dz, and
for the derivative of the complex potential, dw/dζ , both defined in the ζ -plane. If these
functions are known, then the derivative of the mapping function is obtained as

dzm

dζ
= dw

dζ

/
dw
dz
, (3.1)

and its integration in the ζ -plane gives the mapping function z = zm(ζ ) relating the
coordinates in the parameter plane and the physical plane.
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3.1. Expressions for the complex velocity and the derivative of the complex potential
At this stage, we assume that the velocity direction is known as a function of the parameter
variable ξ on the whole real axis of the first quadrant: β = βb(ξ) on the interval 0 ≤ ξ ≤
d, including the body boundary ABC and the intervals OA and CD on the y-axis; and
β = β(ξ) on the interval d ≤ ξ ≤ ∞ corresponding to the wall of the container. We also
assume that the magnitude of the velocity on the free surface is a known function of the
parameter variable η on the whole imaginary axis of the first quadrant, i.e. v = v(η) for
0 < η < ∞. The boundary-value problem for the complex velocity function can be written
as follows:

χ(ξ) = arg
(

dw
dz

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−βb(a)+ β0, 0 ≤ ξ < a,
−βb(ξ), a ≤ ξ ≤ c,
−βb(c)− β0, c ≤ ξ ≤ d,
−β(ξ), d ≤ ξ < ∞,

(3.2)

v(η) =
∣∣∣∣dw

dz

∣∣∣∣
ζ=iη

, 0 < η < ∞. (3.3)

The function χ(ξ) has step changes �χA = −π/2 at the point ζ = a and �χC = −π/2
at the point ζ = c.

Now a mixed boundary-value problem for the complex velocity is formulated, and its
solution is obtained with the help of the integral formula (5) in Semenov & Yoon (2009):

dw
dz

= v∞ exp
[

1
π

∫ ∞

0

dχ
dξ

ln
(
ζ + ξ

ζ − ξ

)
dξ − i

π

∫ ∞

0

d ln v
dη

ln
(
ζ − iη
ζ + iη

)
dη + iχ∞

]
,

(3.4)
where v∞ = v(η)η→∞ and χ∞ = χ(ξ)ξ→∞.

Substituting (3.2) and (3.3) into (3.4) and evaluating the first integral over the step
changes at the points ζ = a and ζ = c, after some manipulations the expression for the
complex velocity takes the form

dw
dz

= v∞
(
ζ − a
ζ + a

)1/2 (
ζ − c
ζ + c

)1/2

exp
[

1
π

∫ c

a

dβb

dξ
ln
(
ζ − ξ

ζ + ξ

)
dξ

+ 1
π

∫ ∞

d

dβ
dξ

ln
(
ζ − ξ

ζ + ξ

)
dξ − i

π

∫ ∞

0

d ln v
dη

ln
(
ζ − iη
ζ + iη

)
dη − iβ0

]
, (3.5)

where v∞ = v(η)η→∞ is the velocity at the contact point of the free surface and the
container (point E) and β0 = π/2 is the velocity direction at point O.

At the next step, we will derive an expression for the derivative of the complex potential,
dw/dζ . We introduce unit vectors n and τ , which are normal and tangent to the boundary
of the liquid domain, respectively (see figure 1a,c). In this notation, we write

dw = (vτ + ivn) ds = veiΩ ds, (3.6)

where s is the arclength coordinate, and vτ and vn are the normal and tangential velocity
components, respectively. Let us consider the function

ϑ(ζ ) = arg
(

dw
dζ

)
= arg

(
dw
ds

)
+ arg

(
ds
dζ

)
= Ω(ζ)+

{
0, ζ = ξ,

−π/2, ζ = iη, (3.7)
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where

Ω(ζ) =
⎧⎨
⎩

π, 0 ≤ ξ ≤ d, η = 0,
γ (ξ), d ≤ ξ < ∞, η = 0,
π/2, 0 ≤ η < ∞, ξ = 0,

(3.8)

and γ (ξ) is the angle between the velocity vector and the tangent to the container wall. It
is shown in figure 1(c) that γ = δ − β. The function Ω equals π on the body surface and
the intervals OA and CD of the y-axis. At point D, the functionΩ(ζ)ζ=ξ increases from π
to the value 3π/2 because the y-axis and the slope of the bottom make a right angle π/2,
while the velocity keeps its direction along the y-axis. Thus, the function Ω(ξ) has a step
change�ΩD = π/2 at point D. On the free surface, the pressure is constant, and therefore
the velocity vector is normal to the free surface, or Ω(η) ≡ π/2.

The boundary conditions (3.7) and (3.8) determine the argument of the complex
function dw/dζ on the real and imaginary axes of the first quadrant of the ζ -plane.

The integral formula (equation (10) in Semenov & Yoon 2009)

dw
dζ

= K exp

[
1
π

∫ 0

∞
dϑ
dξ

ln
(
ζ 2 − ξ2

)
dξ + 1

π

∫ ∞

0

dϑ
dη

ln
(
ζ 2 + η2

)
dη + iϑ∞

]
(3.9)

solves the above boundary-value problem. Substituting (3.7) and (3.8) into (3.9) and
evaluating the first integral over the step change at point ζ = d, after some manipulations
we obtain the derivative of the complex potential,

dw
dζ

= K√
ζ 2 − d2

exp
[
− 1

π

∫ ∞

d

dγ
dξ

ln
(
ζ 2 − ξ2

)
dξ + iγE

]
, (3.10)

where K is a real factor and γE = γ (ξ)ξ→∞
Equations (3.5) and (3.10) include the parameters a, c, d and K and the functions v(η),

βb(ξ), β(ξ) and γ (ξ), all to be determined from physical considerations and the kinematic
boundary condition on the free surface, the body boundary and the container wall.

3.2. Body boundary conditions for the function βb(ξ), a ≤ ξ ≤ c
We have the following geometrical conditions: the depth of submergence, h̄; the arclength
between points A and B, sAB; the arclength between points B and C, sBC; and the distance
between the body and the bottom, sCD. By using (3.5), (3.10) and (3.1) we can determine
the derivative of the arclength coordinate,

dsb

dξ
=
∣∣∣∣dzm

dζ

∣∣∣∣
ζ=ξ

=
∣∣∣∣ dw

dζ

/
dw
dz

∣∣∣∣
ζ=ξ

. (3.11)

Then, the geometrical conditions may be written in the form

∫ a

0

dsb

dξ
= h̄,

∫ 1

a

dsb

dξ
= sAB,

∫ c

1

dsb

dξ
= sBC,

∫ d

c

dsb

dξ
= sCD. (3.12a–d)

They form a system of equations in the parameters a, c, d and K.
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By using the given function of the slope of the body, βb(sb), and (3.11) we can obtain
the following integro-differential equation in the function βb(ξ):

dβb

dξ
= dβb

ds

∣∣∣∣ dz
dζ

∣∣∣∣
ζ=ξ

= dβb

ds
K

v∞
√

|d2 − ξ2|

∣∣∣∣ξ + a
ξ − a

∣∣∣∣
1/2 ∣∣∣∣ξ + c

ξ − c

∣∣∣∣
1/2

× exp
[
− 1

π

∫ ∞

a

dβb

dξ ′ ln
∣∣∣∣ξ − ξ ′

ξ + ξ ′

∣∣∣∣ dξ ′ − 1
π

∫ ∞

d

dγ
dξ ′ ln

∣∣∣ξ ′2 − ξ2
∣∣∣ dξ ′

− 2
π

∫ ∞

0

d ln v
dη

arctan
η

ξ
dη
]
. (3.13)

Equation (3.13) is solved by iteration using dβb/dξ on the right-hand side known at the
previous iteration.

3.3. Free-surface boundary conditions for the function v(η), 0 < η < ∞
An impulsive impact is characterized by an infinitesimally small time interval �t → 0
such that the position of the free surface does not change during the impact. From the
Euler equations it follows that the velocity generated by the impact is perpendicular to the
free surface (p = pa):

arg

(
dw
dz

∣∣∣∣
ζ=iη

)
= −β0, 0 ≤ η ≤ ∞. (3.14)

Taking the argument of the complex velocity from (3.5), we obtain the following integral
equation in the function d ln v/dη:∫ ∞

0

d ln v
dη

ln
∣∣∣∣η′ − η

η′ + η

∣∣∣∣ dη′ + tan−1
(η

a

)
+ tan−1

(η
c

)

+ 2
π

∫ {c,∞}

{a,d}
d{βb, β}

dξ
tan−1

(
η

ξ

)
dξ = 0. (3.15)

Equation (3.15) is a Fredholm integral equation of the first kind with a logarithmic
kernel. Its solution takes the form (Semenov, Savchenko & Savchenko 2021)

v(η) =
√
η2 + a2

√
η2 + c2 exp

(
1
π

∫ c

a

dβb

dξ
ln(η2 + ξ2) dξ

+ 1
π

∫ ∞

d

dβ
dξ

ln(η2 + ξ2) dξ
)
. (3.16)

3.4. Boundary conditions on the container wall for the function β(ξ), d ≤ ξ ≤ ∞
On the bottom of the container, the normal components of the velocity of the liquid and
the container must be the same (see figure 1c):

vb sin γ = − cos δc, γ = δc − β. (3.17a,b)

The velocity magnitude vb = |dw/dz|ζ=ξ on the bottom of the container must satisfy
(3.17a,b). By taking the logarithm of (3.5) for ζ = ξ , we obtain the following integral
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equation in the function β(ξ):

1
π

∫ ∞

d

dβ
dξ

ln
∣∣∣∣ξ − ξ ′

ξ + ξ ′

∣∣∣∣ dξ ′ = ln

(
− cos δc

sin(δc − β)

√
ξ + a
ξ − a

ξ + c
ξ − c

)

− 1
π

∫ c

a

dβb

dξ ′ ln
(
ξ − ξ ′

ξ + ξ ′

)
dξ ′ − 2

π

∫ ∞

0

d ln v
dη

tan−1
(
η

ξ

)
dη, d ≤ ξ < ∞.

(3.18)

Equations (3.13), (3.17a,b) and (3.18) form a closed system of equations in the functions
βb(ξ), γ (ξ) and β(ξ).

4. Results and discussion

4.1. Numerical approach
In discrete form, the solution is sought on a given set of points ξi, i = 1, . . . ,N, distributed
along the real axis of the first quadrant on the interval 0 < ξi < ξ∗ and a given set of
points ηj, j = 1, . . . ,M, distributed along the imaginary axis on the interval 0 < ηj < ξ∗.
The value ξ∗ is chosen in the range 102 to 103, N in the range 400 to 800 and M in the
range 100 to 200 based on the requirement for convergence and accuracy of the solution.
The points ξi are distributed in such a way as to provide a density of points si = s(ξi) high
enough to follow the shape of the body and the container. The points ηj are distributed in
such a way as to provide a higher density of points sj = s(ηj) on the free surface above the
submerged body where the velocity magnitude changes faster than on the rest of the free
surface. Usually, a geometrical law of distribution for the points ηj is used.

The integrals are evaluated analytically over each segment (ξi−1, ξi) or (ηj−1, ηj), on the
basis of which the functions βb(ξ), β(ξ) and ln v(η) can be accurately approximated by
linear interpolation within the intervals. Then, the derivative within the segment (ξi−1, ξi)
is constant: dβ/dξ = β ′

i = �βi/�ξi where �βi = βi − βi−1 and �ξi = ξi − ξi−1.
By using a linear interpolation of the function β(ξ), the integral equation (3.18) is

reduced to a system of linear equations. Although this equation is weakly singular, the
solution obtained is quite accurate. More details about the numerical approach can be
found in Yoon & Semenov (2011).

4.2. Open channel flow
By using a small-time expansion, the first-order approximation of the free surface can be
obtained as follows:

η̄(x, t) = η̄(x, 0)+ ∂η̄

∂t
(x, 0)t + · · · . (4.1)

Here, the kinematic boundary condition on the free surface (the velocity is perpendicular
to the free surface) is used:

∂η̄

∂t
[x(η), 0] = −Im

(
dw
dz

)
ζ=iη

= v[x(η), 0]. (4.2)

Figure 2 shows the streamline patterns and the velocity distribution on the free surface for
the starting flow generated by the bottom of the channel starting sudden upward motion
while the position of the submerged body is fixed. The depth of the channel for the plate
(figure 2a–c) is chosen as H̄ = 10. In order to compare the results for different shapes of
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Figure 2. Streamline patterns (the left y-axis) and the velocity distribution on the free surface (the upper part
with the right v-axis) for the case of a sudden upward motion of the bottom with a fixed position of the body.
The depth of the channel is H̄ = 10 for the plate (a–c) and H̄ = 12 for the circle (d–f ) and the square (g–i).
The depth of submergence is h̄ = 0.04 for (a,d,g), h̄ = 5.0 for (b,e,h) and h̄ = 9.4 for (c, f,i).

the body cross-section in the same submergence depth range, the depth of the channel for
circular (figure 2d–f ) and square cross-sections (figure 2g–i) should be H̄ = 12 because
their height is equal to 2. The streamlines demonstrate the velocity direction (streamline
slope) and the velocity magnitude (streamline density) because the flow rate between two
streamlines is constant. The streamlines in figure 2 are drawn with step size �ψ = 0.2.

The configuration of the streamlines in figure 2(b,e,h) below and above the body for
depth of submergence h̄ = 5 is almost symmetric as in the case of the flow in an unbounded
domain. Therefore, both the bottom and the free surface affect the flow only weakly.
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The velocity magnitude on the free surface, which lies in the range 0.9 < v < 1, differs
only slightly from the inflow velocity, which is equal to 1.

For depth of submergence h̄ = 0.04, the results are shown in figure 2(a,d,g). The free
surface affects the velocity of the liquid above the body: the gap between the streamline
ψ = 0 (the line of symmetry x = 0) and the nearest streamlines ψ = 0.2 and ψ = −0.2
is relatively large, i.e. the velocity is relatively low there. This can also be seen from the
velocity distribution on the free surface, which is quite low above the body but rapidly
returns to the inflow velocity away from the body. For a large depth of submergence
h̄ = 9.4 the results are shown in figure 2(c, f,i). The effect of the bottom appears in the
asymmetry of the streamlines above and below the body.

It is obvious that the shape of the submerged body significantly affects the velocity
distribution around the body. At the ends of the plate as well as at the corner points of the
square, the velocity is infinite. This can be shown analytically if we evaluate the integral
in the expression for the complex velocity (3.5) at the points where a step change of the
function βb(ξ) occurs (these points correspond to the plate ends or the corner points of
the square). We mention that at depth of submergence h̄ = 0.04, the flat plate affects the
velocity distribution on the free surface to a greater extent than the bodies with circular
and square cross-sections. However, the reverse effect is observed at depth of submergence
h̄ = 9.4: the flat plate affects the free surface more weakly than the bodies with circular
and square cross-sections.

Figure 3 shows the streamline patterns and the velocity on the free surface in the case
of a sudden downward motion of the submerged body. The streamlines are obtained using
the velocity obtained from the solution of the problem in the system of coordinates XY
and its relation dW ′/dz = dW/dz + iU to the velocity in the system of coordinates X′Y ′.
The effect of the free surface and the bottom on the streamline configuration can be seen
more clearly than in figure 2 because the inflow velocity in the system of coordinates X′Y ′
is zero.

In figure 3 we can see that at a smaller depth of submergence, the body impact generates
larger velocities on the free surface and in the flow region. This can be seen from the
configuration of the streamline ψ = 0.1, which occupies a larger part of the channel at
a smaller depth of submergence of the body. This is true for all the cross-section shapes
in figure 3. By analysing the effect of the cross-sectional shape of the body, we can see
that for the plate, the streamline ψ = 0.1 occupies the smallest part of the channel in
comparison with the circular and square cross-sections. In other words, the plate impact
affects at some level the smallest flow region in comparison with the circular and square
cross-sections. The largest flow region occupied by the streamline ψ = 0.1 corresponds
to a square cross-section of the body. Such behaviour may be due to the cross-sectional
perimeter. For a larger cross-sectional perimeter, the area around the body at some fixed
distance is larger, and the liquid velocity generated by the impact is high there. This can
also explain the results for the added mass presented below, which show that the added
mass coefficient is largest for a square cross-section of the body in comparison with the
plate and a circular cross-section.

Table 1 shows the added mass coefficients in the channel for different shapes of the
cylinder cross-section. The depth of the channel is large enough to see the effects of the
free surface and the bottom on the added mass coefficient. For depth h̄ = 5, the distance to
the bottom is d̄ = 5. These values are both large enough, so that the added mass coefficient
is close to that corresponding to an impulsive motion in an unbounded liquid domain. As
the body approaches the bottom and thus their interaction becomes stronger, the added
mass coefficient starts to increase rapidly.
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Figure 3. The same as figure 2 but in the system of coordinates X′Y ′ attached to the bottom of the channel.
The depth of submergence: (a,d,g) h̄ = 0.04; (b,e,h) h̄ = 5.0; (c, f,i) h̄ = 9.4.

h̄ 0.2 0.4 0.8 1.5 3.0 5.0 7.0 9.0 9.4 9.6
d̄ 9.8 9.6 9.2 8.5 7.0 5.0 3.0 1.0 0.6 0.4

Plate (H̄ = 10) 2.134 2.446 2.791 3.010 3.115 3.148 3.182 3.466 3.872 4.403
Circle (H̄ = 12) 2.302 2.484 2.735 2.937 3.086 3.153 3.233 3.564 3.838 4.099
Square (H̄ = 12) 3.150 3.425 3.907 4.328 4.633 4.774 4.925 5.664 6.407 7.250

Table 1. Added mass coefficient for various cross-sections of the cylinder: h̄ is the depth of submergence; d̄
is the distance between the body and the bottom of the channel.
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Figure 4. Streamline patterns (the lower part of the figures) and velocity distribution on the free surface (the
upper part) for the impulsive impact of a circular cylinder in a rectangular container of different widths:
(a) lc = 10, (b) lc = 5 and (c) lc = 2. The depth of the container is H̄ = 5 and the depth of submergence
h̄ = 1.5.

4.3. Open container
The streamline patterns are shown in figure 4 for a circular cylinder submerged in a
container of square cross-section. It can be seen that the density of the streamlines
increases as the width of the container decreases. The reason for this is as follows. The
cylinder pushes the underlying liquid, and thus the liquid flows through the gap between
the cylinder and the sidewall. The smaller the gap, the higher the velocity and the greater
the density of the streamlines.

On the part of the free surface right above the body, the liquid is entrained by the
cylinder, and the free surface together with the liquid moves downward, while near the
sidewalls of the container the liquid and the free surface move up, thus providing a mass
balance of the liquid in the container.

The pressure impulse along the body and the container walls is shown in figure 5 for the
same cases as in figure 4. The arclength coordinate s − h̄ = 0 corresponds to the top point
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Figure 5. The pressure impulse on the flow boundary: the intervals of the y-axis (−1.5 < s − h̄ < 0 and
π ≤ s − h̄ ≤ π + 1.5), the body boundary (0 ≤ s − h̄ ≤ π), the container bottom (shown in the figure)
and the sidewall (the rest of the curves) for the cases shown in figure 4: (a) solid line; (b) dashed line;
(c) dash–dotted line.

w̄ 10 5.0 3.0 2.0 1.8 1.6

Plate (H̄ = 3) 3.211 3.222 3.301 3.531 3.646 3.826
Circle (H̄ = 5) 3.246 3.359 3.763 4.764 5.222 5.932
Square (H̄ = 5) 4.987 5.205 5.999 7.962 8.944 10.15

Table 2. Added mass coefficient for various cross-sections of the cylinder and widths of the container for
depth of submergence h̄ = 1.5.

of the cylinder, where the pressure impulse reaches its minimum. Its maximum pressure
impulse occurs at the lowest point of the cylinder, s − h̄ = π. The vertical lines show the
range of the arclength s corresponding to the body and the bottom of the container. It can
be seen that at the points s corresponding to the middle and the end of the bottom, where
the velocity becomes zero, the slope of the pressure impulse becomes parallel to the x-axis.
Further, the pressure impulse gradually decreases along the bottom and the sidewall and
becomes zero at the contact point between the sidewall and the free surface. This is in
agreement with the pressure impulse on the free surface, which is zero. The smaller the
width of the container, the higher the pressure impulse on the body and the container walls.
For widths lc = 10 and lc = 5 the difference is not so large, while for lc = 5 and lc = 2 it
is much larger.

The added mass coefficients are shown in table 2 for various widths of the container and
shapes of the body. As expected, the added mass gradually increases as the gap between
the cylinder and the sidewall becomes smaller.

The effect of the cross-section shape of the submerged body on the streamline pattern
and the pressure impulse is shown in figure 6 for a rectangular container of width lc = 2.
The results are qualitatively similar to those for an open channel. The plate impact
generates smaller velocities in the flow region than in the case of a square cross-section.
The pressure impulse in figure 6(c) demonstrates a strong effect of the body shape. It
gradually increases along the body with about the same gradient. This results in higher
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Figure 6. The same as figure 4 for container width lc = 2 and the submerged (a) flat plate and (b) square
cross-section. (c) The pressure impulse along the body and the container boundary for case (a) (dash–dotted
line) and case (b) (solid line) and the case in figure 4(c) (dashed line).

pressure impulse peaks for the shapes with larger perimeters P in the following order:
plate (P = 2), circular cross-section (P = π) and square cross-section (P = 4).

The streamline patterns, the velocity on the free surface and the pressure impulse on
the solid boundary are shown in figure 7 for the circular shape of the container. When
comparing the area between the streamlines ψ = 0 and ψ = 0.1 in figures 4(b) and 7(b),
it can be seen that the area in figure 7(b) is smaller than in figure 4(b); therefore, the
velocity is higher. The pressure impulse distribution along the body and the container is
similar to that in the rectangular container for the flat plate and a circular cross-section of
the body, but for a rectangular cross-section there is some difference. At the point s = 5.5,
corresponding to the bottom at x = 0, the pressure impulse starts to grow and reaches its
maximum at x ≈ 7, corresponding to the ‘bottle neck’ of the gap between the bottom and
the body; then the pressure impulse decreases as we move away along the bottom.

5. Conclusions

An impulsively starting flow generated by a cylindrical body fully submerged in a
container is studied using the integral hodograph method. The boundary-value problem
is reduced to a system of integral equations in the functions of the velocity direction
on the solid boundary and the velocity magnitude on the free surface, which are solved
numerically. The obtained solution also describes the situation where the container
suddenly starts to move upward but the body remains unmovable. In the last case, the
added mass is larger because it accounts for the buoyancy force acting on the body during
the short-time acceleration stage of the container motion.

The streamline patterns, the velocity distribution on the free surface and the pressure
impulse along the body and the container are determined for various cross-sectional shapes
of the cylindrical body, such as a plate, a circle and a square, in containers with rectangular
and semicircular cross-sections. The obtained streamline patterns show that cross-sections
with a smaller perimeter cause a smaller disturbance of the liquid in the container and
generate a smaller pressure impulse on the body and the bottom of the container at the
same depth of submergence and the same distance between the body and the container
bottom. The cross-sections listed in order of increasing perimeter are as follows: a flat
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Figure 7. The same as figure 6 but for the circular shape of a container with radius/depth H̄ = 5 and (a) the
submerged flat plate, (b) circular cross-section and (c) square cross-section. (d) The pressure impulse along the
body and the container boundary for cases (a) (dash–dotted line), (b) (dashed line) and (c) (solid line).

plate, a circle and a square. As the body approaches the bottom of the container or its
sidewalls, the pressure impulse and the added mass gradually increase.
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