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Introduction. The subject of this paper is the study of boundary value 
theorems for harmonic ^-tensors on a Riemannian space with an indefinite 
metric of the normal hyperbolic signature. The ^-tensors or ^-vectors <t>u...iP 

are alternating covariant tensors of rank p, which are closely related to differential 
forms <t> of degree p, p < m, on an w-dimensional manifold. 

On a Riemannian space with positive definite metric, the harmonic ^-tensors 
have been studied by Hodge, de Rham, Kodaira, and others, and a theory 
which generalizes the classical potential theory, and possesses in addition 
certain new features, has been developed. 

The present paper continues a program of extending the boundary value 
theorems of the theory of partial differential equations to ^-tensors. In the 
positive definite (elliptic) case, boundary value theorems have been given [3] 
for the Beltrami-Laplace equation 

A<f> = 0 

and for the harmonic field equations 

d(j> = 0 , b<j> = 0 . 

These equations are now investigated under an indefinite metric. 
The principal result is the solution of the Cauchy problem for the Beltrami-

Laplace equation. After a preliminary section, the auxiliary conditions for the 
Cauchy problem are formulated, and uniqueness under these conditions is 
established. To construct the solution, I use the method of Riesz potentials. 
For the sake of brevity, reference to Riesz' paper [9] has been made wherever 
possible. The solution of the Beltrami-Laplace equation thus obtained is then 
applied to the construction of solutions of the harmonic field equations. In a 
concluding section, some special cases, in particular the electromagnetic field 
equations, are examined, and the main theorems are compared with the results 
which hold in the elliptic case. 

1. Preliminaries. Let M be an ra-dimensional orientable Riemannian space, 
with metric 

ds~ = gijdxidxJ 

having the Lorentz signature. That is, on being transformed to a sum of squares, 
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ds2 contains one positive and m-1 negative terms. For convenience we shall refer 
to displacements as timelike if ds2 > 0 and spacelike if ds2 < 0. We shall also 
distinguish the timelike coordinate, say xm, by the letter t in certain cases. 
This metric is also known as a normal hyperbolic metric (Hadamard), the 
corresponding Laplace equation being of the normal hyperbolic type. During 
most of this paper we assume that the metric is analytic, but this restriction 
can be removed. 

Throughout we shall use such terms as continuous, compact, convergent, on 
the understanding that they refer to a suitable positive definite distance, such 
as the Euclidean distance. 

We introduce on M the skew symmetric covariant tensors <t>u... «p; correspond­
ing to these are differential forms of degree p : 

(1.1) <t> = <t>p = £ 4>u...t,dxil A . . . A dxiv = 4>{ix...iv)dxix A . . . A dxip. 
U<...<iv 

The bracket enclosing the group of indices shall mean that the indices inside it 
are arranged in strictly increasing order. The differentials dxx are multiplied 
together by the exterior multiplication indicated by the sign A ; hence these 
differentials anticommute. We now define the differential operator d\ 

(1.2) d<t> = (d4>ut.mmi9)) dxix A . . . A dxip 

Thus d<j> is a differential form of degree p + 1. Let 

\guji • • • gujp 

(L3) rilm,mip; j t . . . j p — 

then 

is just the Kronecker symbol often denoted by 

5 ji--> jp 
U...iv 

Also let 

(1.4) ettU...u= IV.. i n
12-"w |r12 . . .n 

We denote covariant derivatives of a ^-tensor 

<t>u...iv b y Di <t>u...ip, 

and set Dl = gijDj. Thus 

d4>u...ip 

givjp 

(1.5) Dt4>u.mmi9 = 

In the notation of [8a], 

(1.6) 
(d<t>)i • i p + i 

dxl 

= IV. 

. tki] ' i i . . . ik—ih ik + i... ip' 

ip+x 
jUx...Jp) 

Dj<l>Ui.-- U) 

il---iv+l dxj vUi.-.Jp)' 
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The operator d.d is identically zero. If d<j> = 0, <t> is said to be closed; if <j> — dx, 
<t> is said to be derived, and is therefore closed. The converse statement that if 
<t> is closed then <£ is derived, is true "locally," but not in the large. 

The dual *<£ of a £-form # is an (m — £)-form whose components are defined 
by the formula 

(1.7) (•*)*...*.-, = *«,... i,)*...*.-,*"1-*'* 

If p is the degree of #, then 

**<*>=(- l ) m p + > . 

Hence, save for a sign, the * operation is its own inverse. It will be seen that 
<j> and *<£ are "perpendicular" forms at each point. 

The operation of dual derivation is given by 5, where 

(**k...*,- = (-in+m+v**) <,..*_ 
(1-8) _ r Oi..../p)r)* , 

It follows from the preceding remarks that ô.ô = 0. If ô<f) = 0, <j> is said to be 
coclosed, and if <t> = 5%, <t> is coderived. A ^-tensor <t> which is both closed and 
coclosed will be known as a harmonic field [6]. 

The Beltrami-Laplace (B.L.) operator A for ^-tensors is given by 

(1.9) - A = dô + ôd, 

and in expanded form may be written 

(1.10) (A*),,...,, = D^^u...,, - i Tk il...tp
tu-i')gkiRh

Ml<f>Jl...i^M.+l...j, 

where Rhijk is the Riemannian curvature tensor and summation over the indices 
iy j , hy k and (ji. . . jp) is understood. If <f> is a scalar, then A<f> reduces to the 
usual Laplacian. A £-tensor <f> whch satisfies the B.L. equation 

(1.11) Atf> = 0 

is said to be a harmonic form. 
From (10) it is clear that the B.L. equation is of the normal hyperbolic type 

under our Lorentzian metric. In fact, the equation (1.11) stands for a system of 
(J) equations, one for each component of 0. Note that each of these equations 
has the same principal part, namely, 

a à <t>uu...u 
g dx* Ox* * 

Actually all terms containing first or second derivatives are of the same form in 
each component equation. Furthermore the form of the second order (principal) 
terms is independent of p, so the theory of the characteristics will be carried 
over unchanged from the scalar case. The characteristic surfaces of each com­
ponent equation being the same, we may speak of a characteristic surface of 
(11). These surfaces are given by 
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C{xl ...xm) = C{x) = 0, 

where 

< 1 I 2> «"££-* 
Let 0 be an arbitrary point of M which we select as origin of coordinates. 
The geodesies of zero length through 0 form a conoid [5 ; 8] which is a charac­
teristic surface (1.12). 

Let S be a sufficiently differentiable spacelike "initial" surface. For conven­
ience we assume that S is compact. We construct a system of geodesic normal 
coordinates in which S is the hyperplane xm = / = 0. Since the normals to 5 
are timelike, we can write 

(1.13) ds2 = dt2 — gapdxa dx , 

where the Greek indices range from 1 to m — 1. In this system [10], gim = ôm*> 

Associated with S we define a region R as follows. R shall consist of those 
points P on the positive side (t > 0) of S, such that the retrograde characteristic 
cones (null cones) CP with vertex P , together with that part of 5 intercepted by 
CP, bound a simply-connected region of M. Denoting this region by Ds

p
f 

following Riesz, we see that if P Ç R, every point of Ds
p also belongs to R. 

We may refer to R = Rs as the region of exclusive dependence upon S, in the 
sense that, as will be shown, solutions of the B.L. equation with data assigned on 
S are determined throughout R. 

Thus defined, Rs may contain non-bounding ^-cycles. Any £-cycle of R is 
however homologous to a p-cyc\e of S, since a continuous cylindrical (p + 1)-
dimensional surface can be constructed on the cycle, lying in R and joining the 
cycle to a (homologous) ^>-cycle which is its intersection with 5. An analogous 
remark holds for the relative ^-cycles of R (mod S) : these can all be deformed 
into S and are therefore zero. 

A ^-forrn 0 induces on any surface S (supposed given by xm = 0) a ^-forrn /</>, 
the components of which are precisely those components of </> which are not 
multiplied by dxm. The form t<j> is known as the tangential boundary component 
of <j> on 5. The residual part of </>, which contains the factor dxm, is known as the 
normal boundary component and is denoted by nefr. Thus 

(1.14) <j> = t<j> + n<j> = t<t> + </>i A d x m . 

If p = 0, t(j> = </>; if p = m, t<t> = 0. On S, and only there, this division into 
tangential and normal components has an invariant meaning. From the proper­
ties of the dual operator (7) it follows that the commutation rules 

(1.15) */ = n*, *n = t* 

hold. Also we note that if 4> is assigned on S (both t4> and #<£), then td<j> and 
nb<j> are thereby determined. However, nd<j> and tb(j> can be assigned independently, 
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since each component of these forms contains a normal derivative of a component 
of <t>. Note especially that nd<t> and tb<j> have (m~l) and (^z\) components respec­
tively, making a total of (™) components. Finally, we easily verify that 

(1.16) td<j> = dst<l), 

where ds is the differential operator (6) in the surface S. 
The surface S will be the carrier of the "initial" data for the Cauchy problem 

for the ^-tensor B.L. equation. Since this equation is of the second order, it is 
to be expected that values of the components of <t> and of their normal deriva­
tives will be assigned on S. In order to express the data on the surface 5 in an 
invariant form, we shall use the following lemma. 

LEMMA I. Let S be a surface whose equation is xm = 0 in a sufficiently differ­
entiate system of coordinates in M, and let <j>bea p-form defined in a neighbourhood 
of S. Then the specification of any one of the following sets of data is equivalent : 

(1.17) (a ) 0 , nd<f>, tb<t>\ (b ) </>, Z>m0, (c) 0 , -J™. 

The vanishing of one implies the vanishing of the other two. 

Proof of the lemma will be given in cyclic order. First we show that knowledge 
of (a) enables us to calculate (b). If i\. . . iv are all less than w, then from (6) 
follows the value of 

T)m<i>u...iv 

in terms of 
(d<t>)ilm..ipm 

and covariant derivatives of <j> along the surface. Similarly, if ip = m> say 

Dm<t>ix...iv-irn 

is given by (8) in terms of data included in (a). Next, (b) clearly implies (c), 
since all components of <t> are known on S. Finally, (c) implies that d<t> is known 
on 5, by (6). Since *0 and Dm*<t> are obtainable from (c), b<j> is also known on S. 
This proves the equivalence. The last statement of the lemma is evident. 

Let C be a {p + 1)-chain of M with real coefficients, and let its boundary be 
denoted by bC. Then Stokes's formula 

(1.18) fd<l>=f<t> 

holds. Hence, if <t> is closed, its integral over a bounding cycle C vanishes. It 
follows that a closed £-form <j> has periods fz <j> on ^-cycles Z, which depend only 
on the homology class of Z. In a manifold with boundary [2; 8b], a closed 
£-form <£ is derived if and only if its periods (on absolute cycles) vanish. 

If 0 and yp are two forms, the sum of whose degrees does not exceed m, we 
have 
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(1.19) d(4> A yp) = d<t> A tf + ( - l ) p <t> A d*, 

where p is the degree of <f>. 
Consider a subregion of My which we may take to be the region R. Let a and 

£ be two forms of degree p defined in R, and let 

(1.20) ( < * , j 8 ) a = f a A * / 3 = (0,a)B 
J R 

denote the scalar product over R. We remark that in the elliptic case (ds2 > 0), 
the scalar square (a, a)R is positive definite; however this no longer holds for our 
metric. However, for any two forms <t> and ^ of degrees p and (p + 1) respectively, 
we have the formula of Green : 

(1.21) (d<t>, +)R - ( 0 , Ô t)R = f <t> A **, 

which follows from (18), (19), and (20). The metric being indefinite, we should 
change the sign of the surface integrals over any timelike surface. However, for 
all applications which we have in view, the surface bR will consist of spacelike 
surfaces and null cones, and the integrand will be made to vanish on the latter; 
so the formula will apply as written. From (21) we obtain by formal transforma­
tion the extended formula of Green, namely, 

(1.22) - (A0, *)R + (*, A*)* 

(<t> A *d\f/ - }// A *d<t> + ô<t> A * ^ - ô\f/ A *<£) , - / 

where <t> and \f/ are now of equal degree. Regarding the right-hand side of (22) 
as a linear functional of the form <£, x// being held fixed, we observe that the 
successive terms contain t<t>, ndfy, tb<t>, and n<t>\ and that each of these expressions 
can be assigned independently of the other three. All four together are equivalent 
to any one of (17). 

2. A uniqueness property of the B.L. equation. Let R = Rs be the region 
of dependence associated with an initial surface 5 as described in the preceding 
section. In terms of the geodesic normal coordinate system (13), we may write 
the partial differential equation (11) in the form 

2 2 

(2.1) £(*,,...,,)« m2 g dxadxe 

+ a>u...iP dxk 9(ji...jP) -1- oix...ip <l>Ui...jv) - u» 

where t = xm, i < a, /3 < m — 1 ; and 
Kjx...jp) 7 (JX...JV) 

a>u...ip i Oix,..iv 

are polynomial functions of the components of the metric tensor and their first 
derivatives, which are skew-symmetric with respect to the indices i\. . . iP; 
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ji. . . j p . In this coordinate system the Cauchy problem consists of solving (2.1) 
(in general with a non-homogeneous right-hand term) given the values of the 

0 i x . . . f p a n d — 4>ilm..i9 

on S. 

LEMMA II. The solution of the Cauchy problem for (2.1) is unique in Rs. 

The argument which we use is of a standard type [1, II, p. 310], Let P be a 
point of R with retrograde null cone CPl and suppose <j> and d<t>/dt are assigned 
the value zero on the section SP of 5 enclosed by CP. We have to prove that 
<t>(P) is zero. Let <j>i denote a typical component of </>. For Q Ç R, we have 

so that by the Schwarz inequality 

<t>i\Q) < KQ) Jo \f~) dt = t Jo 4>udt, 

where t = t(Q) and the integration is taken along a parametric line of the 
coordinate system. 

The subscripts a and / will denote partial derivatives with respect to x* and 
/, respectively. Let Dh be the region enclosed by CP, and the planes t = 0, 
t = h, and SP(A) that part of the plane t = h cut off by CP. We have 

<2-2) j5,(*)^,(®"<*j5p(ik)"r*"* 
</*J^ 0<l

2d7<ftj£«(A) <ZA 

where 

(2.3) E«(A) = J 5 (0„2 + ga*4>i«<t>ip) dA. 

This follows since the metric form gap dx" dx& in the spacelike surface Sh is 
positive definite. Integrating (2.2) with respect to t from 0 to h, and noting that 
EiQi) > 0, we have 

(2.4) Ç <t>i2 dV < h2 f £,(*) <tt. 

We next consider the identity 

(2.5) 2<j>itL(<f>i) = 24>it<t>ut ~~ 2g <t>ia$<t>it + Bi(<j>j, #**, <t>jt) 

= ( 0 i « ) « + (g" <t>ia<t>i(3)t — 2 ( g a <t>ia<t>it)p + Bit^j, <j)jcty <j)jt), 

where I?* denotes an expression linear in the components of <t> and their first 
derivatives, multiplied by <j>it- Let av and tv be the direction numbers ds/dx?, 
ds/dt of the conormal v to a surface. On the surface CP we have ds2 = 0, whence 
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(2.6) /„ = gav$v on CP. 

We integrate (2.5) over Dh and apply the divergence theorem. Since L(<t>i) is 
zero we have 

0 = J y , {(*«)2 ' ' + (*""*<«**)'> - 2{ga^ia^it)^)dA + JjjBtdV. 

On SP (t = 0), <j> and its derivatives are to be zero; on Sh we have tv = 1, av = 0. 
Using (2.6) we then find 

JC (h) Tl^'P^"2 ~ 2tvg
a^v(j>ia4>it + galitu

2<t>ia<t>ifif dA 

= J C (h) T^ £*(*'**" ~~ a ' * « ) ( ^ * 0 ~ P*4>u) dA + Ei(h) 

--SDB*dV-R« 
denoting the value of the last integral by Rt. Here we have denoted by CP(h) 
that portion of CP which lies between the planes t — 0, t = h. On CP, tv is 
positive. Recalling that the metric form gap dx" dx& is positive definite, we 
conclude that 

(2.7) Et(h) < Ri. 

Adding together these relations for all components <f>u we find 

(2.8) 2(h) = E Et(h) <T,Ri = R. 
i i 

Now the quantity R defined by (2.8) is an integral over Dh of terms <f>ia 

<j>jt or <t>j <t>it, each of which is less than half the sum of the squares of the two 
factors. The coefficients of these terms in the integral R are bounded. Hence, in 
view of (2.4) we have an inequality 

(2.9) R<K J 2(h) dh, 

for some positive constant K. From (2.8) and (2.9) follows 

2(h) <K 2(t)dt<K 2(t)dt 
t /0 J 0 

for every k > h. Integrating between 0 and hy 

(2.10) f 2(h) dh<Kh f 2(h) dh. 
Jo Jo 

But (2.10) is manifestly false for h < 1/K, unless 2(h) = 0, (0 < h < 1/K). 
Hence 2(h) must vanish in this range, so that all derivatives of components of 
<t> vanish for / < 1/K. Hence <j> itself is zero in this interval of values of t. Since 
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K can be chosen to depend only on S and P and the metric, we can repeat the 
above process starting from the surface Si/K, and so on. Hence finally we obtain 
<t>(P) = 0. This completes the uniqueness proof. 

3. The Riesz kernel. A detailed exposition of the solution of the Cauchy 
problem for normal hyperbolic equations in Riemannian spaces has been given 
by M. Riesz [9]. We shall construct the solution for the ^-tensor B.L. equation 
using Riesz's method. For a complete discussion of matters upon which we only 
touch, the reader is referred to Riesz's work. 

It is required to construct a double ^-tensor kernel 

(3.1) V(x, y) = Va
v{x, y) = \Va

v{x, y)tl...u, , , . . . , ,} 

having the properties: 

(a) AxV
a+i = V, 

(b) V°(x,y)=0(s°-m), 

where 5 is the geodesic distance from x to y, 

(c) V(x, y) = V(y, x), 

(d) j D , V(x,y) A •V'iz.y) = Va+\x,y), 

where Dx
y is the double conoid enclosed by the retrograde null cone of one 

argument point and the direct cone of the other, 

(e) ^ ( x , y)\y=x = £ im-i \(m~i)dxu A . . . A dxtvdyil A . . . A dy\ 
U<...<ip* f 

We proceed to construct Va by means of a series expansion in powers of s. 
Properties (c) and (d) will be established later. 

Certain facts from the theory of geodesies, which we now set forth, will be 
required. Riesz gives a detailed account of these matters. Choosing the point Xo 
as origin, we denote by x1. . . xm a coordinate system in M. On a family of 
curves C, let pi. . . pm be the conjugate variables defined by 

(3.2) Pi = gi**\ ** = -^> 

where c is a parameter along C. We introduce the Hamiltonian function H(x0, x), 
where 

(3.3) 2H(xo,x) = gikptpk, 

and note that the differential equations of the geodesies can be written 

W x = jp> ** = - i?-
The geodesies passing through x0 are determined by the quantities x*. As we 
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shall need to consider only timelike geodesies (ds2 > 0), we may take 5 as 
proportional to the parameter a on the curve. If we set <r(x) = 1, then since H 
is constant along a geodesic we have 

s = s(xo,x)= I V gikX*** da = ! y/gikpipkda 
(3.5) J

f°x _ _ J o 

V 2Hd<r = \/~2H; 
«/o 

letting P = s2 we find P = 2iï. 
We now select normal coordinates £* which determine [9, p. 173] the point x: 

(3.6) £* = axx\ = s & 

Taking 5 as parameter, we have £* = £$ along the geodesic arc. 
A number of useful identities may now be derived. Since H is constant along a 

geodesic, we have 

(3.7) g^ViVt-g^Wrur,* 

where the 17< are variables conjugate to the £*. From (3.7) follows in view of 
(3.2) the relation. 

(3.8) «a(0){V = g«(0)s2(0, $)&$ 

= £<*(£)A0, £)f f = «««)«'{*; 
hence from (3.5) 

(3.9) P(0 , {) = 52(0, | ) = g«(0)£4i;* = gtttt)*1**. 

Thus, choosing Riemannian coordinates at #o such that gmm = 1, g** = — 1, 
& ^ w> gik = 0, i 5̂  kj we find for P the Lorentz distance 

(3.10) P = s2 = (D2 - (f "Y - . . . - (^)2. 
Next, denoting dP/d£* by P i t we have 

Pi = 2gtjt', P% = 2i\ 

whence 

(3.11) P 'P* = 4 g ^ V = 4P. 

This partial differential equation for P shows, that, as has been mentioned, the 
geodesies of zero length through XQ form a characteristic surface for the B.L. 
equation. In fact, the geodesic lines are just the bicharacteristics. 

Again, let F be a differentiable function of position; then 

(3.12) P —t « 2k—t = 2 , | —t = 2s — ^ = 2, — . 

Finally, we note that 
^2 

(3.13) ^ W = V ^ + 2 g T l f 
= 2m + 0(ss). 
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These formulae will now be applied to the construction of the kernel. We 
shall need to calculate the Laplacian of a ^-tensor <t> multiplied by a power of 
the geodesic distance. Let F(P) be a scalar function of P. Then we have 

A{FÇP)4>) = P ' Z M T O * ) + BF(P)* 

(3*14) = F(P)A<f> + (D'DtFiP) + 2DtF(P)Di)<t>, 

where B denotes a suitable multiplying matrix. We find 

D'DiFiP) = D\F'(P)Pf) 

(3.15) = «tt[F"(P)P,P» + F\P)Pik - \k't}F(P)P,] 

= 4PF"(P) + 2mF'(P) + F'(P)sAu 

where Ai is a suitable bounded multiplying matrix. For the last term in (3.14) 
we find 

DtF(P)Dt<l>Ul...h) 

(3.16) = rWlP'j? **...*> " P ' g {«M **...*-.» *•... .*] 

where ^42 is a second matrix with bounded elements near x0. 
In the preceding equations, <f> is to be understood as a vector with (*) com­

ponents, while -4i, -42 and 5 are square matrices of order (*). Continuing with 
this notation, we have 

A(F(P)0) = P(P)A« + [4PF"(P) + 2wF'(P)]tf> 

where A = i4 i + -42 is also bounded, the bound depending solely upon the 
bounds of components of the metric tensor and their first derivatives. 

Following Riesz, we set 
a—m+2k 

(3m Va(0 £) = Y- -* = s" m y suVt(0,i) 
(3.18) W « Z . ^ m ( a > A) Km(a) faLm{a + 2k) ' 
and détermine the double (matrix) forms Vk successively so that (a) shall hold. 
Since P = s2, we have 

« A <*+m+U+2 T r 

V 1AKm(a + 2)Lm(a + 2k) 

(6.1V) = £ ; l5
2A Vt + (a - m + 2k + 2) (a + 2*) F* 

*_0./3m(,a + LR) \ 

+ 2(a - m + 2k + 2)sAVk + 2(a - m + 2k + 2)s^) 
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dVjL 
ds 

= *""" f> ,u( A F , - ! « - m + 2k + 2 \ , 
# m ( a + 2 ) £ f 0 V M a + 2*) "•" Lm(a + 2k + 2) |_ 

+ (a + 2k)Vt + 2sAVtj). 

We now choose 

(3.20) Lm{a + 2) = (a + 2 - m) Ln(a), 

and determine the Vk by the recurrent system of differential equations 

(3.21) 2s —* + (2* + 2sA ) 7» + A Vk^ = 0, 

with 

(3.22) V-i = 0, Fo(0, 0) = I, 

where / is the unit matrix of order (™). The expression (3.19) now becomes 
co a—m+2k T7-

A va+2 = a y £ K* 
n(V Km(a + 2) & Lm(a + 2k) 

which is equal to V" if we choose 

(3.23) Km(a + 2) = aKm(a). 

From (3.20) and (3.23) we have 

Kn(a) = J H * r ( f ) ; Lm(a) = L 2 * r ( a + \ " W ) , 

and we choose K, L so that (e) is satisfied : 

(3.24) Hm(a, k) = *1(""2) 2a+!c^ V ( | ) r ( t t + 2 * + 2 ~ m). 

In these details we follow the scalar treatment. 
We have now to prove the convergence of the series for V". The relation 

(3.21) can be written 

(3.25) j j ( s* Vk) + A sk Vk = - *A7*-i sk~\ 

To solve (3.25) consider the adjoint system 

(3.26) fs
Y = A'Y< 

and let F be a (nonsingular) matrix solution of (3.26) with | F(0)| = 1. It 
follows from the Lyapunov relation 

Y(s) = F(0) exp I f tr A ds\ 

that Y(s) is nonsingular, hence F -1(s) exists and is bounded for |s| < 1. Since 
s* Vk vanishes for 5 = 0, we find as solution of (3.25) 
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(3.27) skVk = - \ Y-\s) JV(<r)AFt_1(<7)/-W. 
With the vector and matrix norm 

||X|| = Vs|*<l2 

(sum over all components), we have 

(3.28) s*||V.|| < i \\Y-\s)\\ ('\\Y(a)\\ ||AlW<r)||<rw(fe. 
«/o 

Let us assume that for suitable constants r and k and for \s\ < c, 

(3.29) | | 7 W | | < J ? ( l - j ) - t t f I ; p « E | { 1 ; 
Then [5; 6], 

/ \-2k-2 

and from (3.28) we have 

(3.30) OIV.H < 4 ̂ % X V - X > ' < ' T K 1 " ')"""• 
where X and ikf are independent of k. Since an estimate (3.29) holds for Vo it 
holds for Vi and hence for all Vk. It follows from (3.30) that the series 2s2* F* 
converges geometrically for s sufficiently small. From (3.24) it follows that the 
series for Va converges for all values of a if 5 9e 0, is sufficiently small; and 
uniforml / in any right half plane of a. Hence Va (0, £) is denned as an analytic 
function of ay and regular for R(a) > m and £ 6 R [cf 9; 5]. 

Exactly as in [9, p. 186] it follows that an estimate 

R(a)-m\(ot\ \ I lî (3.31) \\Va(x,y)\\ <Cs 

holds, where R(a) > m, and C, q are independent of a. 
We remark that the present construction follows that of Riesz very closely; 

the only additional features being that it was necessary to show that the matrix 
A was bounded and to solve a system of recursive equations for the Vk. For the 
non-analytic case Riesz has given a method of construction for the kernel, and 
the same formal considerations apply to the present ^-tensor kernel. Since 
the details are lengthy we omit them. 

4. Construction of the solution. We continue the adaptation of Riesz* 
method for the ^-tensor B.L. equation. We now define the Riesz fractional 
potential which plays the central role in the solution of the Cauchy problem. Let 

(4.1) Ia<t>(x) = (060 , Va(x, y))^ = fjy, 4>{y) A *Va(Xl y), R(a) > m - 2. 

Here Dx
s is the conical region bounded by Cx and 5, and 0 is a £-form defined in 

R and assumed sufficiently differentiate for the prupose in hand. Riesz has 
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proved certain relations in the scalar case, which as we now show, can be extend­
ed to the present ^-tensor treatment. If <f> is of the class C[\{m — 1)], then 

(4.2) 7° tf> = *, 

and in general, 

(4.3) Ma<t> = r _ 2 0 , 

and 

(4.4) ri^ = r+V 
Riesz has also given a method of analytic continuation of Ia4> into the left 
half-plane R(a) < m - 2. 

First we shall prove (4.2). A typical component of Ia<j> is 

{Ia<t>)u...iv = I n * ] C <t>kl...kP(y)Vu...ip.kl...kvdVm 

(4.5) JD8kl< <kp 

where fl"(x, y) is a double £-form regular on the cone.D* and such that 

(4.6) va(x,x) = Vo(x,x) = / , . 

The recurrence relation (3.25) for V0 can be written 

g + AV.-O. 
whence it follows that the off-diagonal elements of F0, hence also those of if1 

(x, y), are 0(s). The typical component (4.5) then breaks up into a sum of 
integrals of the type studied by Riesz. We may assume normal coordinates 
lending to the Lorentz distance (3.10). Using this coordinate system, it has 
been shown [4, 9] that an expression of the form 

J* 5 a _ m 

depends only on the value of <t> at the point x, and is in fact equal to <t>(x). This 
result implies that as a —• 0, all terms of (4.5) save the diagonal term tend to 
zero due to the factor 0(s), and that the remaining term is precisely 4>ttm..iv(x). 
This establishes (4.2). 

We now introduce the formula of Green (1.22) for the region Dx
s, and set 

^ = Va+2(x, y). We obtain 

(A*, V«+2)D, - (0, àV«+2)m 

-j. , n , (Va+1 A *d<f> - <t> A *dVa+i + SVa+i A *<*» - S<(, A *V+Î). 

Supposing that R(a) > m, the surface integrals over the cone vanish because of 
the factor sa+2~"m contained in Va+2, and we are left with the surface integrals 
over 5*. Supposing further that A<t> = p and replacing AVa+2 by Va, we find 
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(4.7) !"<!> - la+2p - f ( Va+i A*d<f>-<fiA *dVa+1 + 6Va+2 A ** - H A *Fa+2). 

To facilitate the study of (4.7), we write 

Jiiha) = - f V" A*d<l> 

/4 gx M<t>y a) = + J $ A *dF*, 

7.(0, a) = - f 57" A*tf>, 

M*,a) = + f 00 A*V; 
then (4.7) may be written 

(4.9) r* = r+2
P + i;/,.(*.«+ 2). 

We now formulate our theorem. 

THEOREM I. Let S be a spacelike surface of the class C[\(m + 3)], and let 
R be its region of exclusive dependence. Let %bea p-form of the class C[\(m + 3)] 
defined in a neighbourhood of S (or let t%, #£, nd£, tb£ be given on S) ; and let p be a 
p-form of class C[^(m + 4)] in R. Then there exists in R a unique p-form <t> such 
that 

(4.10) A<t> = p 

in Ry and 

(4.11) t<f> = /£, n<t> = tf£, nd<j) = nd£, tô<j> = tÔÇ 

on S. This form is given sufficiently close to S by 

(4.12) « = / 2 P + £ / „ ( £ , 2). 

The main steps of the proof are as follows. It must first be shown that (4.9) 
can be continued analytically to a = 0, so that (4.12) has a meaning. Then the 
conditions (4.10) and (4.11) are to be verified. The uniqueness has been estab­
lished in Lemma II, so the proof will then be complete. 

The analytical continuation has been carried through by Riesz [9] and by 
Fremberg [4, pp. 19-53]; since the essentials of the matter are in no way altered 
in the present case we shall not repeat the details. We remark that the continua­
tion is possible if the forms p, £ and the surface 5 have the differentiability 
properties stated in the theorem. It also follows that (4.12) is then continuous 
together with its first and second derivatives. 

At a = 0, the function Hm(a, 0) has a simple pole. Fremberg has also proved 
that the surface potentials can be continued to a = 0, leading to finite expressions 
apart from the factor 1/Hm(a, 0). It follows that the expressions 7M vanish for 
a = 0: 
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(4.13) /„(£, 0) = 0. 

We must now establish a number of relations involving the B.L. operator 
and the integral I". First we make the important observation that in calculating 
derivatives with respect to x of Ia and the JM, we may disregard the variation at 
the limits of integration [9, pp. 67-70]. The justification of this is that for R(a) 
> m + k, the kernel Va is zero, together with its derivatives up to order k, 
on the cone D s . It follows by analytic continuation that for all a we may calculate 
derivatives by formal differentiation under the integral sign. In view of condition 
(a) of §3, it therefore follows that (4.3) holds whenever it has meaning. In par­
ticular, if the continuation is valid to a = — 2, we have 

(4.14) Atf> = / " V , 

in view of (4.2) and (4.3). Similarly, the relations 

(4.15) A/„(0f a) = 7,(0, a - 2), M = 1, 2, 3, 4 

hold. From (4.13) we see that 

(4.16) A/„(Éf2) = 0, M = 1 ,2 ,3 ,4 . 

The relation (4.4) follows as in the scalar case from the formula (d) of §3 
which may be written 

(4.17) (Fa , V')D, = J ^ n * . z) A *V\y, z) = Va+\x, y), 

and which we prove in essentially the same way. We apply Green's theorem to 
Dx

y for R{a) > m, R(/3) > w, and, noting that the surface terms vanish, we 
have 

(Va+in(x, z),V\y, z))Dl = (V+2n(x, z), A:V*+2n(y, * ) ) p , 

=\A«V°+U(X, Z),V'+2n(y, z))Dl = (V(«, z),V*+in(y, z))^, 

n = 0, 1, 2, . . . , and, letting JC, /3 -> 0 we find [9, p. 196] 

Vin(x,y) = Vin(y,x). 

It follows that the coefficient forms Vk are symmetric, hence 

(4.18) V(x,y) = V\y,x), 

so that condition (c) of §3 is satisfied. 
Consider the expression 

(V, Ve)nx - Va+*; R(a) > m, Rtf) > m. 
JJy 

A typical component g (a) of this double form is an analytic function of a which 
satisfies the estimate 

(4.19) | « ( « ) | < Cl (?)""«• 
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for R(a) > tn. Also g (a) is zero for a = 2n (n = 0, 1, 2 . . . ) by the preceding 
formulae. We may now apply the following theorem [7, Abs. I l l , problem 298, 
pp. 142, 327]: If two analytic functions g(z), h(z) are regular for R(z) > a, 
and h(z) & 0 for R(z) > a, and 

1*001 < \Hz)l 
then, denoting by zn the zeros of g(z) with R(zn) > a, \zn\ > 1, the divergence of 
the series 

n 

implies that g (z) is identically zero. Taking h (a) equal to the expression in the 
absolute bars on the right-hand side of (4.19), and noting that the series for the 
zeros of g (a) is the divergent harmonic series, we conclude that g(a) = 0. 
Hence (4.17) holds for R(a) > m, R(0) > tn, and therefore in general. 

Using (4.17) we find by inverting a certain double integral that 

(4.20) FJM, P) = U*> « + IS), M = 1, 2, 3, 4; 

for R(a), R(fi) sufficiently large, and therefore in general. 
The kernel Va has certain additional properties which follow from the fact 

that if an operator T commutes with A it commutes with Ia. We first establish 
this assertion. Let The a. (linear) operator such that TA = AT. We wish to prove 
that 
(4.21) TI"<t> = IaT<t>. 

Now (4.21) is certainly true for a = 0, by (4.2). Using (4.3), we can prove 
that it holds also for a = 2n (n = 0, 1, 2 , . . .). For, 

T/ 2 0 = I2ATI2<t> = I2TAI2<j> = / 2 7>, 

since T and A commute, and A is inverse to I2. By iteration of this, we find that 
(4.20) holds for a = 2n. Consider now any typical component of 

(4.22) TIa<t> - IaT<t>, 

this component is an analytic function of a which admits the estimate (4.19) 
and vanishes for a = 2n. By the theorem we have just quoted above, we must 
have (4.22) identically zero. This proves that T commutes with Ia. 

No;w A commutes with *, d, and ô. Applying our remark to the « operator, we 
have 

•(*60, Va
p{x,y))D, = (•*(?), Vl-p{x,y))D, = {-)mp+p{éiy),*V^)D. 

x V 

for all <£. Taking the dual with respect to x, we find 

(4.23) Vï(x,y) =**V°.p(x,y). 
xv 

Similarly, from dla = Iad we find that 

(4.24) dV;(x,y) = 5 F ; , ( ^ ) . 
x y 
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The relation ôla = IaÔ yields nothing additional. Note that (4.23) and (4.24) 
are essentially the same as relations satisfied by de Rham's Green's form [8a] 
and for the same reason. 

From these relations it follows that the "single layer" potentials Ji and / 4 

are dual in the sense that 

(4.25) Ji(*4>,a) = *M4>,a). 

Similarly, the "double layer" potentials J2 and Jz are related by the equation 

(4.26) J*$4>,a) = * /«(* ,«) . 

Since derivatives may be calculated formally for the potentials JM, it follows 
from (4.8) and (4.24) that 

(4.27) * / i (* ,« ) = 0, dJz((t>ya) = 0. 

In order to show that our solution (4.12) satisfies the conditions (4.11), we 
must examine the potentials P and JM(£, 2) as x tends to the surface 5. First let 
us consider the volume potential P. Just as in the scalar case it follows that 
Pp —> 0 since the conoid Dx

8 becomes infinitesimal as x tends to S. The first 
derivatives of Pp also tend to zero. 

As for the surface potentials, it will be sufficient, in view of (4.25) and (4.26), 
to consider J\ and J2. We shall reduce these expressions to integrals of the type 
studied by Fremberg, and apply his results. We may assume that 5 has the 
Lorentz form (3.10) ; it follows that as x tends to 5, s becomes small of the same 
order as f*. We may discard all terms of Va except the first, noting that these 
terms, together with their first derivatives, become negligible in comparison 
with the first term. 

Considering first Ji, we have 

J» a-m 

s*rLm\pL) 

whence, on 5, 

Ji a—m 

7T7-T {Iu...ip A •dt)i...m-idx1 A . . . A dxm~\ 
8*±imycL) 

In the integrand we have 

(/*,...*, A •d£)i...<n*-i) = ( - l ) ' ( # k . . . i , » . 
Hence the components of tJ, are simple layer potentials of Fremberg's type, so 
that [4, p. 44], 

tJi = o, £(^i)*....*, = ( - imk...«,m. 

Here n denotes the inward normal to the surface of the conoid. The integrand is 
zero if, say, iv = m, so that 

njx = 0, ~ - (» / i ) = 0. 
an 

https://doi.org/10.4153/CJM-1953-008-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1953-008-8


HARMONIC ^-TENSORS ON HYPERBOLIC SPACES 75 

We now calculate 

(ndJ)u..,ix>m = Tilmm.ipm *'" v ^jJiUi..-jp) 

= Til...ipm
mUl'"ip)dmJiu,...h) sincenJx = 0 

= ( ~ iy° "fa?* ^K<»...«p) 

= (d£)Umm.ipm. 

Finally, we have 

(tf/ik...«,-> = - Tai...ipJ'-)>)DiJ1Ul...jp). 

If the summation index i is less than w, then none of the j M are equal to w, 
hence we get a tangential derivative of a component of tJi, which yields zero. 
If i = m, we get the normal derivative of a component of »/ i , which is again 
zero. Altogether, we have 

(4.28) tJi = 0, nJi = 0, ndJi = nd^ tbJx = 0. 

A similar analysis holds for J2. We find 

/,ft,«)~J\*A«* 5_ 

"J * v A *Ipdjj / v )i...(iti^i)dx1. . . dxm \ 

Taking a typical normal component of / 2 , we find that the integrand is of the 
form 

Q a—m 

which shows that components of nJi are tangential derivatives of single layer 
potentials. As we have seen above, these are zero. Hence nJî = 0. For tJ2 we 
find 

(* A •{/„....,. A d^j^y..^» = U...u 
j a 

a s 
dnHm(a)' 

whicji leads to a double layer potential of Fremberg's type for {tJî)ix,..u. 
From his results [4, p. 48] we conclude that 

an 

We note from (4.27) that t8J2 is zero. Again, 

For j = m, we obtain a normal derivative of a component of tJt, which is zero. 
For j ^ m we obtain a tangential derivative of a component of nJ^ which also 
yields zero. Collecting our results, we have 

https://doi.org/10.4153/CJM-1953-008-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1953-008-8


76 G. F. D. DUFF 

(4.29) tJ2 = t£, nJ2 = 0, ndJ2 = 0, tbJ2 = 0. 

The corresponding results for Jz and J A follow from (4.25) and (4.26). 
The solution (4.12) may now be verified. From (4.14) and (4.16) we have 

Atf> = A { J 2 p + £ / „ ( £ , 2)} = P f 

so that (4.10) holds. To verify (4.11) we note that the volume potential and its 
first derivatives contribute nothing on 5. Applying (4.28), (4.29) and their 
duals, the result (4.11) follows. 

The proof can be used to show that the kernel Va (x, y) is uniquely determined 
independently of the coordinate system in which it was constructed. The 
volume potential Pp is uniquely determined, hence so is V2. It follows from 
(4.17) that V211 is unique for n = 1, 2, 3, . . . ; and the uniqueness theorem for 
analytic functions quoted above shows that Va is unique for all values of a. 
The kernel V" is defined in a small region only, but repetition of the integration 
process shows that the solution can be extended throughout R. 

5. The harmonic field equations. We consider the system of first order 
equations for the components of the ^-tensor <t>u...ip; 

(5.1) d<j> = p, S4> = a 

and the problem of solving this system under conditions sufficient to determine 
the solution uniquely. When p and <r are replaced by zero in (5.1) we have the 
equations of harmonic fields. The solution of our problem will utilize Theorem I. 

Let S be a spacelike surface and R its region of dependence, as before. Obvious 
necessary conditions that (1) should possess a solution are that p be a derived 
form, and a the dual of a derived form. Hence we impose the conditions 

dp = 0, f p = 0, 
(5.2) y>+* 

da = 0, I *<r = 0 
«J Zn-p+i 

for all cycles z^+i, SW-H-I of R. 
Since (5.1) is a first order system, it is to be expected that the assignment of 

t<t> and n<f> on S will determine the solution. That this is indeed true follows from 
Lemma II. For, the homogeneous system 

(5.3) d<}> = 0, b<f> = 0 in R , <t> = 0 o n 5 

h a s o n l y </> = 0 a s s o l u t i o n . T o s h o w t h i s , w e o b s e r v e t h a t A<£ = 0, t<\> = 0, 
n<t> = 0 , nd<t> = 0 a n d tô<t> = 0. H e n c e <f> = 0 in R . 

Returning to the system (5.1) we observe that if <t> = £ on S, then £ must 
satisfy the conditions 

(5.4) td% = tp, nb% = na, 

since the corresponding component equations contain only derivatives in 
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directions lying in S. A £-form £ defined on S which satisfies (5.4) will be called 
admissible with respect to (5.1), or, more briefly, admissible. 

As a simpler example of the method which we shall use to solve (5.1), we 
consider the homogeneous equations 

(5.5) d<t> = 0 , 8<l> = 0 

with the boundary condition <f = JG C [|(w + 1)] on S> where £ is admissible 
with respect to (5.5). Let <t> be the solution of A<£ = 0, such that t<t> = /£, n<t> = 
w£, nd<j> = 0, nh4> = 0 on S. Thus 

(5.6) 4>= / 2 & 2 ) + / , ( { , 2). 

It remains to be shown that <t> is closed and coclosed. But td<t> — td% = 0, nd<t> = 
0, A(d#) = d A<t> = 0, and nd(d<j>) = 0 since d . d<£ is zero. Finally, we have 

t8(d<t>) = - tdô<t> = - dtô<t> = 0 , 

since ô<£ = 0 on 5. Hence, by Lemma II, d</> = 0. Reasoning exactly dual to the 
preceding shows that 50 = 0 in R. Hence <t> is the unique harmonic field which 
assumes the admissible value £ on S. 

Since the equations (5.1) are non-homogeneous, we shall need to treat them 
in a less direct fashion. We divide the problem into two parts. Consider first the 
problem of solving the system 

(5.7) d<f> = p , 64> = 0 

where 

(5.8) t<t> = *£, n<j> = 0 

on 5, and /£ is admissible with respect to (5.7). That is, 

(5.9) td$ = tp, 

on S. 
Assume for the moment that a solution <f> exists. Then we have from (5.7), 

d*<f> = 0, 
and 

I » 0 = I *<t> = 0 
J Zn-p J Z'n-p 

from (5.8), where sn_p is any (absolute) cycle of i?, and z*n-p is a homologous 
cycle of S. The cycle 25

n_P homologous to zn-p always exists (see §1). It follows 
that *<£ is a derived form in R: 

(5.10) <t> = SX. 

We now obtain 

dôX = p, 

which suggests that we attempt to solve (5.7) by solving 

(5.11) AX = - p 
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under conditions which ensure that dX = 0. This is a kind of "gauge" condition. 
It is not difficult to write down the auxiliary conditions which X must satisfy 
on 5. They are 

(5.12) tX = 0, nX = 0, ndX = 0, tÔX = /</> = /£. 

These conditions ensure that (5.8) are satisfied. To prove that X is closed, note 
that 

A(dX) = d(AX) = - dp = 0, 

that tdX = 0, ndX = 0, and that nd . dX is zero. Finally, we have 

MX = - tdbX + tp = - tddX + td$ 

= td{£ - ÔX) = d /(£ - ÔX) = 0 

in view of (5.9) and (5.12). Hence dX = 0 in i?. 
From Theorem I we have 

whence from (5.10) 

x = - fP + r * A •F#î 

0 = - 572p + 8 f f A * F a+2 

( 5 - 1 3 ) = - / 2 ô p + J 2 ( £ , 2 ) , 

in view of (4.8), (4.24) and the permissibility of differentiating under the 
integral sign. 

The dual problem, in which 

(5.14) d<j> = 0, 5tf> = a-, 

and the boundary conditions are easily written down, can be solved in the 
same way, or by use of (4.23) and (4.26). The solution is 

(5.15) 0 = - fda+ / 8 t t , 2 ) . 

Summing up these results, we have 

THEOREM II. Let S be a spacelike surface of class C[|(m + 3)], and p, a 
forms of class C\\{m + 3)], of degrees (p + 1) and (p — 1) respectively, which 
satisfy (5.2). Let Je C[%(m + 1)] be a p-form admissible with respect to (5.1). 
Then there exists a unique solution of (5.1) defined in R, given by 

(5.16) <t> = - l\ôp + da) + 72(f, 2) + Jstt , 2). 

We note that if p and a are harmonic fields, the first term of (5.16) vanishes, 
and the solution is formally the same as (5.6). However J must satisfy the 
conditions of admissibility (5.4). 

6. Concluding remarks. We consider certain special cases of the two theo­
rems which result when further restrictions are imposed on the manifold M or 
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the metric. A comparison of the present results with the boundary value 
theorems for ^-tensors in the elliptic case will also be made. 

Under certain circumstances the solutions discussed in Theorems I and II 
may be valid in a wider region than has been described. To begin with, we have 
restricted ourselves to one "side" of the initial surface and it is clear that the 
solution is valid both for / > 0 and / < 0 in the appropriate regions R+, R~. 
The solution is also determined in the region Ri associated with any surface Si 
which is spacelike and lies in R. Suppose for example that M is the product of 
an (m — 1)-dimensional closed manifold and a line (— oo < / < -f a>); with 
metric 

ds2 = dt2 — gap(t) dxa dx& 

where ga${t) gives rise to a positive definite line element depending on / as a 
parameter. Let S be the surface / = 0 : the solution is then determined throughout 
the entire manifold. If the gap(t) are independent of /, the B.L. equation is 
separable : 

4>tt = A50 

where As is the B.L. operator for 5. Setting <f> = e^u, we would have 

Asu + \2u = 0 

just as in the scalar case. 
If the metric is of certain restricted types, the B.L. equation will separate 

into (™) independent component equations. This is the case for the Lorentz 
metric 

ds2 = dt2 - (dx1)2 - . . . - (dxm~1)2. 

Each component of <j> then satisfies a wave equation 

a 

The Riesz ^-tensor kernel reduces to the first term of the series: 

a—m  

V%(x, y) = 7T7-T S dxuA...A dxiv ' dyu A . . . A dyu
y 

•Hm\a) u<...<iv 

for which the relations (4.23) and (4.24) are easily verified. This case can 
therefore be treated by scalar methods. 

Of particular interest is the case m = 4, p = 2, since the equations 

d<j> = p , b<f> = 0 

are then, in the Lorentz metric, equivalent to Maxwell's equations, with /x = € = 
1. In a general metric it would be natural to retain this invariant formulation. 
The two-tensor <t>ixU is the electromagnetic field tensor FilU and the dual of the 
three-form p is the charge-current vector. Theorem II may therefore be inter­
preted as a characterization of electromagnetic fields in a general relativity 
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metric. The conservation of charge current is expressed by the fact that p is a 
derived form, in other words that 

fp = 0 
for all cycles s3. 

It is interesting to compare our results with the boundary value theorems for 
^-tensors in the elliptic case, and with the classical theory of differential equations 
(p = 0 or p = m). We consider first the B.L. equation. The result in the elliptic 
case is that the solution exists and is unique if t<t> and n<t> are given on the boun­
dary. This result has, however, only been proved under certain topological 
restrictions [3]. In the hyperbolic case the initial surface does not bound the 
domain of determination of the solution, but the additional data nd<t> and tb<t> 
are needed to determine the solution uniquely. If p = 0, n<j> is zero automatically, 
and so is tô<j>. Hence the data reduce to t<j> = <t> and 

nd<l> = — dn, 
dn 

in the hyperbolic case, and to <t> in the elliptic case. A similar remark holds if 
p = m. 

For the harmonic field equations the elliptic boundary value problem is 
uniquely solvable given either the normal boundary component and the absolute 
periods, or the tangential boundary components together with the relative 
periods. In the hyperbolic case both t<t> and n<f> are to be prescribed on the 
(smaller) initial surface. The region R in which the hyperbolic solutions are 
defined has no relative cycles (modulo the initial surface) and the periods on 
all absolute cycles are fixed by the given data t<j> and n<j> on 5 since all absolute 
cycles of R are homologous to cycles of 5. In the hyperbolic problem, therefore, 
period conditions are not needed explicitly. 
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