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1. Introduction. In this paper we consider complex doubles of compact Klein
surfaces that have large automorphism groups. It is known that a bordered Klein surface
of algebraic genus g > 2 has at most 12(g - 1) automorphisms. Surfaces for which this
bound is sharp are said to have maximal symmetry. The complex double of such a surface
A1 is a compact Riemann surface X+ of genus g and it is easy to see that if G is the group
of automorphisms of X then C2X G is a group of automorphisms of X+. A natural
question is whether X+ can have a group that strictly contains C2 X G. In [8] C. L. May
claimed the following interesting result: there is a unique Klein surface X with maximal
symmetry for which AutA"+ properly contains C2 X AutA" (where AutA"'' denotes the
group of conformal and anticonformal automorphisms of X+).

Unfortunately there are errors in the proof and here we supply an alternative
argument using inclusions between NEC groups. In particular, in Section 4, we prove a
useful criterion on when we can extend an inclusion F < A, with A a Fuchsian triangle
group, to an inclusion between NEC groups. This enables us to show that there is one
isomorphism class of groups that contains a group with signature (2,2,2,3). By studying
groups that contain (2,2,2,4) we obtain a similar result concerning Klein surfaces that
admit the second largest group of automorphisms, namely group of order 8(g - 1). Finally
some relations of the above results with the theory of regular maps on surfaces and real
algebraic geometry are also pointed out.

2. Preliminaries. NEC groups. Let C+ denote the upper half plane. With the
Poincar6 metric ds = \dz\/y, it becomes a model of hyperbolic plane. A non-Euclidean
crystallographic (NEC) group is a discrete group F of isometries of C+ with respect to the
hyperbolic metric and in this paper we shall assume that C+/F is compact. If F only
contains orientation-preserving isometries then it is called a Fuchsian group; otherwise it
is called a proper NEC group. Every proper NEC group contains a subgroup F+ of index
2 consisting of the elements of F that preserve orientation. We call F+ the canonical
Fuchsian group of F. An NEC group is determined algebraically by its signature

o-(F) = (g; ±; [m b . . . ,mr]\ {(« , , , . . . ,« , , , ) , . . . , (nk],..., nfcsj}). (2.1)

If F has this signature then C+/F is an orbifold whose underlying space is a surface of
genus g with k boundary components (holes) (see [10]). It is orientable if the + sign is

t Supported by DC1CYT PB89-0201 and SCIENCE Program CEE ERB 4002 PL 910021.
t Supported by DCICYT PB89-0201, SCIENCE Program CEE ERB 4002 PL 910021 and Acciones

Hispano-Portuguesas.
§ Supported by a grant of Spanish Ministery of Education.

Glasgow Math. J. 36 (1994) 313-330.

https://doi.org/10.1017/S0017089500030925 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500030925


314 E. BUJALANCE ET AL.

used and nonorientable otherwise. There are r cone points of angles 2n\mu... , 2n/mr in
the interior of C+/F and s: corner points of angle nlnn,... , 7c/nis. around the /th hole. If
F has signature (2.1) then the area of a fundamental region for F is 2K^(T), where

H(T) = (ag + k - 2 + £ (1 - 1/m,) + J) (1 - l/fyO/z), (2-2)

where

_ (2 if o-(F) has a + sign,
l l if o-(F) has a - sign.

(Alternatively, -/x.(F) is the Euler characteristic of the orbifold). If F, ^ F then

(2.3)

A general presentation of F of signature (2.1) can be written down ([3]). However in
this paper we shall mainly be concerned with groups generated by reflections in the sides
of a triangle or quadrilateral. A triangle group is one with signature (0; + ; [ - ] ; {(/c, /, m)})
and we denote it by (k, I, m) for short. It has a presentation

<c,, c2, c3: c\ = c\ = c\ = {cxc2)
k = (c2c3)

1 = (c l C 3)m = 1). (2.4)

(In what follows we shall refer to any set of generating reflections satisfying the above
relations to be a set of canonical generators for F). Its canonical Fuchsian group has
signature (0; +;[k,l, m];{-}). A quadrilateral group has signature (0 ;+; [ - ] ;
{(k,l,m,n)}) which we shall abbreviate to (k,l,m,n). It has a similar presentation to
(2.4) with four reflection generators instead of three. In particular we shall be interested
in the trirectangle groups (2,2,2, n).

Klein surfaces. A Klein surface is a surface with a dianalytic structure ([1], [3]). In this
paper all Klein surfaces will be compact and so homeomorphic to a surface with g handles
and k holes or to a surface with g cross-caps and k holes. The algebraic genus is then
2g + k - 1 if X is orientable and g + k - 1 if X is nonorientable.

If X is a Klein surface of algebraic genus p > 2 then there is an NEC group F of
signature (g; ±; [-]; {(-)*}) such that X = C+/F. Such groups are called surface groups or
bordered surface groups if fc > 1.

If X is an orientable Klein surface without boundary then X can be thought of as a
Riemann surface. If X is nonorientable or has boundary then we can form its complex
double X+ which is a Riemann surface that admits an anticonformal involution r such
that X = X+/{r) (X+ is unique up to conformal equivalence). An automorphism of X can
be lifted to an automorphism of A"1" that commutes with r and in this way we see that
Aut X is isomorphic to the centralizer of x in Aut(Ar+) and then as in [8] that Aut X+

contains a subgroup isomorphic to C2 X Aut X.
Automorphism groups of Klein surfaces. If A' is a Klein surface with boundary of

algebraic genus p>2 then it is known that |Aut A"|<12(p - 1 ) . When this bound is
attained we say that X has maximal symmetry. If X = C+/F, F is a bordered surface group
then this occurs if and only if F is a normal subgroup of (2,2,2,3). If this bound is not
attained then |Aut X\ < 8(p - 1).
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3. Geometric comments. Some of the simplest examples of Klein surfaces with
maximal symmetry are those that are homeomorphic to sphere with three holes. Since
Thurston notes [10] such surfaces are called pair of pants and are formed by gluing
together two isometric right-angled hexagons with identification as follows:

r

Figure 1.

This gives us a pair of pants P with boundary components of hyperbolic length 2 \a\, 2 |/3|,
2 |y|, where | | represents the hyperbolic length of an arc. Let us call P equibordered if
2 |a| = 2 J/31 = 2 |y|. Then clearly P admits a group of automorphisms isomorphic to C2xD3

if and only if P is equibordered. These are precisely the pairs of pants with maximal
symmetry. The lenghts \a\, |)3|, \y\ gives coordinates in the real Teichmtiller space T(P) of
P so that the equibordered pants form a one-dimensional subspace of T(P).

Let us call a hyperbolic quadrilateral with angles n/2, n/2, n/2 and a, a trirectangle
of angle a. By [2, p. 161] we see that if \a\ = |/3| = |y| then the other three sides of the
hexagon have equal length and these are precisely the hexagons that can be decomposed
into 6 isometric trirectangles of angle n/3 as follows:

Figure 2.
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As the group of reflections in the sides of trirectangle of angle n/3 is an NEC group
of signature (2,2,2,3) this corresponds to the inclusion N<T with index 12, where N is
an NEC group that uniformizes an equibordered pair of pants (i.e. one with maximal
symmetry).

We now consider the special case, where the two sides of the trirectangle opposite to
the angle n/3 have equal length. Then by [2, p. 157] the other two sides have equal length.
If this is the case then the above NEC group T is a subgroup of index two in an NEC
triangle group A = (2,4,6) as illustrated below.

Figure 3.

As we shall prove in Theorem 3.4 this gives the only case of an NEC group
properly containing a group of signature (2,2,2,3). We then want to find NEC groups
M with M ^ F and Af+<A. This will lead to the result of May mentioned at the
beginning.

If the two sides of the trirectangle opposite the angle n/3 are equal then the
corresponding hexagon is equilateral; all its sides have equal length. There is only one
such right-angled hexagon; all sides can be calculated to have length equal to cosh"1 2, by
[2, p. 163]. Hence there is a unique pair of pants Po obtained by gluing together two such
hexagons as in Figure 1. This pair of pants is not only equibordered but the joins a, b and
c have half the length of the boundaries. We call Po the regular pair of pants. Our main
result (Theorem A) is that of all Klein surfaces with maximal symmetry only Po has the
property that Aut PQ has automorphism group strictly bigger than C2x Aut Po. In fact we
show that |Aut Pc

0\ = 48 = 4 |Aut Pol-
There is an interesting connection with maps on surfaces. As we are dealing with a

normal subgroup of (2,4,6) we expect to obtain a reflexible map by [5, chap. 8], or [7]. Po

is composed of two hexagons so that PQ is composed of four hexagons. It is not difficult to
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show that the picture we get is as follows:

317

Figure 4.

where we identify equally labelled edges orientably. We see that this is the same as the
map of type {4,6} in [5, Fig. 8.5] with 24 conformal automorphisms and hence with 48
automorphisms including those that reverse orientation. The surface P(? is called the
Accola-Maclachlan surface of genus 2 (see [9]). It is thus obtained as the hyperelliptic
surface branched over the six points of the unit circle and so corresponds to the algebraic
curve of the equation y2 = x6 - 1. Pa is then a Klein surface with maximal symmetry with
the property that Aut P(| properly contains C2x Aut Po. We shall prove that Po is the
unique Klein surface with this property.

4. A combinatorial criterion for NEC extension of Fuchsian groups. Let A be a
Fuchsian triangle group with signature [k,l, m]. Then A has presentation
(x,y:xk,y',(xy)'") and is contained in the NEC triangle group A with signature (k,l,m)
having the presentation (2.4).

We have A+ = A and x = cxc2, y = c2c^. Then c2xc2 = x~{ and c2yc2 = y~l and so we
have an alternative presentation for A

(c2, x,y: c\ = xk = y' = (xy)'" = \,c2xc2 = x~\ c2yc2 = y~]).

Let F be a subgroup of A of index N. Then we can consider the Schreier coset graph
5(A, T,x,y) whose vertices are right cosets Tg (g e A) and two vertices Tg and Vh are
joined by a directed edge labelled by x if Tgx = Yh and by a directed edge labelled by y if
Ygy = I7z. If, Tgx2 = Tg and if Tgx = Fh then Tg and Th are joined by a doubly directed
edge «-». In practice, we usually describe the subgroup T of A by the permutation
representation i.e. by its Schreier coset graph.
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EXAMPLE. Let A be a triangle group [2,8,3] = (x,y: x2 = y8 = (xy)3) and consider the
homomorphism 9: A —>S6 induced by the assignment

x -> (1,5)(3,6)(2)(4), y ~ (1,2,3,4)(5,6).

So xy^(l ,6,4)(2,3,5). By [6] the subgroup T = 0"'(Stab(l)) has signature [2,2,2,4].
The Schreier coset graph S(A,T,x,y) is as follows.

1

Figure 5.

SN, where X and Y areIn general we have a homomorphism 9:x>-^X e SN, y>-^
the permutations obtained by right multiplication of the cosets.

We now consider automorphisms of the coset graph; that is bijections of the graph
preserving incidence and edge labelling. Each such automorphism A permutes the vertices
and so can be considered as a permutation in SN.

DEFINITION. A reflection R of the coset graph 5(A, T, x,y) is an automorphism of
S(A,T,x,y) of order 2 that reverses the orientation of the edges. We then have
RXR~l = X~\ RYR-* = Y'1.

REMARKS, (i) If the permutations X, Y are of order 2 or 1 then the identity is
regarded as a reflection.

(ii) Reflections maps cycles of X (respectively Y) to cycles of X (respectively Y) in
the reverse order. In particular fixed points of X (respectively Y) are mapped to fixed
points of X (respectively Y). This remark is useful too in showing that a reflection does
not exist.

EXAMPLE. The above graph admits two reflections corresponding to geometric
reflections in the horizontal and vertical axes:

(a) (1,3)(5,6)(2)(4), (b) (1)(5)(6)(3)(2,4).

With the above notations we have the main result of this section.

THEOREM 4.1. Let A be a Fuchsian triangle group containing the group Y as a
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subgroup of index N. Then there are proper NEC-groups F < A for which F and A are
canonical Fuchsian subgroups ofT and A respectively if and only if S(A,T,x,y) admits a
reflection.

Proof. Suppose that there is a proper NEC-group f < A with A+ = A and f+ = F.
N N

Now if A = U Fg, is the decomposition of A into F-cosets then A = LJ f g, since g,g"' e F

if and only g,g;
7' e f, as g, and g, preserve orientation. Thus if we consider the Schreier

coset graph 5(A, f, x,y,c2) and we omit the edges corresponding to c2 then we obtain a
graph isomorphic to S(A, F, x, y). But the former graph admits an involution R: Fg *-> Tgc2

and as c2xc2 = x~\ c2yc2 = y~\ R is a reflection and thus 5(A, F,x,y) admits a reflection.
For the converse, we suppose that 5(A, F, x,y) admits a reflection R. We have a

homomorphism 6:A—>SN defined by 9(x) = X, 0(y) = Y as before. We can extend this to
a homomorphism 0:A—> SN by defining 6(x) = X, 6(y) = Y, 8(c2) = R. Via these
homomorphisms both A and A act on the set of cosets as transitive permutation groups of
degree N. Furthermore the second action extends the first one in the sense that if g e A
then the effect of g is the same in both actions. Now F is the stabilizer of a point a say in
the first action. If F is the stabilizer of a in the second action then F < f. Now
[A:F] = [A:f] = N as we have transitive actions and so the index of F in f is 2. We now
show that f is a proper NEC-group. If not then F is a Fuchsian group so that f < A, and
therefore F < f < A < i Ifg e f \ F then g fixes a in the second action. As g e A and the
second action extends the first one, g e F which is the stabilizer of a in the first action.
This is a contradiction and therefore f is a proper NEC group and F+ = F.

We now look for NEC groups that contain (2,2,2,3). So we first look for Fuchsian
groups that contain [2,2,2,3] and apply the above theorem.

LEMMA 4.2. The only Fuchsian groups that contain A = [2,2,2,3] are

[2,3,7], [2,3,8], [2,3,9], [2,4,6].

Proof. As £i(A) = 1/6 any group A* containing A as a subgroup of index k has
/x(A*) = l/(6k). This implies that either A* has one of the four signatures above or has
signature [2,3,12], or [3,3,4]. In the last two cases k = 2. However the last group does
not contain subgroup of index 2 as its abelianization is C3, whilst using the permutation
technique [6] any subgroup of index 2 in [2,3,12] has a period 6. Thus the only
possibilities are those that are in the statement of the lemma.

The fact that they indeed do occur as groups containing [2,2,2,3] can be proved by
exhibiting the permutation representations and using [6]. In each case it is easy to show
that the corresponding representation is essentially unique, apart from relabelling the
symbols. For the next theorem we also give here the corresponding Schreier coset graphs.

To see when a Fuchsian inclusion can be extended to an NEC inclusion we use
Theorem 4.1. This implies that in case (i) no such extension is possible. In cases (ii) and
(iii) one such extension is possible and in case (iv) two such extensions are possible as the
Schreier coset diagram admits two essentially distinct reflections; one in the vertical and
one in the horizontal axes. To distinguish between the two possible NEC extensions we
use a lemma which tells us when the NEC extension has a finite order element that can
not be written as product of reflections of the group.

Let A = (x,y:x2,y', (xy)"') be a Fuchsian triangle group containing a group F as a
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(i) A'= [2,3,7]

(ii)

y~(l,2,4)(5,6,7)(3),
xy->(l, 2, 3, 4, 5, 6, 7).

A* = [2, 3, 8]

xy-*(l, 2, 3, 4).

(iii) A* = [2, 3, 9]

->(l,2, 3).

(iv) A* = [2, 4, 6]

x

xy~(l,2) A )
Figure 6.

subgroup of index N. Assume that S(A, F,x,y) admits a reflection /?. Let F and A be the
proper NEC groups given by Theorem 4.1.

LEMMA 4.3. If the reflection interchanges two loops with label x in 5(A, F, x,y) then
the group f has an order two element which is not a product of two reflections of F.

Proof. This follows directly from Theorem 4.5 of [4]. It is also a very special case of a
Theorem of Hoare [6].

THEOREM 4.4. The only NEC group that contains an NEC group A with signature
(2,2,2,3) is a group A* with signature (2,4,6).

Proof. We consider the Schreier coset diagrams in Lemma 4.2. (i) admits no reflection
and so (2,2,2,3) is not a subgroup of (2,3,7) by Theorem 4.1. Coset diagrams in (ii) and
(iii) in Lemma 4.2 do admit reflections and so (2,3,8) and (2,3,9) do contain an NEC
group whose canonical Fuchsian group is [2,2,2,3]. These reflections interchange loops
with label x so by Lemma 4.3 these NEC groups contain an elliptic element that is not the
product of two reflections. The NEC groups with canonical Fuchsian group [2,2,2,3]
have signatures (2,2,2,3) or (0; +, [2],{(2,3)}) and only the latter contain such elliptic
elements. This gives the inclusion (0, +,[2],{(2,3)}) < (2,3, k) with k = 8 or 9. The
diagram (iv) admits reflections on both horizontal and vertical axes. One reflection
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interchanges x loops the other does not. Thus both (0; +, [2],{(2,3)}) and (2,2,2,3) are
contained in (2,4,6). In particular (2,4,6) is the only NEC group that contains (2,2,2,3).

5. Groups of automorphisms of Riemann double covers of surfaces with maximal
symmetry. We start with the following general result which is proved in [8].

PROPOSITION 5.1. Let G be a group of automorphisms of a bordered Klein surface X of
algebraic genus p>2 and let X+ be the canonical Riemann double of X. Then Aut(A"*")
contains a subgroup isomorphic to C2 X G.

THEOREM A. Let X be a bordered Klein surface with maximal symmetry of algebraic
genus p >2 that is different from the regular pair of pants. Then Aut(A"*") = C2 X Aut X.

Proof. Let X = C+/F. Then G = Aut X = A/F for some NEC surface group F and an
NEC group A with signature (2,2,2,3). By Proposition 5.1, A/F+ = C2 X G £ Aut(^+);
in particular |Aut(A"+)| > 24(p - 1). Now if |Aut(;T )| > 24(p - 1) then Aut(;T) = A/F+,
where by Theorem 4.4 A has signature (2,4,6). Denote by 6 and by 6 the canonical
epimorphisms A -» A/F and A—>A/F+ respectively.

Let c(), c, and c2 be the reflections in the sides of a triangle with angles n/2, n/4, n/6
chosen so that {c{)c~\f = {c~\C2)

A = (c~0c0)
6 = 1. From Figure 7 we see that

~ ~ ~ _ — _ _ _ S r -1 \

C(j — C^C()C2) C \ — C2 -̂ I -̂2? ^2 — ^ 1 ? ^3 — ^0 \*̂ * ^)

are the canonical reflection generators of A. We have (coci)2 = (c,c2)
2 = (c2c3)

2 =
(c3c,,)3 = l.

As F is a bordered surface group it must contain some of the reflection generators of
A. If co E F then from the above relations c3 e F and so c()c3 e. F which is not true as F is a
bordered surface group. Thus c0 £ F and similarly c3 e F. Therefore ct E F or c2 E F. In
the first case (CiC3)

2 = Ci(c3c,c3) e F+ and in the second case (c{)c2)
2 E F+. By (5.1) we find

that in both cases

(C2C.C2'CO)2EF+. (5.2)

Figure 7.
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As T+ is a Fuchsian surface group we see that the images x, y and z of c0, c, and c2

are, in A/F+ = G, elements of order 2 and xy, yz and xz have orders 2, 4 and 6
respectively. Furthermore (zyzx? = 1, by (5.2). Thus G is a factor group of the group F
with presentation

(x,y, z | * 2 , / , z2, {xy?, (yz)4, (xzf, (zyzx?)

If A = xy, B = yz then F has a subgroup F+ of index 2 with presentation

{A,B\A\B\(ABf,(B~2A?)

The group generated by B2 is central and F+/(B2)=-D6, Thus F + has order 24 and f has
order 48.

On the other hand, by (2.3) \G\ is a multiple of 48 and therefore G has the
presentation (5.3). So X has algebraic genus p = 2. Finally observe that (c^)" e F if and
only if (CjCj)a e F+ and therefore, writing ktj = order of 0(c,y), from [3, Theorem 2.3.3] and
(5.2) that r has \G\/2k01 = 12/4 = 3 empty period cycles if c, e F and \G\/2k]3 = 12/4 = 3
empty period cycles if c2 e F (this result also follows from [6]). In either case we see that
X = C+/F is a sphere with three holes as claimed.

The existence of this surface was proved in Section 3.

6. Groups of automorphisms of Riemann double covers of bordered Klein surfaces
with group of automorphisms of order 8(p — 1). Using the same techniques, as in the
proof of Theorem 4.4 we prove the following result.

THEOREM 6.1. The groups (2,4,8), (2,4,6), (2,4,5) and (2,3,8) are the only NEC
groups that contain an NEC group A with signature (2,2,2,4).

Proof. Indeed it is not difficult to see as in the proof of Lemma 4.2 that the only
Fuchsian groups that contain A+ = [2,2,2,4] are

[2,4,8], [2,4,6], [2,3,12], [2,4,5], [2,3,8]

and the corresponding Schreier graphs are

" # - •

X r
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Now we see that the graphs admitting a reflection that do not interchange two loops
correspond to groups [2,4, 8], [2,4,6], [2,4,5] and [2,3,8]. This completes the proof.

We are in the position to prove our second theorem.

THEOREM B. Let X be a bordered Klein surface of algebraic genus p>2 that has the
group of automorphisms of order 8(p — 1) and is different from four Klein surfaces of the
following topological types:

(i) a projective plane with two holes,
(ii) a torus with one hole,
(iii) a torus with two holes,
(iv) a sphere with four holes and
(v) a torus with four holes.

Then Aut^"1") = C2 X Aut X.

Proof. As in Theorem A, let us write X = C+/F for some bordered surface group F
and G = Aut X = A/F for some NEC group A with signature (2,2,2,4). Let G =
A\xt(X+) and assume that \G\ >2 \G\. Then G = A/F+, where by 4.4.2, A has one of the
following signatures:

(1) (2,3,8) and |G| = 9 6 ( p - l ) ,
(2) (2,4,6) and |G| = 4 8 ( p - l ) ,
(3) (2,4,8)and|G| = 32 (p - l ) .
(4) (2 ,4 ,5 )and |6 | |=80 (p - l ) .
Let us denote by 6 and 9 the canonical epimorphisms A—»A/F and A-»A/F+

respectively.
Case (1). First of all we can have the inclusion A < A where A has signature

(2,2,2,4) and A has signature (2,3,8). This follows from the Example in Section 4 but
more directly from the decomposition of the trirectangle with angles /r/2, n/2, nil,
into 6 triangles with angles n/2, n/3, n/8

Figure 8.

T h e ( 2 , 3 , 8 ) triangle F has sides a, /3, y. Let c0, c{, c2 be reflections in the sides. Then

Co = c? = c\ = (coc,)2 = (c^f = (coc2)
8 = 1

As A is generated by reflections in the sides of the quadrilateral in Figure 8, it is
generated by:

Co = C2C1C2, C i = C 2 C 0 C 2 , C2 = C0C2C0C2C0, C3 = C0C2ClC2C0 (6.1)
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Then c\ = c] = c\ = c\ = (c0Ci)2 = (cxc2)
2 = (c2c3)

2 = (c3c0)
4= 1. Let A* be the triangle

group generated by the reflections c0, c, and c2.
As F is a bordered surface group then ct or c2 belongs to F. Let cx e F, as F is normal

subgroup of A then c3C!C3 e F so (c,c3)2eF and hence (c,c3)2eF+. Now cxc3 = c2

coc2coc2cxc2co. Let 0(co) = x, 6(cx) = y, 6(c2) = z. Then 0(ciC3) = (z*)2zyz.r. Let A = xy,
B=yz. Then v4B=;tz. Now ,4, B generate the subgroup A+/F+ and 9(c1c3) =
(AB)~2B~i(AB)~i so that (AB2(AB)2)2 = 1. By conjugating by /45 we see this relation is
equivalent to (B(AB)3)2 = 1 or ((ABfBf = 1. This is equivalent to ({AB)AB{AByxf = 1
or ((ABfAf = 1. Thus A+/F+ obeys the relations A2 = B3 = (AB)8 = {{ABfAf = 1. This
is a presentation of GL(2,3) or order 48 (see 8.8 of [5]).

Similarly if c2 E F, then c0c2c0 e F and (coc2)
2 E F+. Therefore (c2clc2coc2c0c2co)

2 s
F+ and we get the relation (B~\ABy3)2 = 1 in A+/F+. As above this shows that
A+/r+ = GL(2,3). Then the group A/F+ = G is a C2-extension of GL(2, 3) and has 96
elements. By (2.3), F has algebraic genus p = 2 and by [3, Theorem 2.3.3] F has k - 8/2q
empty period cycles, where q is the order of the image of c0c2 in G if c, E F and the image
of c,c3 in G if c2 e F. Thus in both cases g =2 and so using (2.2) we see that F has
signature (1; —;[—];{(—)(—)}) and therefore X is a real projective plane with two
boundary components (see also [4]).

Conversely the above arguments shows that this exceptional surface exists. Indeed
take an NEC group A with signature (2,3,8), the group G with the presentation

(x,y,z\ x2, y2, z2, (xy)2, (yz)3, (xz)\ ((zxfzyzxf)

that by the above arguments have order 96, and consider an epimorphism 6: A—» G given
by

Then it is straightforward to check, using results of Chapter 2 of [3], that for
F = Ker 0 f) A, X - C+/F is a surface we are looking for. The surface X+ is the
underlying surface of a regular map of type {3,8} on a surface of genus 2, such a map is
unique [5] and so the corresponding Riemann surface is unique [7]. As the reflections c,,
c2 are conjugate they must give dianalytically equivalent Klein surfaces. In Figure 9 we
have the map on A"1" and the symmetry on the map giving as quotient the projective plane
with two holes. We remark that the surface X+ is hyperelliptic (it has genus 2) and that
the hyperelliptic involution is given by (c0c2)

4.
Case (2). Let cQ, c\, c2, be the reflections in the sides a, B, y of the (2,4,6) triangle F

in Figure 10. Then by the decomposition of the (2,2,2,4) trirectangle in the Figure 10 we
have:

c3 = c2. (6.4)

Now since F is a bordered surface group c{ e F or c2 E F. But then {c\C3)
2 e F+ in the

first case and (coc2)
2 e F+ in the second one. Observe that {CjCj)" e F if and only if

(CiCjf E F+ and

(clc3)
2 = (c()c2c]c2cuc2)

2, (6.5)

(c0c2)
2 = (cicoc2coc2c())

2. (6.6)
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Figure 9.
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Consider the first case. Then, by exactly the same arguments as in the case (1),

A/r+ = G = {x,y, z | z\y\ z\ (xyf, (yz)\ (xz)6, (y(xz)3)2). (6.7)

As (xz)3 is central and G/((zx)3) has order 48, G has order 96. So X has algebraic genus
p = 3 by (2.3). Moreover 6(c0c2) = yzxz e A/r+ has order 4. So, by [3, Theorem 2.3.3], T
has two empty period cycles. Finally c2c3 and c0c3 become in A/r+ two commuting
elements of order 2 and 4. Thus X is orientable by [3, Theorem 2.1.3] and therefore it is a
torus with two holes. Observe that the above surface is hyperelliptic and the hyperelliptic
involution is induced by (coc2f. The group G is the symmetry group of the map of type
{4,6} on a surface of genus 3 shown in Figure 11. We also illustrate the symmetry of this
map whose quotient is a torus with two holes.

In the second case

A / r = G=(x,y,z\ x2,y2, z2, (xyf, (yz)\ (xz)6, [y, (xz)2]). (6.8)

Now the above group has order 48 and again Q(c\C3) = xzyzxz has order 4 so that X
has one hole. This time 6(c\C3) = zy and 9(coc3) = yz and thus X is also orientable.
Therefore A' is a torus with one hole that is hyperelliptic because it has genus 2. As in the

Figure 11.

https://doi.org/10.1017/S0017089500030925 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500030925


COMPLEX DOUBLES OF KLEIN SURFACES 327

symmetry

Figure 12.

previous case it follows that this exceptional surface exist and is the underlying surface of
a unique regular map of type {4,6} (see Figure 12).

Case (3). Let c0, c,, c2 be a set of canonical generators for A. Then arguing as before
(see Figure 13) one can show that

Ci=c2cic2, c2 = cu c3 = cQ (6.9)

is a set of canonical generators for A.
As before c, e T or c2 e T and respectively {c^)2 e F+ or (c{)c2)

2 e F+, which in both
cases give

(c2c,c2'c())
2er+. (6.10)

Now as T+ is a Fuchsian surface group, the images x, y and z of c0, c, and c2 in <5 are

Figure 13.

https://doi.org/10.1017/S0017089500030925 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500030925


328 E. BUJALANCE ET AL.

generators of order 2 such that xy, yz and xz have orders 2, 4 and 8 respectively.
Moreover by (6.10) we have (zyzx)2 = 1 which is equivalent to x(yz)2x = (yz)2 and
therefore A/F+ = G is a factor group of the group with the presentation

(x,y, z x2,y2, z\ (xy)2, (yz)4, (xz)\ (x(yzf)2). (6.11)

But is it clear that such group has order 64 (we remark that (yz)2 is central) and
therefore G has order 32 or 64. We claim that the former case is impossible. Indeed if
|G| = 32 then G is a proper factor of (6.11). Clearly the images x,y and % in G still
remain elements of order 2 and xy, yz and xz still have orders 2, 4 and 8. So x = (yz)2 and
therefore |G|<8, a contradiction.

By (2.3) X = C+/F has algebraic genus 3. Let c ,£T (resp. c2 e F). Then coc2 g F
(resp. CiC3 £ F) since otherwise |A/F|<4. On the other hand (cxc3)

2, (co,c2)
2 e F. So C\C^

and coc2 represent in A/F elements of order 2 and therefore in both cases F has four
empty period cycles by [3]. So A" is a sphere with four holes. Observe that the above
surface is hyperelliptic and the hyperelliptic involution is (c,c2)

2-
As before we argue that the exceptional surface X exists. The surface X is

constructed by gluing together two isometric regular right-angled octagons in a similar
way that in Section 3 to obtain the regular pair of pants. The surface X+ is the
Accola-Maclachlan surface of genus 3 (see [9]) and X+ is given by the algebraic curve
y2 = . r 8 - l .

Case (4). Let c0, c,, c2 be a set of canonical generators for A. Then from Figure 14
we have that:

c<> — C2, c \ — CT, — C \

Now c, e F or c2 e F. In the first case we obtain as G a group of order 320 with
presentation

(x,y,z \x2,y2,z2,(xy)2,(yz)4,(xz)5,((xz)2y(zx)2yf). (6.12)
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Figure 15.

If c2 e T we obtain a presentation for G that tells us that \G\ = 20 which is impossible (see
[5])-

Thus c, e T In this case 9(coc2) has order 4 and then X must have 32/2-4 = 4 holes.
Finally the order of (z, (xz)2y(zx)2,xzyzx,y) is 64 and the order of (z,xzyzx,y) is 32, then
by [3]. Thm 2.1.3 the surface X is orientable. The fact that \G\ = 320 tell us that p = 5 and
then X has the topological type of a torus with four holes. The epimorphism 6 give us the
method of construction of X and so the existence of such a surface. We remark that this
surface X is not hyperelliptic. If it were then (G)+ of order 160 would have as a
homomorphic image a group H of automorphisms of the sphere of order 80. We would
have H isomorphic to D40 or C80 and this is not possible. In Figure 15 we have the surface
X decomposed in trirectangles, using Figure 14 and doing the complex double of X, X+,
we obtain a type {4,5} regular map on a surface of genus 5.

7. Some results on real algebraic curves. Finally by a well known equivalence [1]
between the categories of Klein surfaces and algebraic curves the results of the paper
have also an interesting interpretation in terms of algebraic geometry. Namely, with only
a finite number of exceptions, a real algebraic curve C having a large number of birational
automorphisms over C has a small number of such automorphisms over IR. For instance,
by Theorems A and B, we have:

COROLLARY 6.2. Let C be a real algebraic curve of genus g^2. Suppose that:
(i) the complexification of C has a group of automorphisms with order greater than

24(g - 1 ) .
(ii) the Klein surface determined by C is not any one of the six exceptions given by

Theorems A and B.
Then |Aut(C)| < 8(g - 1).
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