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Abstract

Let (X, p, ti)de be a space of homogeneous type with d > 0 and 6 e (0, 1], ft be a para-accretive
function, e € (0,9], \s\ < e, and ao 6 (0, 1) be some constant depending on d, e and .$. The authors
introduce the Besov space bBpq(X) with a0 < p < oo and 0 < q < oo, and the Triebel-Lizorkin space
bFpq(X) with a0 < p < oo and an < ^ < oo by first establishing a Plancherel-Polya-type inequality.
Moreover, the authors establish the frame and the Littlewood-Paley function characterizations of these
spaces. Furthermore, the authors introduce the new Besov space b~l Bs

pq(X) and the Triebel-Lizorkin
space b~[ Fpq(X). The relations among these spaces and the known Hardy-type spaces are presented.
As applications, the authors also establish some real interpolation theorems, embedding theorems, Tb
theorems, and the lifting property by introducing some new Riesz operators of these spaces.
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Keywords and phrases: space of homogeneous type, para-accretive function, Plancherel-Polya inequality,
Besov space, Triebel-Lizorkin space, Calderon reproducing formula, interpolation, embedding theorem,
Tb theorem, Riesz potential, lifting property.

1. Introduction

It is well known that the remarkable T1 theorem given by David and Journe provides
a general criterion for the L2(IR")-boundedness of generalized Calderon-Zygmund
singular integral operators; see [5,35]. The Tl theorem, however, cannot be directly
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230 Dongguo Deng and Dachun Yang [2]

applied to the Cauchy integral on Lipschitz curves. Meyer in [30] (see also [31])
observed that if the function 1 in the 7*1 theorem is allowed to be replaced by a
bounded complex-valued function b satisfying 0 < 8 < Reb(x) almost everywhere,
then this result would imply the L2(R") boundedness of the Cauchy integral on all
Lipschitz curves. Replacing the function 1 by an accretive function, Mclntosh and
Meyer in [30] proved the Tb theorem, where b is an accretive function. David, Journe,
and Semmes in [6] introduced a more general class of L°°(IRn) functions b, namely,
the so-called para-accretive functions. They proved that the function 1 in the 7*1
theorem can be replaced by para-accretive functions, which is why it is now called
the Tb theorem. Moreover, they showed that the para-accretivity is also necessary
in the sense that if the Tb theorem holds for a bounded function b, then b is para-
accretive. Moreover, Meyer in [31] observed that if b(x) is a bounded function and
1 < Reb(x), one can then define the modified Hardy space /^'(R") simply via the
classical Hardy space //'(K"), that is, the space H£(W) is defined by the collection
of all functions / such that bf is in the classical Hardy space //'(K"). This space
has the advantage of the cancellation adapted to the complex measure b(x) dx and
is closely related to the Tb theorem, where b is an accretive function. In fact, Han,
Lee and Lin recently proved in [17] that if T*(b) = 0, then the Calderon-Zygmund
operator T is bounded from the classical HP(R") to a new Hardy space H£(W) for
n/(n + () < p < 1, where € € (0, 1] is some positive constant which depends on
the regularity of the kernel of the considered Calderon-Zygmund operators. When
p,q > 1, the Besov spaces, bBs

pq(X) and b~xBs
pq{X), the Triebel-Lizorkin spaces,

bFs
pq(X) and b~x Fpq(X), were considered by Han in [14], and the related Tb theorem

was also established in that paper.
The main purpose of this paper is to study the Besov spaces, bBs

pq(X) and
b~lBpq(X), the Triebel-Lizorkin spaces, bFs

pq(X) and b~{Fs
pq(X) when p < 1 or

q < 1, and the related Tb Theorem. We will do this in the setting of metric spaces, or
more generally, spaces of homogeneous type.

Analysis on metric spaces has recently obtained an increasing interest; see [13,
25,27,34]. In particular, the theory of function spaces on metric spaces, or more
generally, the spaces of homogeneous type in the sense of Coifman and Weiss in [3,4]
has been well developed; see [16,19-24,28,29,42,48]. It is well known that the
spaces of homogeneous type in Definition 1.1 below include the Euclidean space, the
C00 Riemannian manifolds, the boundaries of Lipschitz domains, and, in particular,
the Lipschitz manifolds introduced recently by Triebel in [41] and the isotropic and
anisotropic rf-sets in IR". It has been proved by Triebel in [39] that the d-sets in R"
include various kinds of self-affine fractals, for example, the Cantor set, the generalized
Sierpinski carpet and so forth. We point out that the spaces of homogeneous type
in Definition 1.1 also include the post critically finite self-similar fractals studied by
Kigami in [26] and by Strichartz in [36], and the metric spaces with heat kernel studied
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[3] Besov and Triebel-Lizorkin spaces 231

by Grigor'yan, Hu and Lau in [12]. More examples of spaces of homogeneous type
can be found in [3,4,34].

We now state some necessary definitions and notation of spaces of homogeneous
type. A quasi-metric p on a set X is a function p : X x X —>• [0, oo) satisfying
that

(i) p(x, y) = 0 if and only if x = y;
(ii) p(x, y) = p(y, x) for all x, y e X;

(iii) there exists a constant A e [1, oo) such that for all x, y and z e X,

p(x,y) < A[p(x,z) + p(z,y)].

Any quasi-metric defines a topology, for which the balls B(x, r) = {y € X :
p(y, x) < r] for all x e X and r > 0 form a basis.

In what follows, we set diamX = sup{p(x, y) : x, y e X}. We also assume the
following conventions. We denote by / ~ g that there is a constant C > 0 independent
of the main parameters such that C~lg < f < Cg. Throughout the paper, C will
denote a positive constant which is independent of the main parameters, however it
may vary from line to line. Constants with subscripts, such as C\, do not change in
different occurrences. For any q e [1, oo], we denote by q' its conjugate index, that
is, 1 jq + 1 /q' — 1. Let A be a set and we will denote by XA the characteristic function
of A.

DEFINITION 1.1 ([23]). Let d > 0 and 9 € (0, 1]. A space of homogeneous type,
(X, p, ii)d,g, is a set X, together with a quasi-metric p, a nonnegative Borel regular
measure [i on X, and, in addition, there exists a constant Co > 0 such that for all
0 < r < diam X and x, x', y e X,

(1.1) n{B{x,r))~rd

and

(1.2) \p{x, y) - p(x', y)\ < Cop(x, x')e[p(x, y) + p (x \ y)]x~e.

The space of homogeneous type defined above is an variant of the space of homo-
geneous type introduced by Coifman and Weiss in [3]. In [29], Macias and Segovia
have proved that one can replace the quasi-metric p of the space of homogeneous type
in the sense of Coifman and Weiss by another quasi-metric p which yields the same
topology on X as p such that (X, p, fi) is the space defined by Definition 1.1 with
d= 1.

Throughout this paper, we will always assume that [i(X) = oo.
Let us now recall the definitions of para-accretive functions and the space of test

functions.
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DEFINITION 1.2. A bounded complex-valued function b on X, a space of homoge-
neous type, is said to be para-accretive if there exist constants C\ > 0 and K e (0, 1]
such that for all balls B c X, there is a ball B' c B with /t/z(B) < fi(B') satisfying

1 ~ > 0.Hx)dix(x)

DEFINITION 1.3 ([ 14]). Let b be a para-accretive function. Fix y > 0 and 6 > p > 0.
A function / defined on X is said to be a test function of type (x0, r, p, y) with x0 € X
and r > 0, if / satisfies the following conditions:

(i) \f(x)\<C —

(ii) | /(JC) - / ( y ) | < C ^ , J — - rrjr- for p(x, v) <

+ p(x,xo)]/2A;

[(iii) [ f(x)b(x)dfi(x) = 0.
Jx

If / is a test function of type (JC0, r, ft, y) related to a para-accretive function b, we
write / € ^(jto, r, ^, y) and the norm of / in %(x0, r, ^, y) is defined by

w . y ) = i n f(C : (i) and (ii) hold}.

Now fix xQ e X and let %(P, y) = %(x0, 1, 0, y). It is easy to see that

with an equivalent norm for all X\ e X and r > 0. Furthermore, it is easy to check that
%(P, y) is a Banach space with respect to the norm in %(P, y). Also, let the dual
space (%()3, y))' be all linear functionals J&? from %(/3, y) to C with the property
that there exists a C > 0 such that for all / e %(/3, y),

We denote by (h, f) the natural pairing of elements h € {%{$, y))' and / € %(/3, y).
Clearly, for all h € (%(/3, y))', (h, f) is well defined for all / e %(JC0, r, /6, y) with
J:0 e ^ and r > 0.

It is well known that even when X = K", #j,(/?i, y) is not dense in %(^2, Y) if
£i > ^2. which will bring us some inconvenience. To overcome this defect, in what
follows, for a given e € (0, 9], we let ̂ ,(/J, y) be the completion of the space %(e, e)
in #U/3, y) when 0 < £, y < e.

Let b be a para-accretive function. As usual, we write

b%(p, y) = {f:f = bg for some g e %(/3, y)}.
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If / € b%(@, y) and / = bg for some g e %(fi, y), then the norm of / is defined
by \\f\\b%(f>,Y) = llglktf.y)- By this definition, it is easy to see that

(1.3) fz(b%(P,y))' if and only if bf e (%(P, y))',

where we define bf e (%(P, y))' by (bf, g) = (f, bg) for all g e %(p, y).

DEFINITION 1.4 ([16]). Let b be a para-accretive function. A sequence {Sk}
b
kel of

linear operators is said to be an approximation to the identity of order e e (0,9]
associated to b if there exists C2 > 0 such that for all k e 1 and all x, x', y, y' e X,
the kernel of Sk, denoted by Sk(x, y), is a function from X x X into C satisfying

(i) \Sk(x,y)\<C2
 2 /

(2-* + p(x,

(i

p(x,x')<{2-k

( ^ ' ^ ) 2 ^ for

(i) \Sk(x,y)\C2 / ;
(2-* + p(x, y))d+(

/ o(x x') V 2~ke

(ii) \Sk(x,y)-Sk(x\y)\<C2( ^ ' / ) — for
k

(iii) \Sk(x,y)-Sk(x,y')\<C2( ^ ' ^ )
\2-* + p(x,y)J -k +p(x,y))d+(

p(y,y')<(2-k + p(x,y))/2A;
(iv) |[St(jc, y) - Sk(x, / ) ] - [Sk(x', y) - Sk(x', y')]\

p(x,x') V V
2

for p(jr, x1) < (2-k + p(x, y))/2A and p(y, /) < (2~k + p(x, y))/2A;

(v) / Sk(x,y)b(y)d^(y) = l;
J
/

Jx

(vi) [ St(x,y)b(x)dn(x) = l.
Jx

REMARK 1.5. By Coifman's construction in [6], if b is a given para-accretive
function, one can construct an approximation to the identity of order 0 such that
Sk(x, y) has compact support when one variable is fixed, that is, there is a constant
C3 > 0 such that for all k el, Sk(x, y) = 0 if p(x, y) > C{Tk.

REMARK 1.6. We also remark that in the sequel, if the approximation to the identity
as in Definition 1.2 exists, then all the results still hold when b and b~] are bounded.
It seems that we do not need to assume that b is a para-accretive function. However,
in [6], it was proved that the existence of the approximation to the identity as in
Definition 1.2 is equivalent to the para-accretivity of b.

In the next section, we introduce the norms || • LB^<;O and || • ||6F.. (X) on some
distribution spaces via approximations to the identity. Then we establish a Plancherel-
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Polya-type inequality related to these norms by using the discrete Calderon repro-
ducing formula in [17]. From this inequality, we deduce that the definitions of these
norms are independent of the choice of approximations to the identity. By the discrete
Calderon reproducing formula again, we further verify that the definition of these
norms are also independent of the choice of the distribution spaces under some re-
strictions. After these preparations, we introduce the Besov space bBs

pq(X) and the
Triebel-Lizorkin space bFpq(X). Using the discrete Calderon reproducing formula,
we then establish the frame and the Littlewood-Paley function characterizations of
these spaces. By the results in [6] and [17], it is easy to see that bF°2(X) = LP(X)
with an equivalent norm if 1 < p < oo, and bFp2(X) — HP(X) with an equivalent
norm if d/(d + e) < p < 1. It is still unknown if this is true for any other s, p and q.

In Section 3 of this paper, we introduce the new Besov space b~xBs
pq{X) and the

new Triebel-Lizorkin space b~lFpq(X). The frame and the Littlewood-Paley function
characterization of these spaces are also given. Moreover, the relations among the
spaces bBpq(X), bFs

pq(X), b~]B;q(X), b~lF;q(X), and the known Hardy spaces are
presented.

Section 4 is devoted to some applications of the theory of these spaces. Using
the frame characterization of these spaces, we first establish some real interpolation
theorems. Some embedding theorems on these spaces are also presented. Using
the interpolation theorem, we further establish the Tb theorems on these spaces and
consider the boundedness of new Riesz potentials in these spaces. As a corollary,
we obtain the boundedness of the new Riesz potential operator la for 0 < a < €
with € € (0,0] from the Hardy spaces HP(X) to the Hardy spaces H£(X), where
\/q — l/p — a/dandd/(d + e—a) < p < oo. Moreover, using the Tb Theorem, we
further establish the lifting property via the Riesz potential operators of these spaces.

Finally, we mention that the theory of the spaces bF^q(X) and b~lF£oq(X) with
\s\ < € € (0, 6] and max[d/(d + c), d/(d + s + e)} < q < oo has been established
in [48].

2. Spaces bBs
pq{X) and bFs

pq(X)

Let b be a para-accretive function as in Definition 1.2. We now introduce the norms
II • WbB< (X) ar |d II • Wbh (X) o n some distribution spaces via the approximations to the
identity. In what follows, we denote max(0, x) for any x € K simply by x+.

DEFINITION 2.1. Let b be a para-accretive function as in Definition 1.2. Let e €
(0, 6], {Sk}

b
k€l be an approximation to the identity of order e as in Definition 1.4, and

Dk = Sk- 5*_, for k el. Let |s| < e.
(i) If max{d/(d + (),d/(d + s + e)} < p < oo and 0 < q < oo, for all
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/ € (&M, Y))' with

(2.1) max[0,-s + d(l/p- 1)+} < fi < e and max{0, s - d/p] < y < e,

we define the norm \\f\\bB> m by

*» = E *"< mx)
[k=-oo

with the usual modifications made when p = oo or q = oo.
(ii) Ifmax{rf/(d+e), d/(d+s+e)) < p < ooandmax{d/(d+e), d/(d+s+e)}

q < oo, for all / € (%{p, y))' with £, y as in (2.1), we define the norm ||/||6f. (

by

bFlAX) -

1/9

2*" |D*( / ) | '
U=-oo LUX)

with the usual modification made when q — oo.

The following theorem indicates that the definitions of the norms || • \\bB> m and
II • Wbh (X) a r e independent of the choice of approximations to the identity.

THEOREM 2.2. Let b be a para-accretive function as in Definition 1.2, e € (0, 0]
and \s\ < e. Let {S*}£eZ and [Gk}^€l be two approximations to the identity of order €
as in Definition 1.4, Dk = Sk — Sk-\ and Ek = Gk — Gk-\for k e 2.

(i) Ifmax{d/(d + e),d/(d + s + e)} < p < oo and 0 < q < oo, for all
f e (%(P, y))' with 0 < /3, y < €, we have

1/9

2ks"\\Dk(f)\\ LHX)
lt=-00 U=-oo

(ii) / / max{d/(d + e), d/(d + s + e)} < p < oo and max{d/(d + e), d/(d + s
)} < q < oo, for all f € (%(P, y))' with 0 < fi, y < €, we have

1/9

2ks" Dk(f)\"
I k=-oo

oo 1/9

2*" I £*(/)!*
U=-oo LHX)

To prove Theorem 2.2, we first recall the following construction given by Christ
in [2], which provides an analogue of the grid of Euclidean dyadic cubes on spaces of
homogeneous type.
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LEMMA 2.3. Let X be a space of homogeneous type. Then there exists a collection
[Qk

a C X : k € Z, a e /*} of open subsets, where Ik is some index set, 8 e (0, 1) and
C4, C5 > 0, SKC/I that

(i) /x(X \ Ua 2*) = Ofor each fixed k and Qk
aDQk

p=0 if a £ fi;
(ii) for any a, P, k, I with I > k, either Q'p C Qk

a or Q'p n Q* = 0;
(iii) /or eadi (&, a ) and each I < k there is a unique P such that Qk

a C Ql
p\

(iv) diam(e*) < C4<5*;
(v) eac/i Q* contains some ball B(zk

a, C58
k), where zk

a e X.

In fact, we can think of Qk
a as being a dyadic cube with diameter rough 8k and

centered at zk. In what follows, we always suppose 8 = 1/2. See [22] for how to
remove this restriction. In addition, for k e 2 and x € Ik, we will denote by Qkv,
v = 1 ,2 , . . . , N(k, r ) , the set of all cubes Qk

TtJ c Qk, where j is a fixed large
positive integer. Denote by yk-v a point in Qkv.

REMARK 2.4. Since we always assume that n(X) = oo in this paper, for all k € 1,
h in Lemma 2.3 is an infinite index set.

Theorem 2.2 is a simple corollary of Lemma 2.3 and the following Plancherel-
Polya-type inequality.

THEOREM 2.5. Let b be a para-accretive function as in Definition 1.2, e e (0, 9]
and \s\ < e. Let [Sk}

b
keZ and [Gk)

b
keI be two approximations to the identity of order e

as in Definition 1.4, Dk = Sk — S*_i and Ek = Gk — Gt_i for k e 2.

(i) Ifmax{d/(d + e), d/(d + s + e)} < p < oo and 0 < q < oo, rfave w a
constant C > 0 SHC/I that for all f e (%(/8, y)) wi'f/j 0 < )S, y < e, we

E2"*
/V(t.T) 1 9 / P l i l q

*=-oo L^e'i >'='

< c

(ii) / / max{rf/(rf + e), rf/(rf + 5 + e)} < p < oo and ma\{d/(d + e),
s + e)} < q < oo, //jere « a constant C > 0 swc/z that for all f € (%(P, Y))' with
0 < p, y < €, we have

N(k.z)

2*" sup | D , ( / ) ( Z ) | « X G ; .
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f oo N(k.r)

I Z^ Z^ Z^

To show Theorem 2.5, the following discrete Calderon reproducing formula in [17]
will play a crucial role.

LEMMA 2.6. Let b be a para-accretive function as in Definition 1.2. Lete e (0, 0],
{Gk}

b
k€l be an approximation to the identity of order € as in Definition 1.4, and

Ek = Gk — Gk-ifor k e Z. Let 0 < ft, y < €. Then there exists a family of functions
{Ek(x, y)}k€l such that for all fixed ykv e Q\v and all f e (&b(p, y))'.

N(k,z)

(2.2) f{x) = E E E
kel re/* "=1

b(x)Ek(y, x)b(y) dfx(y),

where Ek(x, y) for k e 2 satisfies (i) a«rf (iii) of Definition 1.4 H>I(/I e replaced by
e' G (0, e),

Ek(x,y)b(x)dn(x) = f
Jx

Ek(x,y)b(y)dn(y) = O.

Moreover, the series in (2.2) converges in the sense that for all g € %(P'< Y) w^
ft < P' < € and y < y' < €,

N(k,T) .

E E E^(f^ykrV) tu

Another useful tool in dealing with the Triebel-Lizorkin space is the following
lemma which can be found in [8, pages 147-148] for R" and [22, page 93] for spaces
of homogeneous type.

LEMMA 2.7. Let 0 < r < 1, k, r? 6 1+ with r\ < k and for any dyadic cube Q\v

andallx € X, |/0;.»(JC)| < (1 +2"p(x, yk
z-

v))'d~Y, where y\v is any point in Qk
r
v and

y > d(l/r - 1). Then, for all x € X,

N(k,T)

E E
k.z)

M ,.),.,]•
where C is independent of x, k and r\, and M is the Hardy-Littlewood maximal
operator on X; see [3].
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PROOF OF THEOREM 2.5. We first verify (i). With all the notation as in Theorem 2.5,
by (2.2), we have that for all k e Z and z € X,

N(k'.r')

(2.3) Dk(f)(z)= J2 E E EAf)(ykry) Dk(bEAy,-))(zMy)d^y).

We recall the estimate in [14, page 66], that there is a constant C > 0 such that for all
k, k' € Z and ally, zeX,

(2.4) Dk(bEAy,

where e' can be any positive number in (0, e) and k A k' — min(^, A:')-
-U', v'Uy € (2*,u andze (2*'Mhen

(2.5) 2"(*Ar) + p(y, z) p(yk'y, /;").

We also recall the well-known inequality that for all aj € C and q < 1,

(2.6) "

Now suppose p < 1. In this case, from (2.3)-(2.6), it follows that

E 2*v*

< C

V V

£ *"

" ) S U P

N(k,t)

:E
oo A/(*',r')

Y^ V^ V^ ?-i*-t'if>,,cn*''v'i
> > 2 ^ 2 M(Gr' )k=-oo
Z^ Z_̂

_*'=-oo r 'e / , . !>' =

n\ ?/P
*',A|P

1/?

< c
oo r oo N(k'.T')

_k' =—oo t'e/,. u'=l

— rf/*(jc)
tip

< C E
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N(k'.x')
1/9

<c E
/V(t'.r')

E (/)(^:y)rl
1/9

where we choose e' e (0, e) such that e' > max{.s, - 5 + d(\/p — 1)}, and in the last
inequality, if q/p > 1, we use the Holder inequality and the following estimate

1 00 00

E +
t'=-cc k=-oo/If q/p < 1, we use (2.6) and

00
2l(k-k')sp-\k-k'\e'p-(k/\k')d(l-p)+kld(l-p)]q/p

k=-oc

Since y*,'u is arbitrary, we can further obtain a desired estimate in this case.
If p > 1, (2.3)-(2.5) and the Holder inequality yield that

(r=-oo

ksq
N(k,T)

_r€/» u=l
] i

<c
oo r N(k,x) I oo

E E E "<e:••) E
AT(t'.r')

2k'spu(0k'y

r , 2~
(kAk')e' 1

/ ; :—dii{y)\

Ux (2-ik*k) + p(y, yk'v))d+e J

r * > ' ) | " _ _

P/P'MI'P
1/9

<c
k=-oo [_k'=-

Nik'.r')

1/9
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< C E
* ' = - 0 0

N(k'.z')

E 2k'«>n(Qk;y

.r'e/j. v'=\

i/P 1/9

where we choose e' > |s | and we use the fact that for all x e X,

Jx (2-<*A*'>+p(;y, *))<<+
/ 00 OO \

E + E )2—•'-'-'•"'<C.
U'=-oo k=-oo/

and

i=-oo

Since y*.'" is arbitrary, a desired estimate follows, and this finishes the proof of (i).
To verify (ii), by Lemma 2.6, Lemma 2.7, (2.4)-(2.6) or the Holder inequality, we

have

oo N(k,x) 1/9

L*=-oo
EEE2'"^?,!'

I
oo r oo N(k'.t')

E 2"' E E E r-^ctf':

< c
oo / oo

v^

M (J2 E 2k^\
l/r\ "7 1

< C E
N(k'.r')

-,1/r } '/«

E E
where we choose e' 6 (0, e) and r e (0, 1] such that e' > ma.x{d(l/r — 1), 5, — s +
d(\/r — 1)} and r < min[p, q], and we use the fact that

oo oo

+
\* ' = -oo *=-oo/
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andJ2?=-oo2lk~k')s~*k~kVHik*k')~k'm~l/r)'> < C. Thus, the vector-valued inequality
of Fefferman and Stein in [7] and the arbitrariness of yk,'" e Qk

r:
v further imply the

conclusion (ii) of the theorem, which completes the proof of Theorem 2.5. •

REMARK 2.8. From the proof of Theorem 2.5, it is easy to see that the key role
played by {Dk)kel is the estimate of (2.4). However, to establish this estimate, we
need only to use the regularity (iii) as in Definition 1.4 of Dk for k e Z; see [14,16].
This means that if we replace the operators Dk by some other operators Dk for k e 1
whose kernels have the same properties as the kernels of Dk except for the regularity
(ii) of Definition 1.4, then Theorem 2.5 still holds. This observation is useful in some
applications.

Let us now verify that under some restrictions on ft and y, the definition of the
norms || • \\bg, (X) and || • ||fc/r, (X) is independent of the choice of the distribution space,

(£(ft Y))'. "

THEOREM 2.9. Let b be a para-accretive function as in Definition 1.2, f 6 (0, 6]
and \s\ < €.

(i) Let ma\[d/(d + e), d/(d + s + e)} < p < oo and 0 < q < oo. If f €
{%(P\,Y\))' with ma\{0, -s + d(l/p- 1)+} < ft < €, max{0, 5 -dip) < yx < e,
andUWbB^x) < oo,thenf e (&(&, j*))'withmax{0, -s+d(l/p-l)+] < ft < e
and max[0, s — d/p] < y2 < e.

(ii) Let

\ d d ) j \ d d \
max { , > < p < oo and max { , } < a < oo.

[d+e d+s+e) F [d+e d+s+(\ *~

Iff € (%(pu YI))' with max{0, -s + d(l/p - 1)+} < ft < e, max{0, s - d/p) <

Y\ < €,and\\f\\bpu{X) < oo, then f e (%(ft, y2))'withmax{0, -s+d(l/p-l)+) <

f}2 < e and max{0, s — d/p) < y2 < €.

PROOF. Let ^ e %(e , e)• With all the notation as in Lemma 2.6, we first claim for
k = 0, 1, 2 , . . . , T e Ik and v = 1, 2 , . . . , N(k, r ) that

(2.7) \(b(.)Ek(y, •), * ) | ^ g 2 " < 1

and for A: = - 1 , - 2 , . . . , r e h and v = 1, 2 , . . . , N(k, r ) that

(2.8) \{b(.)Ek(y, •), » ) | < C ^ l l ^ r l k ^ , ^ lk

where y2' can be any positive number in (0, y2).
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In fact, for (2.7), by the vanishing moment of b(-)Ek(y, •), we have

\{b(-)Ek(y,-),ir)\

[14]

L Ek{y,x)b{x){f{x) -

- p(x,y)h

\Ek(y,x)\ 7rj—--.dix{x)
p(y.x)<(\+p(y,xo))/2A (I ~r PKy<Xo)) n

+ (l+p(^o) )-J^W

where we choose e' > 0 in Lemma 2.6 such that e' > max{y2, &}. This verifies (2.7).
Similarly, the vanishing moment of b\j/ yields that

(H-)Ek(y, •), *)\

= f [Ek(y, x) - Ek(y,
Jx

If
.W) / 2~*f 2~*€

"* + p(y,

1

(\+p(x,xo))
d+»

which is just (2.8).
Observe that if k > 0, r e Ik, v = 1, . . . , N(k, r) , and y e Qk

x\ then

(2.9) \+p{y,xo)~l+p(yk
t-

v,Xo),

and if k = - 1 , - 2 r e / , , v = 1 , . . . , N(k, r) , and y e Qk
T\then

(2.10) 2~k + p(y, jc0) ~ 2-* + p(y*u, JC0).

The estimates (2.7) and (2.8) and the observations (2.9) and (2.10) tell us that

oo N(k,z)

k=-oo re/i i>=l

(f)(ykr-v) f {H-)Ek{y,-),f)b{y)dn{y)
jQk,"
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( oo N(k,r)

E E E 2~

243

. t=0 T6/, K=l

1

+ E E Z**
t=-oo re/j w=l

If /? < 1, Lemma 2.3, Theorem 2.5, (2.6) and the Holder inequality yield that

(2.11)
* = 0

N(k.r)

E
re / , w=

E 2fav(Qj-

N(k,z)

t=-00

'(X)
l*=-oo

where we choose y2' e (0, y2) such that y2' > s — d/p and use the fact that

If p > 1, similar estimates, except that (2.4) is replaced by the Holder inequality,
lead us to

(2.12)

1

"I

J

1/P

dniy)
MP"

- l

t=-oo

N(k,r)

E
Lre/ t K=

I 1/P

[Xo-
2~kyi MP'
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where we use the fact that 02 > — s in this case and choose y2' > max{0, 5 — d/p}.
Suppose h 6 tfifc, Yi)- We choose hn € ^(e, e) for any n e N such that

\ \ h n - i y

The estimates of (2.11) and (2.12) show that for all n, m e N,

\(f, K - hm)\ < C\\f\\bBUW\\hn -

which shows limn_>oo(/, hn) exists and the limit is independent of the choice of hn.
Therefore, we define

{f,h)= lim (/,*,).
n—>oo

By (2.11) and (2.12), for all h e #(/32, y2),

\{f,h)\<C\\f\\bB.nW\\hyllh.n).

Thus, / € (#(02. tt))'- This finishes the proof of (i).
The conclusion (ii) can be deduced from (i) and the fact that

see [37, Proposition 2.3.2/2]. This finishes the proof of Theorem 2.9. •

Now we introduce the Besov, bB" (X), and the Triebel-Lizorkin, bFpq(X), spaces.

DEFINITION 2.10. Let b be a para-accretive function as in Definition 1.2, e e
(0, 9] and \s\ < e. Let {Sk}

b
k€l be an approximation to the identity of order e as in

Definition 1.4 and Dk = Sk — 5t_i for k e 2.

(i) If mzx{d/(d + e), d/(d + s + e)} < p < oo and 0 < q < oo, we define the
space bBpq(X) to be the set of all / € (%(P, y))' with

max(s, 0, —s + d(\lp — 1)+} < B < € and
(2.13) ^

max{s — d//?, d{\/p — 1)+, — s + d(\/p — 1)} < y < e

such that
f oo 1 '/?

with the usual modifications made when p = oo or q = oo.
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(ii) Ifmax{<//(d+e), d/(d+s+e)} < p < ooandmax{rf/(rf+e), d/(d+s+e)} <
q < oo, we define the space bFs

pq(X) to be the set of all / € (%(P, y))' with fi, y
as in (2.13) such that

WfWbF-(X) — J2 2ks"\Dk(f)\
q

i li

< oo

with the usual modification made when q = oo.

Theorem 2.2 and Theorem 2.9 tell us that the definitions of the Besov space
bBs (X) and the Triebel-Lizorkin space bFs

pq(X) are independent of the choice of the
approximation to the identity and the distributional space, (%(P, y))', with fi, y as
in (2.13).

REMARK 2.11. To guarantee the definition of the spaces bBp (X) and bFs (X)
is independent of the choice of the distribution space {%{&, y)Y, we need only to
restrict that max{0, —s + d(l/p — l)+} < fi < € and max{0, s — d/p] < y < €;
see Theorem 2.9. However, if we restrict max(0, s) < 0 < e and mzx{d(l/p —
1)+, -s + d{\/p —l))<y<€, we prove in the following proposition that the space
of test functions, b%(fi, y), is contained in the spaces bBs

pq{X) and bFs
pq(X). Thus,

the spaces bBs
pq(X) and bFs

pq(X) are non-empty if we restrict /?, y as in (2.13).

PROPOSITION 2.12. Letb be a para-accretivefunction as in Definition 1.2, e e (0,0]
and \s\ < e.

(i) // max{rf/(rf+<0, d/(d+s+e)} < p <ooandmax{d/(d+€), d/(d+s+e)} <
q < oo, then bBpMD(pq)(X) C bF^X) C &BJ.IMx(p.,)(X).

(ii) // / € b%(P, y) with max(0, s) < 0 < € and max{d(l/p - 1)+, - 5 +
d(l/p-l)} < y < ejhenf e bBpq(X)withmax{d/(d+e),d/(d+s+e)} < p < oo
andO < q < oo, and f e bFs

pq(X) with max{d/(d + e), d/(d + s + e)} < p < oo
and max{d/(d + e), d/(d + s + e)} < q < oo. Moreover, if p, q < oo, then the
space b%(/3, y) with fi, y as above is dense according to the norm \\ • \\bB' (x) in the
space bBs

pq(X), and according to the norm || • \\hf, (X) in the space bFpq(X).
(iii) If 1 < p < oo, then bFp2(X) = LP(X) with an equivalent norm; and if

d/{d + e) < p < 1, then bF°p2(X) = HP{X) with an equivalent norm.

PROOF. The proof of (i) is trivial; see [37, Proposition 2.3.2/2] and [40, Proposi-
tion 2.3].

Let / e b%{p, y) with max(0, s) < fi < e and

ma\{d(l/p- l)+,-s+d(l/p- 1)} < y < e.
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Then f = bg for some g e %(/J, y) and \\f\\byb{P,Y) = U\\v>u>.y)- Let {Dk}kel be the
same as in Definition 2.10. The same argument as in (2.7) and (2.8) yields that for
k = 0, 1, 2 , . . . , r € h and v = 1, 2 , . . . , N(k, r),

(2.14) \Dk(f)(x)\ <C2 \\f\\b&b0,y)~;—;—: .. ., ,.
(1 +p(y,^o))d+y

and for k = - 1 , - 2 r e /* and v = 1,2 N(k,x),

(2.15) |Dt(/)(*)|<C2* '

where y' can be any positive number in (0, y).
From (2.14), (2.15) and Definition 2.10, it follows that

where we choose y' € (0, y) such that y' > -s + d(\/p - 1). Thus, / e bBs
pq{X).

From this and (i), it is easy to deduce that / is also in bFs
pq(X).

The density of the space b%(fi, y) in the space bBs
pq(X) and the space bFs

pq(X)
can be proved by the same argument as in [14, Proposition 3.8]. This proves (ii).

If 1 < p < oo, David, Journe and Semmes in [6], proved that bFp2(X) =
LP(X) with an equivalent norm. Moreover, Han, Lee and Lin in [17], proved that if
d/(d + e) < p < 1, then bFp2(X) = HP(X) with an equivalent norm. This finishes
the proof of this proposition. D

REMARK 2.13. Based on Proposition 2.12 (iii), it is interesting to make clear
under what restrictions on s, p and q one will have that bBs

pq(X) = Bpq(X) and
^ ' w i t n a n equivalent norm.

Lemma 2.6, Theorem 2.5 and the same argument as the proof of [16, Theorem 3]
can also give the characterization of the Littlewood-Paley 5-function of the Triebel-
Lizorkin space bFpq(X) as below. We omit the details.

THEOREM 2.14. Let b be a para-accretive function as in Definition 1.2, e € (0, 0]
and \s\ < e. Let [Sk}*€l be an approximation to the identity of order e as in Defini-
tion 1.4 and Dk = Sk - 5t_, for kel. Ifmax{d/(d + e), d/(d + s + e)} < p < oo
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and max[d/{d + e), d/(d + s + <?)} < q < oo, then f € bFs
pq(X) if and only if

f € (%(p, y))' with 0, y as in (2.13) and Ss
q(f) € LP(X), where

f °° r V"
= { E / 2k" [^\^(f)(y)\]q dfi(y)

U J (^k J
for all x 6 X. Moreover, in this case, \\Sq(f)\\Lnx)-

We now establish the frame characterizations of the Besov space bBs
pq(X) and

the Triebel-Lizorkin space bFs
pq{X). To this end, we first introduce some spaces of

sequences, bpq(X) and fs
pq{X). Let

(2.16) k = {Xk
T

v :k€l, r eh, v = 1 , . . . , N(k, r ) }

be a sequence of complex numbers. The space bp (X) with s e R and 0 < p, q < oo
is the set of all X. as in (2.16) such that

N(k,z)
,v\P

t=-oo

< OO.

The space fpq(X) with s € R, 0 < p < oo, and 0 < g < oo is the set of all X as in
(2.16) such that

1/?

E < oo.

THEOREM 2.15. Let b be a para-accretive function as in Definition 1.2, e 6 (0, 0]
| < e. WWi a// ?/ie notation as in Lemma 2.6, let Xbe a sequence of numbers as

in (2.16).

(i) //max{d/(rf + e),<//(rf + s + e)} < p < o o , 0 < < 7 < oo and\\X\\^{X) < oo,

then the series

(2-17)
00 Wlt.t) .

E E E k"'V / t^(x)Ek(y,x)b(y)dfi(y)

converges to some f € bBs
pq(X) both in the norm ofbB5

pq(X) and in (%(P, / ) ) ' with

(2.18) max{0, -s+d(l/p - 1)+} < fi < e and max{0, 5 - J//>} < y < e

w/ien p, q < oo and only in (%03, y))' w(7/i y3 and y as in (2.18) when max(p, q) =
oo. Moreover, in all cases, | | / | | 6^ ( X ) <
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(ii) Ifmax{d/(d + €),d/(d + s + e)} < p
q < oo and \\k\\f, (X) < oo, then the series in (2.17) converges to some f e bFpq(X)
both in the norm ofbFpq(X) and in (%(P, y))' with P, y as in (2.18) when p, q < oo
and only in C&b(P, y))' with P and y as in (2.18) when max(p, q) = oo. Moreover,
in all cases, WfWbP^x) <

The proof of this theorem is similar to the proof of the frame characterizations
of the Besov space Bpq(X) and the Triebel-Lizorkin space Fpq(X) in [48]; see also
[23,43]. We omit the details here.

From Lemma 2.6, Theorem 2.14 and the Plancherel-Polya inequalities, and Theo-
rem 2.5, the frame characterizations of the spaces bBs

pq(X) and bFpq(X) follow.

THEOREM 2.16. Let b be a para-accretive function as in Definition 1.2, € € (0, 0]
and \s\ <0. With all the notation as in Lemma 2.6, let X*" = Ek(f)(y

k-V)for k e 1,
r e Ik and v = 1 , . . . , N(k, r), where yk-v is any fixed element in Qkv.

(i) // max{d/(d + e), d/(d + s + €)} < p < oo and 0 < q < oo, then
f € bBs

pq(X) if and only if f € (%(P,y))' for some P, y as in (2.13), (2.2)
holds in {%{&, y'))' with P < P' < e and y < y' < €, and k e b'spq(X). Moreover,
in this case, H/IUg. (X) ~ IWIi' <x>-

(ii) // max{d/(d + e), d/(d + s + e)} < p < oo and mzx{d/(d + e), d/(d +
s + €)} < q < oo, then f e bFs

pq{X) if and only if f € (%(P, y))' for some p,
y as in (2.13), (2.2) holds in (%(P', y'))' with P < P' < € and y < y' < €, and
k € fpq(X). Moreover, in this case, \\f\\bF. (X) ~ IÎ -II/;,(X)-

3. Spaces b^B^X) and b~lFpq{X)

In this section, we introduce another new Besov space b~l Bs
pq(X) and new Triebel-

Lizorkin space b~i Fpq(X), which are closely related to the Besov space bBs
pq(X) and

the Triebel-Lizorkin space bFpq(X), respectively.

DEFINITION 3.1. Let b be a para-accretive function as in Definition 1.2, 6 6 (0,0]
and |s| < e. Let [Sk}

b
k€l be an approximation to the identity of order e as in Defini-

tion 1.4 and Dk — Sk — 5t_i for k e l

(i) If max{d/(d + e), d/(d + s + e)} < p < oo and 0 < q < oo, we define the
space b-{Bpq(X) to be the set of all / e (b%(P, y))' with p, y as in (2.13) such that

}
2ks"\\Dk(bf)\\%X) < oo

J
with the usual modifications made when p = oo or q = oo.
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(ii) If max{d/(d+e), d/(d+s+e)} < p < ooandmax[d/(d+€),d/(d+s+e)} <
q < oo, we define the space b~lFs

ptl(X) to be the set of all / e (Jb%{p, y))' with fi, y
as in (2.13) such that

1/9

2ks"\Dk(bfW
U=-oo

< OO

with the usual modification made when q = oo.

To verify that Definition 3.1 is independent of the choice of the approximation to
the identity, we first need to establish the following Plancherel-Polya inequality.

THEOREM 3.2. Let b be a para-accretive function as in Definition 1.2, e e (0, 9]
and \s\ < e. Let [Sk]

b
k€l and (Gk}

b
keI be two approximations to the identity of order €

as in Definition 1.4, Dk = Sk - 5*_i and Ek = Gk- Gk-Xfor k € 1.

(i) / / max{d/(d + e), d/(d + s + e)} < p < oo and 0 < q < oo, there is a
constant C > 0 such that for all f 6 (Jb%(P, y)) ' with 0 < fi, y < €, we have

(ii) / / max{rf/(J + e), rf/(rf + s + e)} <
s + ()} < q < oo, //;e/-^ w a constant C > 0
0 < /},y < e, we have

-,i/p\ l'i

< oo and max{d/(d + e), d/(d +
that for all f e (b%(f), y))' with

< c
f oo N(k,T)

Theorem 3.2 can be proved in a way similar to Theorem 2.5, if we replace
Lemma 2.6 by the following discrete Calderon reproducing formula in [17]. We
omit the details.

LEMMA 3.3. Let b be a para-accretive function as in Definition 1.2. Lete e (0,6],
lGk}

b
keI be an approximation to the identity of order e as in Definition 1.4, and
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Ek = Gk — Gk-ifor k e Z. Let 0 < /8, y < e. 77ien tfiere CT/JK a family of functions
[Ek(x, y)}kez such that for all fixed yk

x-
v € Qk

T-v and all f e (b&b(fi, y))',

(3.1) /(x) =

£*(JC, y) for k e 2 satisfies (i) and (iii) of Definition 1.4 wifn e replaced by
e' € (0, e), and

/" / t(*. y)b(y)dfx(y) = 0.

Moreover the series in (3.1) converges in the sense that for all g e b%(fi', y')
^ < P' < € and y < y' < e,

={f,g).

By Lemma 3.3 and Theorem 3.2, we can also obtain a counterpart of Theorem 2.9
by the same procedure as in Theorem 2.9. Thus, Definition 3.1 is also independent of
the choice of the distribution space (b^b(p, y)) ' with p, y as in (2.13); and, therefore,
Definition 3.1 is reasonable.

REMARK 3.4. To guarantee the definition of the spaces b-lBs
pq(X) and b~^Fs

pq{X)
is independent of the choice of the distribution space (b%(P, y)) ' , we need only to
restrict that max{0, —s + d(l/p — 1)+} < P < e and max{0, s - d/p} < y < e;
see the proof of Theorem 2.9. However, if we restrict max(0, s) < p < e and
max{d(l/p — 1)+, —5 4- d(l/p — 1)} < y < e, we can prove that the space of test
functions, %(P, y), is contained in the spaces b~lBs

pq{X) and b~lFpq(X) in a way
similar to that of Proposition 2.12. Thus, the spaces b~xBpq{X) and b'lFs

pq(X) are
non-empty if we restrict P, y as in (2.13).

Moreover, using Lemma 3.3 and similar to proofs of Theorems 2.15 and 2.16, we
can also obtain the frame characterizations of the spaces b~* Bs

pq(X) and b~l Fpq(X).
We will not give the details of these proofs.

THEOREM 3.5. Let b be a para-accretive function as in Definition 1.2, e € (0, 6]
and \s\ < e. Let all the notation be the same as in Lemma 3.3 and X be a sequence of
numbers as in (2.16).

https://doi.org/10.1017/S1446788700013094 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013094


[23] Besov and Triebel-Lizorkin spaces 251

(i) Ifmax{d/(d + e), d/(d + s + e)}<p<oo,0<q<oo and \\k\\i, (X) < oo,
then the series

oo N(k,z)

0.2) E E E *-rv

converges to some f € b-[Bs
pq(X) both in the norm ofb'lBpq(X) and in (b%(B, y))'

with

(3.3) max{0, —s + d(l/p — 1)+} < 8 < e and max{0, s — d/p] < y < e

when p, q < oo and on/y in (b&b(8y y))' vv/f/i /? and y as in (3.3) w«en max(p, q) =
oo. Moreover, in all cases, H/Hi-.^*) < C||A||^?(X).

(ii) //max{d/(d + e),d/(d + j + e)} < p < oo, max{d/(d + e), d/(d + s + e)} <
q < oo, and Wk\\f> <*) < oo, then the series in (3.2) converges to some f e b~l Fs (X)

both in the norm of b~l Fs
pq(X) and in (b%(fi, y))'withfi, y as in (33) when p,q < oo

and only in (b^,(/$, y))' with fi and y as in (3.3) when max(p, q) = oo. Moreover,

in all cases, | | / | | t - . ^ w <

THEOREM 3.6. Lef fe fee a para-accretive function as in Definition 1.2, e e (0, 0]
|s| < 6. With all the notation as in Lemma 3.3, let k\-v = Ek(bf)(yk

T
v)for k e I,

x € h and v = 1 , . . . , Af(&, r), where yk
z-

v is any fixed element in Qk
r
v.

(i) // ma\{d/(d + e), d/(d + s + e)} < p < oo and 0 < q < oo, then f €
b^Bpq(X) if and only if f 6 (b&b(P, y))' for some B, y as in (2.13), (3.1) holds in
(b%(P', y'))' with p < 8' < e and y < y' < e, and X e bs

pq(X). Moreover, in this
case, H/IU-.B^X) ~ U\\b-M(xy

(ii) / / max{d/(d + e), d/(d + s + €)}<. p < oo and max{d/(d + e),
•s + e)} < 9 < oo, then f € b~] Fs

pq(X) if and only if f e (fc%08, y ) ) ' /
j8, y â  in (2.13), (3.1) no/ds in (b&b(B\ y'))' with 8 < B' < e and y < y' < e, and
X e fpq(X). Moreover, in this case,pq(

We also have the characterization of the Littlewood-Paley 5-function of the Triebel-
pqLizorkin space b~l Fpq(X), which can be proved in a way similar to Theorem 2.14.

THEOREM3.7. Letb be a para-accretive function as in Definition \.2, e e (0,6]and
\s\ < e. Let {Sk}

b
keI be an approximation to the identity of order € as in Definition 1.4

and Dk = Sk - S*_, for k 6 T. If max{d/(d + e), d/(d + s + c)} < p < oo
and max{d/(d + e), d/(d + 5 + e)} < q < oo, then f e b~x Fpq(X) if and only if
f e (b%(B, y))' with 8, y as in (2.13) and Ss

qb(f) € L"(X), where

V"
[2ks\Dk(bf)(y)\]q dn(y)

J
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for all x € X. Moreover, in this case, \\f\\b^F>q(X) ~ \\SqJ,(f)\\Lp(X)-

From Definition 2.10, Definition 3.1 and (1.3), it is easy to deduce the below
relations between the space bBs

pq(X) and the space b~lBs
pq(X), and between the space

bF°pq{X) and the space b^F'^X).
On the other hand, for d/(d + () < p < 1, let HP(X) be the Hardy spaces studied

by Macias and Segovia in [28]. We define the Hardy space H£(X) to be the set of all
/ 6 (b&b(P, y))' with d(l/p - 1)+ < 0, y < e such that bf e HP(X). Moreover,
we define ||/||W;OT = \\bf\\Hnx)- When X = W, H£(X) was first introduced by
Meyer in [31] and H£(X) was first introduced by Han, Lee and Lin in [17]. Based
on the results in [16,17], we can easily obtain the relation between the Hardy spaces
H£(X) and the Triebel-Lizorkin spaces b-xFs

pq(X).

PROPOSITION 3.8. Let bbea para-accretive function as in Definition 1.2, e 6 (0, 6}
and \s\ < 6.

(i) Ifmax{d/(d + e), d/{d + s + e)} < p < oo and 0 < q < oo, then f e
if and only ifbf € bBs

pq(X). Moreover, in this case,

(ii) Ifmax{d/(d+€), d/(d+s+€)} < p < ooandmax[d/(d+€), d/(d+s+e)}
•;q(X) ifand only ifbf €bFpq(

Wf\\b->BIJX) - \\bf\\bB'(X)-

q < oo, then f € b~* Fs (X) if and only ifbf € bF'AX). Moreover, in this case,

(iii) If I < p < oo, then b ' Fp2(X) = LP(X) with an equivalent norm; and if
d/(d + e) < p < 1, then b~xF°pl(X) = H£(X) with an equivalent norm.

4. Some applications

We first consider real interpolations of the spaces bBs
pq(X), bFpq(X), b~{Bpq(X),

and b~lFpq(X). Let us now recall the general background of the real interpolation
method; see [1] and [38, pages 62-64].

Let J4? be a linear complex Hausdorff space, and let s/0 and &/\ be two complex
quasi-Banach spaces such that &/0 C Jf? and srf\ C •%?. Let s>/0 + srf\ be the set of all
elements a € Jf which can be represented as a = a0 + a{ with a0 e £?0 and a, € si\.
If 0 < t < oo and fl€4 + ^i> then Peetre's celebrated K-functional is given by

) = K(t, a; ^ ^ , ) = inf

where the infimum is taken over all representations of a having the form a = a0 + a{

with a0 6 srfo and at <= J/ , .
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DEFINITION 4.1. Let 0 < a < 1. If 0 < q < oo, then

I f f°° dt\l/<? )

a :a e^/o + ^ i , l|a||(M,.^,)», = I / [ra K(t,a)]q—\ < oo \ .If q = oo, then

= {a :a e £?0 + M, \\a\\^0,^x = sup t "K(t, a) < oo} .
0<;<oo J

Using Lemma 2.6, Theorems 2.15-2.16, Lemma 3.3, Theorems 3.5-3.6, and the
method of retraction and coretraction as in the proofs of [37, Theorem 2.4.1 and
Theorem 2.4.2], we obtain theorems on the real interpolations of the spaces bBs

pq(X),
bFpq(X), b-[Bpq{X) and b~lFpq(X). We omit the details; see also the proofs of [43,
Theorem 3.2 and Theorem 3.3].

THEOREM 4.2. Let b be a para-accretive function as in Definition 1.2, e e (0, 9]
and a € (0, 1).

(i) Let —6 < s0, si < e, s0 ^ Si, I < p < oo , and0 < qo,q\,q < o o . Then

and

where s = (1 — O)SQ + as\.
(ii) Let —e<s<€,l<p<oo,0<q0,qi<oo, andqo ^ </,. Then

and

where \/q = (1 - o)/qo + o/q\-
(iii) Let —e < s0, st < € and 1 < p0, p\ < oo. Then

and

where l/p = (1 - cr)/pQ + a/'/?,.

THEOREM 4.3. Let b be a para-accretive function as in Definition 1.2, e e (0, 0\
and a e (0, 1). Let —e < s0, s{ < €, max(d/(d + e), d/(d + e + .s0)) < p0 < oo,
max(d/(d + e), d/(d + € + Si)) < p\ < oo, 1 < qQ, qt < oo, 5 = (1 — o)st) + as\,
l/p = (1 -o-)/p0 + o/pi, and\/q = (1 - ) / /
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(i) If s0 ^ si, then

(bF-jx). bP;^ (X))ap = bB;p(X)( = bP;p{X))

and

(ii) If s0 = 5, = s, po = q0, p\ = qu andq0 ^ qu then

and

(iii) If s0 = Si = s, f/o = qx = q, and p0 ^ Pi, then

and

Moreover, by Lemma 2.6, Lemma 3.3, and some similar computations to the proof
of [47, Theorem 2.1], we can further establish the following general interpolation
theorem; see also [37, Theorem 2.4.2].

THEOREM 4.4. Let b be a para-accretive function as in Definition 1.2, e € (0, 9],
a e (0, 1), s0, S\ € (—€, O, •So 7̂  Si. and s = (1 — a)s0 + os^.

(i) / / max(d/(d + e), d/(d + s0 + e), d/(d + 5, + €)) < p < oo and 0 <
/

(ii) Ifmax(d/(d + e), rf/(rf + 50 + e), rf/(rf + 5, + <?)) < p < oo,
€), d/W + *,-+€)) < q, < oo for i = 0, 1, and 0 < q < oo,

and

By Lemma 2.6 and Lemma 3.3 with the estimate (2.4), and the same argument as
in [18] (see also [15,23,44]), we can also obtain the following embedding theorem.
In the sequel, for two quasi-Banach spaces srf\ and s/2, srf\ C sfi means a linear and
continuous embedding.
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THEOREM 4.5. Let b be a para-accretive function as in Definition 1.2, e e (0, 6]
and — € < s2 < Si < e.

(i) / /0 < q < oo, max(rf/(rf + e), <//(</ + e + s,)) < p, < oo for i = 1, 2,
s1-d/Pl=s2-d/p2,thenbB^q(X) C bBs

p\q{X)andb-{Bp\q{X) C b~lBp\q(X);/Pl=s2-d/p2,thenbB^q(X) C bBp\q{X)andb-{B
(ii)

)) < * < oo for i = \,%andsx-dlpx = s2-d/p2, thenbF«qi(X) C

REMARK 4.6. In [15,18,23,44], all the results similar to Theorem 4.5 asked that
—e < si - d/px = s2 - d/p2 < e. However, s2 — d/p2 < e is automatically true
since s2 < e. A careful check of their proofs shows that one has not used the condition
-€ < S, -d/px.

We now turn to consider the Tb theorems on the spaces bBs
pq(X), bFs

pq(X),
b~[Bp (X) and b~lF" (X). We first recall some notation. In what follows, for
r\ € (0, 9], we let Cj(X) be the set of all functions having compact support such that

I/W-/O0I < o °
Endow CQ (X) with the natural topology and let (CQ(X))' be its dual space. Moreover,
if b is a para-accretive function as in Definition 1.2, in what follows, we will use Mh

to denote the corresponding multiplication operator and bCl{X) to denote the image
of CQ(X) under Mb with the natural topology. This means that / e bCl(X) if and
only if / = bg for some g e Q(X) and we define ||/|Uco'<x) = llgllco'<x)-

Let b\ and b2 be two para-accretive functions as in Definition 1.2. A continuous
complex-valued function K(x,y) on £2 = {(x,y) e X x X : x ^ y\ is called a
Calderon-Zygmund kernel of type e if there exist e e (0, 8] and C6 > 0 such that for
P(x, y) # 0,

(4.1) \K(x,y)\<C6p(x,yyd,

and for p(x, x') < p(x, y)/{2A),

(4.2) \K(x, y) - K(x', y)\ < C6p(x, x'Yp{x, y)"1^,

andforp(y,/) < p(x, y)/(2A),

(4.3) \K(x, y) - K(x, y')\ < C6p(y, y')fp(x, y)-''-f\

and a continuous linear operator T : b\Cl{X) -»• (b2C^(X))' is a Calderon-Zygmund
singular integral operator of type e if there is a Calderon-Zygmund kernel K (x, y) of
type € such that

(Tfg)= f f g(x)b2(x)K(x,y)bi(y)f(y)dfi(x)dn(y)
Jx Jx
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for all / , g e CQ(X) with disjoint supports. Moreover, a Calderon-Zygmund singular
integral operator T is said to have the weak boundedness property, if there exist
r] € (0, 9] and C7 > 0 such that

for all / , g 6 Cp(X) with diam(supp/) < r and diam(suppg) < r, and we denote
this by T e WBP(X).

THEOREM 4.7. Let b be a para-accretive function as in Definition 1.2, € € (0, 0],
and \s\ < €. Suppose T is a Calderon-Zygmund singular integral operator of type c,
T(b) = 0 = T*(b), MbTMb e WBP, and its kernel K(x, y) satisfies (4.1), (4.2),
and (4.3).

(i) Ifmax(d/(d+e),d/(d+s+e)) < p < ooandO < q < oo, then T is bounded
from bBs (X) to b~] B" (X) with an operator norm not larger than C max(C6, C7);

(ii) If max(d/(d + e), d/(d + s + €)) < p < oo andmax(d/(d + e), d/(d + s +
f)) < o < oo, then T is bounded from bFs

pq{X) to b~x F"pq{X) with an operator norm
not larger than C max(C<j, C7).

PROOF. We only give an outline of the proof. Let {Dy);6Z be as in Definition 2.10.
With all the notation as in Lemma 2.6, under the assumptions of the theorem, we can
verify that for all j , k e 1 and all x, y e X,

(4.4) \[DjMhTMhEk(y, •)] (x)

where e' can be any positive number in (0, e); see [14, Lemma 3.13] and [46,
Lemma 2.3] for details. From the estimate (4.4), Lemma 2.6 and Lemma 2.7, and by
an argument similar to the proof of Theorem 2.5, we can prove (ii).

The estimate (4.4) and some trivial computation also lead to the conclusion (i) with
p — q = oo. This, together with (ii) and Theorem 4.4, will then give (i); see also [46]
for details. This completes the proof of Theorem 4.7. •

Finally, we consider the boundedness of Riesz potentials on the spaces bBpq{X),
bFx(X), b~xBs

nAX), and b~x F

DEFINITION 4.8. Let b be a para-accretive function as in Definition 1.2, e e (0, 9],
[Dk)k€i be the same as in Definition 2.10, and a € K. Then the Riesz operator /„ for
/ e &b(0, y) with 0 < p, y < € is defined by /„(/)(*) = YZ-™ D,(f)(x) for all
x e X.
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Obviously, when a > 0 and b = 1, /„ is the discrete version of the fractional
integrals introduced in [9-11]; while when a < 0 and b = 1, Ia is the discrete version
of the fractional derivatives introduced there. When a — 0 and b = 1, Ia is just
the identity. We also mention that in [32,33], Nahmod considered some discrete and
inhomogeneous fractional integrals and derivatives similar to those above.

THEOREM 4.9. Let b be a para-accretive function as in Definition 1.2, e 6 (0, 9],
\a\ < e, \s\ < e, and \s + a\ < e.

(i) Ifmax{d/(d + e), d/(d + € + s + a A 0), d/(d + e - a)) < p < oo, and
0 < q < oo, then Ia is bounded from bBpq(X) into b-{Bs

p
+

q
a(X).

(ii) Ifmax{d/(d + e), d/(d + e + s + a A 0), d/(d + e - a)} < p < oo, and
max{d/(d + e), d/(d + € + s +a AO), d/(d + e —a))} < q < oo, then Ia is bounded
from bF*pq(X) into b-{F;+°(X).

PROOF. We only give an outline; see [45,46] for details. Let {Dk}k€l be as in
Definition 2.10. With all the notation as in Lemma 2.6, under the assumptions of the
theorem, we can verify that for all k, k' € 2 and all x, y € X,

(4.5) \[DkMbIaMbEk,(y,-)](x)
2~(kAk')(e'-a)

(2-(k'*) + p(x,y))d+t'-a'

where e' can be any positive number in (0, e); see [45, Lemma 2] for details. The
estimate (4.5), Lemma 2.6, and an argument similar to the proof of Theorem 2.5
yield (ii).

From the estimate (4.5) and some trivial computation, the conclusion (i) with
p = q =z oo can be deduced. This, together with (ii) and Theorem 4.4 will then
give (i); see also [45] for details. This completes the proof of Theorem 4.9. •

REMARK 4.10. Theorem 1 and Theorem 2 in [45] also ask that s < 9 + a A 0. This
is superfluous and the mistake is caused by the factor 2~ka in (2.1) there, which should
be 2-(*A*')a as in (4.5).

From Theorem 4.5 and Theorem 4.9, we can deduce the following interesting
conclusion.

COROLLARY 4.11. Let b be a para-accretive function as in Definition \..2, € € (0,9],

0 < a < € and \s\ < e.

(i) Ifmax[d/(d + e), d/(d + e + s), d/(d + e - a)} < p\ < oo, 0 < q < oo,
and l/p2 — l/p\ — a/d, then Ia is bounded from bB'pi q(X) into b~x Bs

p
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(ii) lfmzx{d/{d + e), d/(d + e + s), d/(d + t - a)} < p, < oo, max[d/(d +
e), d/(d + e + s), d/(d + e - a)} < q < oo, and l/p2 = 1/pi - a/d, then Ia is
bounded from bFp\q{X) into b~l Fs

p2q(X).

We remark that Corollary 4.11 (ii) is specially interesting by noting Proposi-
tion 2.12 (iii) and Proposition 3.8 (iii). It means that /„ is bounded from the Hardy space
HP'(X) into the Hardy space Hb

2(X), where pi and p2 are as in Corollary 4.11 (ii).
Using Theorem 4.7, we can also establish the converse of Theorem 4.9.

THEOREM 4.12. Let b be a para-accretive function as in Definition 1.2, e G (0, 6],
\a\ < €, \s\ < e and \s +a\ < €.

(i) If ma\{d/(d + e), d/(d + e + a), d/{d + ( + s - \a\)) < p < oo and
0 < q < oo, then there are ctQ{s) e (0, e) and a constant C > 0 such that if
\a\ < ao(s),farall f 6 bB'^X), | | / | U ^ m < C\\Ia(f)\\b->B%°(xy

(ii) // max{c?/(rf + e), d/(rf + e + a), d/(d + e + s - \a\)} < p < oo and
max{d/(d + e), d/(d + e + a), d/(d + € + s - \a\)} < q < oo, then there are
ao(s) G (0, e) and a constant C > 0 suc/i f/zaf i/ |a| < ao(s), for all f e bFpq(X),

PROOF. We only give an outline of the proof. The key of the proof is to verify
that the operator I^aMblaMb is invertible in the spaces b~xBpq(X) and b^Fs

pq(X),
respectively. To this end, we need to show that the operator T = I — I-aMbIaMb is
bounded on the spaces b~lBp (X) and b~lFs

pq(X) with an operator norm less than 1
when a is small. We show this by using Theorem 4.7. In fact, by using Coifman's
idea in [6], for any given N € N, we write

OO 00

T = I- l-aMbIaMb = J2
t=-oo/=-oo

l*=-oo|/|<JV k=-oo\l\>N )

It is easy to see that f{b) = 0 = f*(b). For any e' e (0, e), all it, / e 2 and all
x, v G X, recall

(4.6) |D*M4Di+/(jc, >)| < C2"" | f ' -
(•<

and if p(y,y') < (l/4A2)p(x, y), for all a G (0, 1),

(4.7) \DkMbDk+l(x, v) - DkMbDk+l(x, y')\

+ \DkMbDk+l(y,x) - DkMbDt+l(y',x)
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see [14] for details.
From the estimates (4.6) and (4.7), we can verify that f is a Calderon-Zygmund

singular integral operator of type (1 — a)e with

C6, C7 < C8 J^ I1 - 2"'° | 2-"'"' + C92~SN,
V\<N

where 6 = min{ae + a, ae — a}, C% is independent of a and N, C9 is independent
of N, and if jor| < a,, where a! > 0 (and its value will be chosen later), then C9 is
also independent of a, but it may depend on at.

By Theorem 4.7, we know that f is bounded from bB5 (X) to b~' B" (X) and from
bFI (X) to b~*Fs

pq{X) with an operator norm no more than Cw — Cmax{C6, C7}.
Note that Mb is bounded from b~] Bs

pq(X) tobBs
pq(X), and from b'1 Fs

pq{X) iobFs
pq{X)

with an operator norm to be 1. Thus, T is bounded on b~[Bp (X) and b~lFpq(X)
with an operator norm no more than Ct0. Now, if we choose «i small enough and
if |a | < a,, then LaMbIaMb is invertible in the spaces b~xBpq(X) and b^F
Thus, by Theorem 4.9, we have that for all / e b~]Bpq(X),

ll/llft-*;,(*> =

C

and for a l l / e b'[ Fs
pq(X),

iF^x) = \\(l-aMbIaMby
x

SC\\MbIaMb{f)\\bn
riX)

Proposition 3.8 then tells us the conclusion of the theorem. •

By combining Theorem 4.9 with Theorem 4.12, we obtain the following simple
conclusion.

COROLLARY 4.13. Let \a\ < e, \s\ < e, and \s + a\ < e.
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(i) // max{d/(d + e), d/(d + e - \a\), d/(d + a + s - \a\)} < p < oo and
0 < q < oo, then there is an ao(s) € (0, e) such that if \a\ < ao(s), for all
f e bBpq{X), \\f\\bBUm ~ WUDL-'B-nxy

(ii) Ifmax{d/(d '+ e),d/(d + € - \a\),d/(d + e + s - \a\)} < p < oo and
ma.x{d/(d + e),d/(d + €+a), d/(d + € + s — \a\)} < q < oo, then there is an ao(s) €
(0 ,0 such that if\a\ < ao(s),for all f € bP;q{X), | | / | | 6 ^ w ~ \\Ia{f)\\b->F{?(x>

From Corollary 4.13, it is easy to see that /„ can be used as a lifting operator
for the spaces bBs

pq(X) and bFs
pq{X) when or is small; see also [38] for W case.

Moreover, by Corollary 4.13, we can also see that /„ is independent of the choice of
the approximation to the identity; see also [23,45].
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