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Abstract

In this article the p-essential dimension of generic symbols over fields of characteristic p is studied.
In particular, the p-essential dimension of the length ` generic p-symbol of degree n+1 is bounded
below by n + ` when the base field is algebraically closed of characteristic p. The proof uses new
techniques for working with residues in Milne–Kato p-cohomology and builds on work of Babic
and Chernousov in the Witt group in characteristic 2. Two corollaries on p-symbol algebras (i.e,
degree 2 symbols) result from this work. The generic p-symbol algebra of length ` is shown to have
p-essential dimension equal to ` + 1 as a p-torsion Brauer class. The second is a lower bound of
`+ 1 on the p-essential dimension of the functor Algp`,p . Roughly speaking this says that you will
need at least `+ 1 independent parameters to be able to specify any given algebra of degree p` and
exponent p over a field of characteristic p and improves on the previously established lower bound
of 3.

2010 Mathematics Subject Classification: 16K20 (primary); 20G10, 13A35, 13A18 (secondary)

1. Introduction

The essential dimension of an algebraic object is informally defined as the number
of algebraically independent parameters you need to define the object. In this
paper we consider the essential dimension of objects and functors relating to
central simple algebras and higher symbols in Milne–Kato cohomology, focusing
on the bad characteristic case. Since its introduction in [7], most of the upper and
lower bounds on the essential dimension of central simple algebras have required
that the degree of the algebra be relatively prime to the characteristic of the base
field k. Two excellent surveys on essential dimension, [18] and [20], contain many
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of these results, algebraic and functorial definitions of essential dimension, p-
essential dimension and much more.

When the characteristic of k divides the degree of the central simple algebra,
the so-called ‘bad characteristic case’, upper and lower bounds on the essential
dimension have been more sparse. To illustrate that these cases are fundamentally
different we can look at generic symbol algebras in both cases. First, let us fix
some notation. Let m and n be positive integers with m|n, let p > 0 be prime and
fix a field k. Define functors Algn , Algn,m , Decp` , pBr : Fields/k → sets by

Algn(K ) = {isom. classes of central simple K -algebras of degree n}
Algn,m(K ) = {subset of Algn(K ) whose elements have exponent dividing m}
Decp`(K ) = {isom. classes of tensor products of ` degree p symbols over K }

pBr(K ) = {p-torsion Brauer classes over K }

for any field extension K/k. H1(K ,PGLn), the set of isomorphism classes of
PGLn-torsors over Spec(K ), has a bijective correspondence with Algn(K ), the
set of isomorphism classes of central simple algebras of degree n over K . In
particular, using the standard notation in [20], edk(PGLn) = edk(Algn).

In good characteristic, we can follow [20, Example 2.8]. Let p be a prime
and let k be a field containing a primitive pth root of unity, ω. Let xi and yi

be algebraically independent indeterminates over k and set K = k(xi , yi)
`
i=1.

Consider the length ` generic symbol K -algebra A` =
⊗`

i=1(xi , yi)ω. A` is a
central simple K -algebra of degree p` and exponent p. The essential dimension
of A` as both an element of Algp`(K ) and of pBr(K ) is 2` as one might suspect
[20, 2.6], giving a lower bound edk(PGLp`) = edk(Algp`) > 2`.

On the other hand, if the characteristic of k is p we can consider the analogous
algebra D` =

⊗`

i=1[xi , yi) over K = k(xi , yi)
`
i=1. In [3, 3.2] Baek shows

edk(Decp`) 6 `+ 1, assuming k contains the field with p` elements. In particular,
the essential dimension of D` as an element of Decp`(K ) (and hence also as an
element of Algp`,p(K ), Algp`(K ) and pBr(K )) is at most ` + 1. We call D` the
length ` generic p-symbol and motivation for this paper comes from finding its
p-essential dimension as an element in pBr(K ) (Corollary 5.9).

As noted in [22, Section 10.1], for a field F of characteristic p the Milne–
Kato p-cohomology group Hn+1

p (F) is defined to be analogous to the Galois
cohomology group Hn+1(F, µ⊗n

p ) when characteristic F 6= p. This analogy is
made precise in [15]. When n = 1 these groups each realize the p-torsion in
Br(k(xi , yi)

`
i=1) and thus contain the classes of the generic symbol algebras A`

(when µp ⊂ k) and D` (when char(k) = p). In both types of cohomology one
can generalize the notion of generic symbols to higher degrees. The main result
of this paper finds a lower bound on the p-essential dimension of the length `
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generic p-symbols in Hn+1
p (k`,n) when k is algebraically closed of characteristic

p. More specifically, fix k algebraically closed of characteristic p and for xi and
yi, j algebraically independent indeterminates over k set

k`,n = k(xi , yi, j)16i6`, 16 j6n (1)

so that tr. degk(k`,n) = `(n + 1). The length ` generic p-symbol of degree n,
genk(n + 1, `, p), is defined as the class

genk(n + 1, `, p) =
`∑

i=1

xi
dyi,1

yi,1
∧ · · · ∧

dyi,n

yi,n
∈ Hn+1

p (k`,n) (2)

(see Section 4, [22, Section 10.1], [14], [15] for the definition of Hn+1
p ). Let

edk(genk(n+1, `, p)) denote essential dimension and let ed(genk(n+1, `, p); p)
denote p-essential dimension of genk(n + 1, `, p) as an element of Hn+1

p (k`,n). A
lower bound on the p-essential dimension of genk(n + 1, `, p) is our main result;

MAIN THEOREM (Theorem 5.8). Let k be an algebraically closed field of
characteristic p. For `, n > 1,

edk(genk(n + 1, `, p)) > edk(genk(n + 1, `, p); p) > `+ n.

In degree 2, genk(2, `, p) = D` and the theorem tells us that edk(D`) > `+ 1 as
an element of H2

p(k`,1) = pBr(k`,1). Combining this with the upper bound from
[3, 3.2] we have

COROLLARY (Corollary 5.9). Let k be an algebraically closed field of
characteristic p. For ` > 1,

edk(D`) = edk(D`; p) = `+ 1

where the essential dimensions are taken with respect to D` ∈ pBr(k`,1).

For char(k) = p the best known bounds on edk(Algp`,pr ) and edk(Algp`,pr ; p)
are as follows.

- In [3, 2.2] Baek gives a lower bound

edk(Algp`,pr ; p) > 3

on the p-essential dimension when 1 6 r < `. This result holds regardless of
the characteristic of k.
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- By [5, Ex. 1.1] for any field k and any integers 1 6 m 6 n with m|n,
edk(Algn,m) = edk(GLn/µm) and edk(Algn,m; p) = edk(GLn/µm; p). Using
this, recent work by Garibaldi and Guralnick, [11, 6.7], gives an upper bound

edk(Algp`,pr ) 6 p2`
− 3p` + p`−r

for p` > 4. This bound is also independent of the characteristic of k.

As a corollary to Corollary 5.9, we improve on the lower bound of 3 when
char(k) = p and r = 1.

COROLLARY (Corollary 5.10). Let k be an algebraically closed field of
characteristic p.

edk(Algp`,p; p) > `+ 1.

Proof. The algebra D` satisfies edk(D`; p) > `+ 1 as an element of Algp`,p(k`,1)
since it satisfies the same inequality as an element of pBr(k`,1) by Corollary 5.9.

REMARK 1.1. Milne–Kato cohomology groups have also been used to
study essential dimension in bad characteristic in [4]. Baek finds nontrivial
cohomological invariants into Milne–Kato cohomology groups to prove the
lower bound ed(PGL4) > 4 over a field of characteristic 2.

2. Generic symbols with char(k) 6= p, methods and outline

A discussion of a lower bound for the essential dimension of generic symbols
with char(k) 6= p provides a proper overview of the char(k) = p arguments
and illustrates a major difficulty we encounter when char(k) = p. Let k be an
algebraically closed field with char(k) 6= p. The Galois symbol gives the analogue
of the generic p-symbols defined above. That is, let k`,n be defined as in (1) and
let hn+1

k`,n ,p : K M
n+1(k`,n)→ Hn+1(k`,n, µ⊗(n+1)

p ) be the Galois symbol map as defined
in [12, 4.6.4]. Define

genk(n + 1, `, p) = hn+1
k`,n ,p

(
`∑

i=1

{xi , yi,1, . . . , yi,n}

)
.

In the case n = 1 if we fix a primitive pth root of unity ω, and with it an
isomorphism H2(k`,1, µ⊗2

p )
∼= pBr(k`,1), then genk(2, `, p) = [A`] from above.

Using the methods of this paper we can find the same lower bound on the
essential dimension of these generic symbols as elements of Hn+1(k`,n, µ⊗(n+1)

p )

as in Theorem 5.8;
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PROPOSITION 2.1. Let genk(n+1, `, p) ∈ Hn+1(k`,n, µ⊗n+1
p ) be defined as above.

Then
edk(gen(n + 1, `, p)) > edk(gen(n + 1, `, p); p) > `+ n.

Proof. The proof is by induction on the length, `. If the p-essential dimension is
less than n + 1 then there exists a prime to p field extension K/k1,n , a subfield
k ⊂ E ⊂ K with tr. degk(E)= n and g ∈ Hn+1(E, µ⊗n+1

p ) so that resK (genk(n+1,
1, p)) = resK (g). Any such field E satisfies Hn+1(E, µ⊗(n+1)

p ) = 0 [19, 6.5.14].
Thus, to finish the case ` = 1, it is enough to show the following lemma.

LEMMA 2.2. Let K/k1,n(z1, . . . , zr ) be a prime to p extension with zi

algebraically independent over k1,n and e an integer with p - e. Then
e resK (genk(n + 1, 1, p)) 6= 0.

Proof of lemma. As mentioned above, when n = 1, the class of genk(2, 1, p) =
[(x1, y1)ω] = [A1] is nontrivial in pBr(k(x1, y1)). Moreover, for any integer e with
p - e, e resK [A1] ∈ pBr(K ) with K as in the statement of the lemma is nontrivial
[21, 3.6 & 3.15b]. Fix n > 1, K as in the statement of the lemma and assume
e resK ′(genk(n0+ 1, 1, p)) 6= 0 for all n0 < n and all K ′ as in the statement of the
lemma.

Let (K , v) be an extension of (k1,n(z1, . . . , zr ), v1,n), where v1,n is the y1,n-adic
valuation on k1,n(z1, . . . , zr ), such that e(v/v1,n) and f (v/v1,n) are each prime
to p. Set K and k`,n to be the residue fields, respectively. Let ξ = {x1, y1,1, . . . ,

y1,n} ∈ K M
n+1(k1,n) so that genk(n + 1, 1, p) = hn+1

k1,n ,p(ξ). If e resK (gen(n + 1,
1, p)) = 0 then the residue ∂n+1

v (e resK (hn+1(ξ))) = 0, [12, 6.8.5]. The Galois
symbol, residue map [12, 6.8.5] and tame symbol ∂M

: K M
n (K ) → K M

n−1(K )
[12, 7.1] act as follows with respect to restriction of scalars:

0 = ∂n+1
v (e resK (hn+1(ξ))) (3)

= ∂n+1
v (e hn+1(resK (ξ)))

= e hn(∂M(resK (ξ))) [12, 7.5.1]
= e hn(e(v/v1,n) resK (∂

M(ξ))) [12, 7.1.6(2)]
= e e(v/v1,n) hn(resK ({x1, y1,1, . . . , y1,n−1}))

= e e(v/v1,n) resK (h
n({x1, y1,1, . . . , y1,n−1}))

= e e(v/v1,n) resK (genk(n, 1, p)). (4)

Since e e(v/v1,n) is prime to p, k1,n
∼= k1,n−1 and K/k1,n−1(z1, . . . , zr ) is a prime

to p extension, by the induction hypothesis (4) is nontrivial, a contradiction
to (3).
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Fix ` > 1 and assume the theorem holds for genk(n+1, `0, p) for all `0 < `. Let
K/k`,n be a prime to p field extension, k ⊂ E ⊂ K a field of transcendence degree
`+ n− 1 over k and g ∈ Hn+1(E, µ⊗(n+1)

p ) such that resK (g) = resK (genk(n+ 1,
`, p)). As above, let (K , v) be an extension of (k`,n, v`,n) with e(v/v`,n) and
f (v/v`,n) prime to p. Let w = v|E . The valuation w cannot be trivial on E
because if it were the residue ∂n+1

v (resK (genk(n+1, `, p))) ∈ Hn
p(K , µ

⊗n
p ) would

be zero. However, a computation similar to (3)–(4) shows that

∂n+1
v (resK (genk(n + 1, `, p))) = e(v/v`,n) resK (h

n
k`,n ,p({x`, y`,1, . . . , y`,n−1})).

(5)

After renumbering, hn
k`,n ,p({x`, y`,1, . . . , y`,n−1}) = genk(n, 1, p) and K is a prime

to p extension of k`,n which is a purely transcendental extension of k1,n−1.
Therefore, by Lemma 2.2, the right-hand side of (5) is nonzero, a contradiction to
the triviality of w.

Two crucial things happen when w is nontrivial: first tr. deg(E) = ` + n − 2
and second, the specialization sn+1

w and residue ∂n+1
w of g are defined. This is

a major point, we can take the specialization and residue (called the first and
second residue in case char(k) = p) of g because these maps are defined on all
of Hn+1(E, µ⊗(n+1)

p ). In the characteristic p case, the first and second residues are
only defined on the ‘tame subgroup’ of Hn+1

p (E) (with mod p coefficients) [15,
Theorem 3]. This coincides with the 0th piece of the filtration of Izhboldin (see
Section 4 or [14, Section 2]). Though genk(n + 1, `, p) is easily shown to be
contained within the tame subgroup, there is no easy reason that g, the element it
descends to, is contained within the tame subgroup.

Back to the char(k) 6= p case. Let π be a uniformizer for (K , v) and τ = uπ e

a uniformizer for (E, w) with unit u ∈ K . Under extension of scalars E ⊂ K the
specialization and residue maps satisfy

∂n+1
v (resK/E(g)) = e ∂n+1

w (g) (6)
sn+1
v (resK/E(g)) = sn+1

w (g)+ ∂n+1
w (g) ∪ (u). (7)

If p|e then the right-hand side of (6) is zero whereas the left-hand side is
nonzero since resK/E(g) = resK (genk(n + 1, `, p)) (5). Therefore p - e. Since
p - e, ∂n+1

w (g) = e−1hn+1
k`,n ,p({x`, y`,1, . . . , y`,n−1}) is split in the algebraic closure

k ′ = k(x`, y`,1, . . . , y`,n−1)
alg. Replace the algebraically closed field k with the

algebraically closed field k ′ and take composite fields: K ′ = K · k ′`−1,n ⊂ k
alg
`,n and

E ′ = E · k ′. Our field diagram looks like:
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K ′
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Note two things here; since tr. degk(E) = n + `− 2, tr. degk′(E
′) 6 n + `− 2

and since p - [K : k`,n], p - [K ′ : k ′`−1,n]. Let y`,n = u ′π e′ with u ′ a unit in K and
p - e′ = e(v/v`,n). Since

sn+1
v (resK (genk(n + 1, `, p))) = resK (genk(n + 1, `− 1, p))

+ ∂n+1
v`,n
(genk(n + 1, `, p)) ∪ (ū ′)

and resK ′(∂
n+1
v`,n
(genk(n + 1, `, p))) = 0, using (7) we have

resK ′(genk(n + 1, `− 1, p)) = resK ′(sn+1
v (resK (genk(n + 1, `, p))))

= resK ′(sn+1
v (resK (g)))

= resK ′(sn+1
w (g)+ ∂n+1

w (g) ∪ (ū))
= resK ′(sn+1

w (g)).

Since resK ′(genk(n + 1, ` − 1, p)) = resK ′(genk′(n + 1, ` − 1, p)) and
resK ′(sn+1

w (g)) = resK ′(resE ′(sn+1
w (g))), this shows that after the prime to p

extension K ′/k ′`,−1,, the generic p-symbol, genk′(n + 1, `− 1, p) of length `− 1
descends to the field E ′ with tr. degk′(E

′

) 6 n+`−2, contradicting the induction
hypothesis.

REMARK 2.3. These arguments are reproduced (with more detail) in the proof
of Theorem 5.8 in the bad characteristic case. Moreover, the lower bound in
Proposition 2.1 is not optimal at least in the case n = 1 and ` > 1 by the remark
in section 1 [20, 2.6] and probably more generally.

Methods and outline. As mentioned in the proof of Proposition 2.1, much of
the difficulty of the proof of Theorem 5.8 lies in the need to reduce to the case
when g is in the 0th piece of Izhboldin’s filtration on p-cohomology. This is done
by building on the work done by Babic and Chernousov in [2]. In their paper
so-called canonical monomial quadratic forms

t1[1, x] ⊕ t2[1, x] ⊕ · · · ⊕ tn[1, x] ⊕H⊕ · · · ⊕H
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over k(t1, . . . , tn, x)with char(k) = 2 are shown to be incompressible. Here [a, b]
is the quadratic form ax2

+ xy + by2 in characteristic 2. The incompressibility
of these forms gives them a lower bound on edk(O(V, g)) where g is any
nondegenerate quadratic form on a vector space V over k. In the present paper
the techniques from [2, Sections 7–12] are adapted to both the Milne–Kato p-
cohomology and the generic forms in (2) to get the lower bound in Theorem 5.8.

In Section 3 differential bases over fields of characteristic p are reviewed
and [2, 11.1] is generalized in Proposition 3.2 to arbitrary prime characteristic.
Proposition 3.2 serves in this paper, as 11.1 does in [2], as a keystone of the proofs
on essential dimension that follow. In [2, Section 8] Babic and Chernousov use
a presentation of quadratic forms in the Witt group over a field of Laurent series
by Arason. In this paper we instead work with Izhboldin’s filtration on Hn+1

p (F)
for F a Laurent series field [14, Section 2]. When p = 2, Hn+1

2 (F) is isomorphic
to a homogeneous component of the graded Witt group [16], but for p > 2 there
is no such connection. The appropriate adaptations for p-cohomology are done
in Section 4. In Lemma 4.6 we show there is a ‘unique decomposition’ of p-
cohomology classes, similar to the unique decomposition in [2, 8.2]. Work is done
in Proposition 4.7 to understand how one manipulates a p-cohomology class into
its ‘unique decomposition’. The proof of the main theorem and corollaries are in
Section 5.

3. Differential bases in characteristic p

Throughout this section let k be a perfect field of characteristic p and K a field
containing k with tr. degk K = r > 0. Let v be a geometric valuation on K of
rank 1 (so that tr. degk(K ) = r − 1 where K is the residue field of K [17]). Note
that with this set up K/K p is a defectless extension, that is, [v(K ) : v(K p)] = p
and [K : K

p
] = pr−1 so that pr

= [K : K p
] = [v(K ) : v(K p)] · [K : K

p
]. Set π

as a uniformizer for v and R ⊂ K the corresponding valuation ring.
As in [2, Section 9] we say that a differential basis {a1, . . . , ar } for K/k comes

from K if there exists an i0 with ai0 a uniformizer for K , a j ∈ R× for j 6= i0 and
{a j | j 6= i0} is a differential basis for K/k. (See [10, 16.5] for the equivalence of
differential bases and p-bases.)

EXAMPLE 3.1. Let k be a field of characteristic p. Take k(t1, . . . , tr ) to be the
rational function field in r variables over k, v the tr -adic valuation, π = tr and R =
k(t1, . . . , tr−1)[tr ]. In this case {t1, . . . , tr } forms a differential basis of k(t1, . . . ,

tr )/k coming from k(t1, . . . , tr ) ∼= k(t1, . . . , tr−1). Let K/k(t1, . . . , tr ) be a prime
to p field extension. There exists an extension of the valuation vtr on k(t1, . . . , tr )
to a discrete valuation v on K with residue degree f (v/vtr ) and ramification index
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e(v/vtr ) both prime to p [23, 16.6.3]. Since K/k(t1, . . . , tr ) is a finite prime to
p extension, it is separable algebraic and thus the differential basis {t1, . . . , tr } of
k(t1, . . . , tr ) is also a differential basis of K/k (see [13, 8.6]). Let τ ∈ K be a
uniformizer for the extended valuation v. The set {t1, . . . , tr−1, τ } is a differential
basis of K/k which comes from K since {t1, . . . , tr−1} is a differential basis for
k(t1, . . . , tr−1) and hence also for the prime to p extension K (see [2, section 9]).
Note also that K has transcendence degree r over k and the valuation v on K is
geometric of rank 1.

PROPOSITION 3.2 (Generalization of [2, 11.1] to characteristic p). Let k be a
perfect field of characteristic p and K a field containing k with tr. degk K = r > 0.
Let v be a geometric valuation on K of rank 1. Let E ⊂ K be a subfield containing
k with tr. degk(E) = s < r = tr. degk(K ). Then there exists a differential basis
{a1, . . . , ar } of K/k coming from K such that E ⊂ K p(a1, . . . , at) with t 6 s < r .

Proof. (Follows [2, 11.1]) Since k is perfect we can fix a p-basis {c1, . . . , cs} of
E/k so that E = E p(c1, . . . , cs). Set L = K p(c1, . . . , cs) so that E ⊂ L . After
reordering if necessary let c1, . . . , ct be a minimal system of generators for L over
K p. Let F0 = K p

⊂ F1 ⊂ · · · ⊂ Fr = K be any chain of degree p extensions
which are built using the ci :

F0 = K p
⊂ F1 = F0(c1) ⊂ F2 = F1(c2) ⊂ · · · ⊂ Ft = Ft−1(ct) = L .

Consider the corresponding chain of residue fields

K
p
= F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ F t = L ⊂ F t+1 ⊂ · · · ⊂ F N = K .

Since v is geometric, [K : K
p
] = pr−1, showing that exactly one of these

r residue extensions is trivial and the rest have degree p. For each nontrivial
extension choose ai ∈ F i\F i−1 and any lift ai ∈ Fi\Fi−1. This is the part of the
differential basis that comes ‘from K ’. Let F i0 = F i0−1 be the collapsed part of
the residue fields. We need to find a uniformizer ai0 ∈ Fi0 for K which completes
the differential basis. Since K/K p is defectless, the subextension Fi0−1 ⊂ Fi0 is
also defectless, so that

p = [Fi0 : Fi0−1] = [v(Fi0) : v(Fi0−1)] · [F i0 : F i0−1] = [v(Fi0) : v(Fi0−1)].

In particular we can find γ ∈ Fi0 with p - v(γ ). Take α, β ∈ Z with αp + βv(γ )
= 1 and set ai0 = π

pαγ β . Note that v(ai0) = 1 and Fi0−1(ai0) = Fi0−1(γ ) = Fi0 .
Hence {a1, . . . , ar } forms a differential basis of K/k coming from K with E ⊂
L = K p(a1, . . . , at) and t 6 s < r .
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REMARK 3.3. Note that if v|E has ramification index a multiple of p, then each
ci has a value multiple of p. In particular, in the proof of Proposition 3.2, the
collapse F i0 = F i0−1 must happen with i0 > t . Therefore in this case, for i 6 t ,
ai ∈ R×.

As a result of Proposition 3.2 we will be interested in subfields of the form
L = K p(a1, . . . , as) ⊂ K = K p(a1, . . . , ar ) with {ai}

r
i=1 a differential basis of K .

The following Lemma will be used in the proof of Theorem 5.6. SetΛs = Zs
p and

use multi-index notation e = (e1, . . . , es) ∈ Λs to write ae
:= ae1

1 · · · a
es
s . In this

way the set {ae
| e ∈ Λs} forms a K p-basis for L .

LEMMA 3.4. Let L = K p(a1, . . . , as) ⊂ K = K p(a1, . . . , ar ) with {ai}
r
i=1 a

differential basis of K . If s < n then the restriction of scalars map Ωn
L → Ωn

K is
the zero map.

Proof. Let bdc1 ∧ · · · ∧ dcn ∈ Ω
n
L be a n-form and write

b =
∑
e∈Λs

β p
e ae and ci =

∑
e′∈Λs

γ
p

ie′a
e′

with βe, γie′ ∈ K . Extend scalars from L to K and use the fact that β p
e and γ p

ie′ are
now pth powers to expand bdc1 ∧ · · · ∧ dcn into a sum of elements of the form

δ
dae1

ae1
∧ · · · ∧

daen

aen
(8)

with δ ∈ K and ei ∈ Λs . Since logarithmic differential forms are linear, for each
ei = (ei1, . . . , eis),

daei

aei
=

s∑
j=1

ei j
da j

a j

hence the n-forms in (8) are sums of n-forms of the form

δ
da j1

a j1
∧ · · · ∧

da jn

a jn

for some δ ∈ K . These forms are all zero, since j1, . . . , jn are chosen among
1, . . . , s and s < n. Therefore, Ωn

L → Ωn
K is the zero map.

4. Izhboldin’s Filtration

Let F be a field of characteristic p. Recall [14] that the p-cohomology of F is
defined as

Hn+1
p (F) = coker

(
Ωn

F
℘
−→ Ωn

F/d(Ω
n−1
F )

)
(9)
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where for a ∈ F , bi ∈ F∗, ℘ satisfies ℘(a (db1/b1)∧ · · · ∧ (dbn/bn)) = (a p
− a)

(db1/b1) ∧ · · · ∧ (dbn/bn). We follow the convention of denoting an element of
Hn+1

p (F) by an n-form to reduce notation.
In [14] Izhboldin gives a filtration on the p-cohomology of F where F is a

characteristic p field complete with respect to a discrete valuation and residue
field F . We heavily rely on this filtration and so we review it here. Given an
integer m, Um = UmHn+1

p (F) is defined to be the subgroup of Hn+1
p (F) generated

by elements of the form

f
dg1

g1
∧ · · · ∧

dgn

gn
with f ∈ F, gi ∈ F∗, v( f ) > −m.

By [14, 3.3] U−1 = 0 and by [14, 2.6] if Fur is the maximal unramified
extension of F then U0 = Hn+1

p,ur(F)where Hn+1
p,ur(F)= ker(Hn+1

p (F)→ Hn+1
p (Fur)).

Quotients of the filtration are understood by the following theorem.

THEOREM 4.1 [14, Theorem 2.5].

Ui/Ui−1
∼=


Hn+1

p (F)⊕ Hn
p(F) if i = 0,

Ωn
F if i > 0, p - i,

Ωn
F/Ω

n
F,d=0 ⊕Ω

n−1
F
/Ωn−1

F,d=0
if i > 0, p | i.

The isomorphisms in 4.1 will be denoted by ρ−1
i as is done in [14, 2.4]. ρ−1

0 :

U0 → Hn+1
p (F) ⊕ Hn

p(F) defines two maps, ∂1 and ∂2, the so-called first and
second residues. For a, b, bi , ci ∈ R× and π ∈ R a fixed uniformizer for F , ∂1

and ∂2 are given by

∂1

(
a

db1

b1
∧ · · · ∧

dbn

bn
+ b

dc1

c1
∧ · · · ∧

dcn−1

cn−1
∧

dπ
π

)
=

(
ā

db̄1

b̄1
∧ · · · ∧

db̄n

b̄n
, 0
)

∂2

(
a

db1

b1
∧ · · · ∧

dbn

bn
+ b

dc1

c1
∧ · · · ∧

dcn−1

cn−1
∧

dπ
π

)
=

(
0, b̄

dc̄1

c̄1
∧ · · · ∧

dc̄n−1

c̄n−1

)
.

REMARK 4.2. In [14] the position of dπ/π in the definition of the first and
second residues is in the first slot instead of last slot as above. This will possibly
change the sign of the residues, but will not affect the isomorphisms.
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The following lemma describes how the isomorphisms in Theorem 4.1 behave
with respect to scalar extensions. Let e, m, n be positive integers. Let F1 be a
field of characteristic p which is complete with respect to a discrete valuation
v and let F2 be a complete subfield on which the valuation is nontrivial with
ramification index e. Within the filtration on Hn+1

p (F2) → Hn+1
p (F1) there is a

well defined extension of scalars map Um/Um−1(F2) → Uem/Uem−1(F1) (since
e(m − 1) 6 em − 1) which behaves as follows.

LEMMA 4.3. Let e,m, n, F1 and F2 be as above. Let π ∈ F1 and τ ∈ F2 be
uniformizers with τ = uπ e and u a unit. To reduce notation in the commutative
diagrams below we use ωn to indicate both a n-form in Ωn and the class of that
n-form in a quotient.

(1) If p - em then there is a commutative diagram

Uem/Uem−1(F1)
ρ−1

em // Ωn
F1

Um/Um−1(F2)
ρ−1

em //

res

OO

Ωn
F2

ψm

OO

in which
ψm : ωn 7→ ū−mωn.

(2) If m > 0 and p|m then there is a commutative diagram

Uem/Uem−1(F1)
ρ−1

em // Ωn
F1
/Ωn

F1,d=0
⊕Ωn−1

F1
/Ωn−1

F1,d=0

Um/Um−1(F2)
ρ−1

em //

res

OO

Ωn
F2
/Ωn

F2,d=0
⊕Ωn−1

F2
/Ωn−1

F2,d=0

ψm

OO

in which

ψm : (ωn, ωn−1) 7→

(
u−mωn + ωn−1 ∧

dū
ū
, e ū−mωn−1

)
.

(3) If m = 0 then there is a commutative diagram

Hn+1
p,ur(F1)

ρ−1
0 // Hn+1

p (F1)⊕ Hn
p(F1)

Hn+1
p,ur(F2)

ρ−1
0 //

res

OO

Hn+1
p (F2)⊕ Hn

p(F2)

ψ0

OO
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in which

ψ0 : (ωn, ωn−1) 7→

(
ωn + ωn−1 ∧

dū
ū
, eωn−1

)
.

Proof. Each of these is a diagram chase using the definitions for the maps ρm

from [14, 2.5]. We illustrate the case m = 0 here: let ωi ∈ Ω
i
F2

. Then ρ0 of the
class of (ωn, ωn−1) in Hn+1

p (F2) ⊕ Hn
p(F2) is the class of ω̂n + ω̂n−1 ∧ (dτ/τ)

where ω̂i is any lift of ωi to F2. Extend scalars to F1:

ω̂n + ω̂n−1 ∧
dτ
τ
= ω̂n + ω̂n−1 ∧

d(uπ e)

uπ e

= ω̂n + ω̂n−1 ∧
du
u
+ eωn−1 ∧

dπ
π
.

Over F1, ρ−1
0 (ω̂n + ω̂n−1 ∧ (du/u)+ eωn−1 ∧ (dπ/π)) equals the class of (ωn +

ωn−1 ∧ (dū/ū), eωn−1) in Hn+1
p (F1)⊕ Hn

p(F1).

REMARK 4.4. There is a similar commutative diagram for the case p - m and
p|e, but we will not have the occasion to use it.

Let K/F be an extension of fields. In general the restriction map Ωn
F → Ωn

K
is not an injection. For a simple example consider Ω1

k(x p) → Ω1
k(x) which sends

0 6= d(x p) to d(x p) = px p−1dx = 0. Sometimes Ωn
F → Ωn

K is an injection.
For example, purely transcendental extension fields K/F give injections Ωm

F →

Ωm
K [9, 7.2] and separable algebraic extensions K/F give injections Ωm

F → Ωm
K

[9, 7.1]. We run into a case in the proof of Theorem 5.6 which also gives an
injection, namely

LEMMA 4.5. Let k be a perfect field of characteristic p and let E/k be a finitely
generated extension with p-basis {a1, . . . , ar }. Assume K/E is a field extension
with p-basis {a1, . . . , ar , . . . , as} over k. Then for n > 0 the natural restriction
maps

Ωn
E → Ωn

K

Ωn
E/Ω

n
E,d=0 → Ωn

K/Ω
n
K ,d=0

are injections.

Proof. Since E has p-basis {a1, . . . , ar } it has differential basis {da1, . . . ,

dar } over E and Ωn
E has basis {dai1 ∧ · · · ∧ dain }i1<···<in with 1 6 i j 6 r .

K has differential basis {da1, . . . , das} over K and Ωn
K has K -basis {dai1 ∧
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· · · dain }i1<···<in with 1 6 i j 6 s. The extension of these differential bases gives us
the injections Ωn

E → Ωn
K . For the second map, the injection Ωn

E → Ωn
K tells us

that if d(ω) = 0 in Ω j
K , then d(ω) = 0 in Ωn

E .

Consider now the complete case F ∼= K ((π)) for a field K of characteristic p
which has finite p-rank. We want to write elements of Hn+1

p (K ((π))) in a unique
way using Izhboldin’s Ui filtration. Ωn

K is a finite-dimensional K -vector space,
hence also a finite-dimensional K p-vector space. Fix n > 0 and {νi}i∈In a K p-
basis for Ωn

K . The cycle subset Ωn
K ,d=0 is not a K -vector subspace of Ωn

K , but it is
a K p-vector subspace, i.e., if dω = 0 then for any x ∈ K , d(x pω) = x p dω = 0.
Therefore there exists a subset I ′n ⊂ In so that the image of νi for i ∈ I ′n is a K p-
basis for the quotient space Ωn

K/Ω
n
K ,d=0. Similarly fix {ωi}i∈In−1 , a K p-basis for

Ωn−1
K and I ′n−1 ⊂ In−1 a subset so that the images of the {ωi} with i ∈ I ′n−1 form a

K p-basis of Ωn−1
K /Ωn−1

K ,d=0.

LEMMA 4.6. Let f ∈ Hn+1
p (K ((π))) and fix K p-bases {νi}i∈In and {ω j } j∈In−1 of

Ωn
K andΩn−1

K as above. There exist unique αki , βki , γk j ∈ K so that f =
∑m

k=0 hk

with h0 ∈ U0 and for k > 0

p - k : hk =
∑
i∈In

α
p
ki

π k
νi

p|k : hk =
∑
i∈I ′n

β
p
ki

π k
νi +

∑
j∈I ′n−1

γ
p

k j

π k
ω j ∧

dπ
π

Moreover, each hk ∈ Uk(K ((π))).

Proof. If f ∈ U0 then αki = βki = γk j = 0 gives a solution. Let α′ki , β
′

ki , γ
′

ki be
another choice of coefficients and let m be the maximum integer with one of α′mi ,
β ′mi or γ ′mi nonzero. If m > 0 then by our choice of bases, ρ−1

m ( f ) 6= 0 (Theorem
4.1). This contradicts that f ∈ U0 ⊂ Um−1.

Assume f /∈ U0 and let m be the minimum integer with f ∈ Um . Consider
the image of f in Um/Um−1. Use the isomorphisms in Theorem 4.1 together with
K ((π)) ∼= K to find the unique coefficients αki , βki , γk j ∈ K which satisfy f −∑

i∈In
(α

p
ki/π

k)νi ∈ Um−1 if p - k and f −
∑

i∈I ′n
(β

p
ki/π

k)νi+
∑

j∈I ′n−1
(γ

p
k j/π

k)ω j∧

(dπ/π) ∈ Um−1 if p|k. Apply induction to the new element.

In Theorem 5.6 we will be given classes in Hn+1(K ((π))) which are not quite
in the canonical form of Lemma 4.6. We need to put them in canonical form and
determine what happens to the U0 term in the process. The answer is the U0 terms

https://doi.org/10.1017/fms.2017.11 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.11


Essential dimension of generic symbols in characteristic p 15

stay the same and the proof will use the following equality in Hn+1
p (K ((π))): for

N ∈ Z with p - N and any ω ∈ Ωn
K ((π)) we have

ω

π N
∧

dπ
π
=

ω

π N
∧

dπ
π
+ d

(
N−1ω

π N

)
=

N−1 dω
π N

. (10)

PROPOSITION 4.7. Let f ∈ Hn+1
p (K ((π))) be an element of the form f =∑N

r=0 fr where f0 ∈ U0 and for r > 0

fr =
gr

π r
+

g′r
π r
∧

dπ
π

with gr ∈ Ω
n
K and g′r ∈ Ω

n−1
K . Then, when we write f in its canonical form

f =
∑m

k=0 hk as in Lemma 4.6, h0 = f0. In particular, if f ∈ U0(K ((π))) then
f = f0.

Proof. We proceed by induction on N . If N = 0 then f is already in canonical
form and there is nothing to prove. Fix N > 0 and assume the proposition is true
for all N0 < N . Let f = fN + · · · + f0 with the fr ’s as in the statement of the
proposition. If p - N , then by (10):

fN =
gN

π N
+

g′N
π N
∧

dπ
π

=
gN

π N
+

N−1dg′N
π N

.

Write gN + N−1dg′N ∈ Ω
n
K as

∑
i∈In

α
p
Niνi with αNi ∈ K . Then

fN =
∑
i∈In

α
p
Ni

π N
νi

is in canonical form. The result holds by induction on f − fN . If p|N write

gN =
∑
i∈I ′n

β
p
Niνi + µn

g′N =
∑

j∈I ′n−1

γ
p

N jω j + µn−1

with βNi , γN j ∈ K , µn ∈ Ω
n
K ,d=0 and µn−1 ∈ Ω

n−1
K ,d=0. By Cartier’s isomorphism

[14, 1.5.3] d(µi) = 0 implies µi = Φ(εi) + d(ξi) for some εi ∈ Ω
i
K , ξi ∈ Ω

i−1
K .
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Here Φ : Ω i
K → Ω i

K is the Frobenius homomorphism

Φ : a
db1

b1
∧ · · · ∧

dbi

bi
−→ a p db1

b1
∧ · · · ∧

dbi

bi
.

All together we have

fN =
∑
i∈I ′n

β
p
Ni

π N
νi +

d(ξn)

π N
+
Φ(εn)

π N

+

∑
j∈I ′n−1

γ
p

N jω j

π N
∧

dπ
π
+

d(ξn−1)

π N
∧

dπ
π
+
Φ(εn−1)

π N
∧

dπ
π
.

We need to rewrite the second, third, fifth and sixth terms in this sum while the first
and fourth terms are already in canonical form. We deal with the second and fifth
terms similarly; since p|N , d(ξn)/π

N
= d(ξn/π

N ) and (d(ξn−1)/π
N )∧(dπ/π) =

d(ξn−1/π
N )∧ (dπ/π) = d

(
ξn−1/π

N
∧ (dπ/π)

)
. Since d(−) = 0 in H2

p(K ((π)))
we can replace both of these terms by 0. The third and sixth terms are also similar;
by (9) we have Φ(εn)/π

N
= εn/π

N/p and

Φ(εn−1)

π N
∧

dπ
π
=
εn−1

π N/p
∧

dπ
π

in H2
p(K ((π))). The six terms in fN have turned into:

fN =
∑
i∈I ′n

β
p
Ni

π N
νi + 0+

εn

π N/p
+

∑
j∈I ′n−1

γ
p

N jω j

π N
∧

dπ
π
+ 0+

εn−1

π N/p
∧

dπ
π

= hN +
εn

π N/p
+
εn−1

π N/p
∧

dπ
π

with hN in canonical form. Moreover,

f = hN + fN−1 + · · · + fN/p +
εn

π N/p
+
εn−1

π N/p
∧

dπ
π
+ · · · + f0

where each of fi , i 6= N/p and fN/p + (β1/π
N/p)+ (β0/π

N/p) ∧ (dπ/π) are as
in the statement of the proposition. Note in particular, N/p 6= 0, so that we did
not alter f0. Apply the induction hypothesis to f −hN to finish the proof. The last
sentence follows because f ∈ U0(K ((π))) is already in canonical form.

Let K be a discrete valued field of characteristic p with uniformizer π
and residue field K . In Theorem 5.6 we will be looking at n-forms coming
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from subfields of the form L = K p(a1, . . . , as) ⊂ K = K p(a1, . . . , ar ) where
s 6 r and {ai}

r
i=1 is a differential basis for K/k coming from K . Let ai0 =

π be the uniformizer for K in this differential basis so that the completion
K̂ ∼= K1((π)) and the coefficient field K1 contains all ai with i 6= i0 i.e., all
those with v(ai) = 0 [10, 7.8].

LEMMA 4.8. Let K , {ai}
r
i=1, L, K1 and π be as above. Let g ∈ Hn+1

p (L). Then
upon extension of scalars to K̂

gK̂ = resK̂ (g) = gm + · · · + g0

where each gi ∈ Hn+1
p (K̂ ) is a sum of elements of the form ( f/π i) (dae1/ae1) ∧

· · · ∧ (daen/aen ) with f ∈ K1, ei ∈ Λs . Moreover:

(1) if i0 > s then ∂2(g0) = 0;

(2) for any discrete valuation w on K1 with uniformizer τ and residue field K 1,
there exists a differential basis B ′ = {a′1, . . . , a′r−1} for K1/k coming from K 1

so that:

(a) if i0 > s then K p
1 (a1, . . . , as) = K p

1 (a
′

1, . . . , a′s) and ∂1(g0) descends to
K p

1 (a
′

1, . . . , a′s);

(b) if i0 = s then K p
1 (a1, . . . , as−1) = K p

1 (a
′

1, . . . , a′s−1) and ∂1(g0)

descends to K p
1 (a

′

1, . . . , a′s−1).

REMARK 4.9. In the statement of Lemma 4.8 we are identifying the coefficient
field K1 (and hence also K p

1 (a1, . . . , as)) with the residue field of K̂ . In this way
the statement ‘∂1(g0) descends to K p

1 (a
′

1, . . .)’ in Lemma 4.8 make sense.

Proof. As in Lemma 3.4 we consider the extension of scalars map: Ωn
L → Ωn

K .
Since s is not necessarily less than n, the map may be nonzero, but we can still
express the n-forms using the K p-basis of L . In particular, given bdc1∧ · · · ∧dcn ∈

Ωn
L write

b =
∑
e∈Λs

β p
e ae and ci =

∑
e′∈Λs

γ
p

ie′a
e′

with βe, γie′ ∈ K . As in Lemma 3.4 we use these expressions for b and ci and
extend scalars from L to K to expand bdc1 ∧ · · · ∧ dcd−1, but this time we are a
bit more careful and expand it into a sum of elements of the form

δ pae

π pk

dae1

ae1
∧ · · · ∧

daen

aen
(11)
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with δ ∈ R×, k ∈ Z and e, ei ∈ Λs . Now extend scalars further to gK̂ and note that
if k < 0, then (δ pae/π pk) (dae1/ae1) ∧ · · · ∧ (daed−1/aed−1) ∈ U−1(K̂ ) ⊂ H2

p(K̂ )
which is zero by [14, 3.3].

We can thus simplify elements of the form (11) over K̂ by expressing δ =
f0 + f1π + · · · + fkπ

k
+ f ′π k+1 with fi ∈ K1 and f ′ ∈ R×, so that

δ pae

π pk

dae1

ae1
∧ · · · ∧

daen

aen
=

k∑
i=0

f p
i ae

π p(k−i)

dae1

ae1
∧ · · · ∧

daen

aen

+ ( f ′)pπ pae
dae1

ae1
∧ · · · ∧

daen

aen

=

k∑
i=0

f p
i ae

π p(k−i)

dae1

ae1
∧ · · · ∧

daen

aen
. (12)

If i0 > s then ae
∈ K1 for all e ∈ Λs . If i0 6 s then we assume i0 = s (after

reordering if necessary) and if e = (ε1, . . . , εs) then aeπ−εs ∈ K1. In both cases,
since fi ∈ K1, we have shown the class of gK̂ can be written as

gK̂ = gm + · · · + g0 (13)

where each gi is a sum of elements of the form ( f/π i) (dae1/ae1) ∧ · · · ∧

(daen/aen ) with f ∈ K1 and ei ∈ Λs .
To show the final part of the lemma, return to (12) and consider those terms

contributing to the g0 component of gK̂ . If i0 > s then a term of the form (12)
contributes to g0 only if p(k−i) = 0 and it is then immediate that both ∂2(g0) = 0
(there are no uniformizers in the wedge product) and g0 descends to K p

1 (a1, . . . ,

as).
If i0 = s and the term

f p
i

π p(k−i)
ae dae1

ae1
∧ · · · ∧

daen

aen

with e = (ε1, . . . , εs) contributes to the g0 piece then εs − p(k − i) = 0. In
particular, p|εs and thus εs = 0. The contributing element must therefore look
like

f p
i ae dae1

ae1
∧ · · · ∧

daen

aen

with εs = 0. Set ei = (εi1, . . . , εis) and separate out the uniformizers in the wedge
product:
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f p
i ae dae1

ae1
∧ · · · ∧

daen

aen

= f p
i ae

(
d(ae1π−ε1s )

ae1π−ε1s
+ ε1s

dπ
π

)
∧ · · · ∧

(
d(aenπ−εns )

aenπ−εns
+ εns

dπ
π

)
= ωi + νi ∧

dπ
π

with ωi ∈ Ω
n and νi ∈ Ω

n−1 forms over K p
1 (a1, . . . , as−1). In particular, g0 =

ω + ν ∧ (dπ/π) with ω an n-form defined over K p
1 (a1, . . . , as−1) ⊂ K1. By

construction we can identify K1 with the residue field of K̂ and thus also
K p

1 (a1, . . . , as−1) as a subfield of K̂ . In particular, since ∂1(g0) = ω, ∂1(g0)

descends to K p
1 (a1, . . . , as−1).

Finally, let w be a discrete valuation on K1 with uniformizer τ and residue field
K 1. Arguing as in the proof of Proposition 3.2, if i0 > s (respectively i0 = s) then
there exists a differential basis B ′ = {a′1, . . . , a′r−1} for K1/k coming from K 1 so
that K p

1 (a1, . . . , as) = K p
1 (a

′

1, . . . , a′s) (respectively K p
1 (a1, . . . , as−1) = K p

1 (a
′

1,

. . . , a′s−1)). Since we have already shown ∂1(g0) to descend appropriately, this
finishes the proof.

5. Essential dimension of the generic symbol

We now look at generic symbols in characteristic p. Fix integers `, n > 1 and
k an algebraically closed field of characteristic p. Set

k`,n = k(xi , yi, j)16i6`,16 j6n

the rational function field defined by `(n+1) independent variables over k. Denote
by genk(n + 1, `, p) the Hn+1

p (k`,n) class of the length ` generic p-symbol of
degree n + 1 over k, i.e.,

genk(n + 1, `, p) =
`∑

i=1

xi
dyi,1

yi,1
∧ · · · ∧

dyi,n

yi,n
∈ Hn+1

p (k`,n).

Throughout this section let v`,n denote the y`,n-adic valuation on k`,n , k̂`,n the
completion and k`,n the corresponding residue field. Note that genk(n+1, `, p) ∈
U0(̂k`,n) and therefore we can look at its first and second residues.

LEMMA 5.1. Fix an isomorphism k`,n ∼= k`−1,n(x`, y`,1, . . . , y`,n−1) and
inclusions ki, j ⊂ k`,n for all i 6 ` and j < n or i < ` and j 6 n. Over
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k̂`,n and with respect to the uniformizer y`,n

∂1(genk(n + 1, `, p)) = resk`,n (genk(n + 1, `− 1, p))

∂2(genk(n + 1, `, p)) = resk`,n

(
x`

dy`,1
y`,1
∧ · · · ∧

dy`,n−1

y`,n−1

)
.

Proof. This follows from the description of the residues above Remark 4.2.

LEMMA 5.2. Let n > 1, ` > 1, and let k`,n ⊂ k`,n(z1, . . . , zr ) ⊂ K be fields with
K/k`,n(z1, . . . , zr ) a prime to p extension and the zi ’s algebraically independent
indeterminates over k`,n . Then for any integer e which is prime to p,

e · resK/k`,n (genk(n + 1, `, p)) 6= 0.

Proof. We proceed by induction on n. When n = 1, we can reduce notation a bit
by setting yi1 = yi , so that the field k`,1 = k(x1, y1, . . . , x`, y`) and the element
gen(2, `, p) corresponds to the 1-form

gen(2, `, p) =
`∑

i=1

xi
dyi

yi
.

Under the isomorphism H2
p(k`,1) ∼= pBr(k`,1) [12, 9.2.5] gen(2, `, p) maps to

the class of the length ` generic p-symbol algebra
⊗`

i=1[xi , yi). The index of⊗`

i=1[xi , yi) is p` and the exponent is p which can be seen via generic abelian
crossed product p-algebras ([24, 2.7] or [8, p. 4]). A purely transcendental
extension k`,1 ⊂ k`,1(z1, . . . , zr ), a prime to p extension K and multiplication
by e all give injections of the p-torsion part of the Brauer group [21], proving the
result in this case.

Fix n > 1 and assume the theorem holds for genk(n0 + 1, `, p) for all 1 6
n0 < n, ` > 1 and fields k of characteristic p. Let K/k`,n and e be as in the
statement of the theorem. Choose a valuation v on K which extends v`,n , the
y`,n-adic valuation on k`,n(z1, . . . , zr ) so that both the residue degree f (v/v`,n)
and ramification degree e(v/v`,n) are prime to p (see Example 3.1). Let K̂ and
k̂`,n(z1, . . . , zr ) be the respective completions and consider the second residue
maps, ∂2, on these fields. By Lemma 4.3(3) we have
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Hn+1
p (K ) res // Hn+1

p,ur(K̂ )
∂2 // Hn

p(K )

Hn+1
p,ur (̂k`,n(z1, . . . , zr ))

∂2 //

e·res

OO

Hn
p(k`,n(z1, . . . , zr ))

e·e(v/v`,n)·res

OO

Hn+1
p (k`,n)

res //

e·res

OO

Hn+1
p,ur (̂k`,n)

∂2 //

res

OO

Hn
p(k`,n)

res

OO

Using Lemma 5.1 and tracing the diagram in both directions shows that if e ·
resK/k`,n (genk(n + 1, `, p)) = 0 then

e · e(v/v`,n) · resK/k`,n

(
x`

dy`,1
y`,1
∧ · · · ∧

dy`,n−1

y`,n−1

)
= 0. (14)

The field extension K/k`,n can be decomposed into extensions

K

k`,n(z1, . . . , zr ) ∼= k`−1,n(x`, y`,1, . . . , y`,n−1, z1, . . . , zr )

f (v/v`,n) prime to p

k`,n ∼= k`−1,n(x`, y`,1, . . . , y`,n−1)

purely transcendental

k(x`, y`,1, . . . , y`,n−1)

purely transcendental

In other words, the extension is a composition of purely transcendental extensions
followed by a prime to p extension. Since, up to numbering, x` (dy`,1/y`,1)∧· · ·∧
(dy`,n−1/y`,n−1) = genk(n, 1, p), (14) violates the induction hypothesis.

Let k be an algebraically closed field of characteristic p. Let K/k`,n(z1, . . . ,

zr ) be a finite prime to p extension as above and fix the uniformizer y`,n for
the valuation v`,n on k`,n(z1, . . . , zr ). As in the proof of Corollary 5.2 choose an
extension v of v`,n to K with both e(v/v`,n) and f (v/v`,n) prime to p. Let K̂
and k̂`,n be the corresponding completions and K and k`,n the residue fields with
respect to these valuations.

COROLLARY 5.3. Let K/k`,n be as above with valuations v and v`,n . For any
n, ` > 1, ∂2(genk(n + 1, `, p)K̂ ) 6= 0.
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Proof. By Lemma 5.1 the first and second residues of genk(n + 1, `, p)̂k`,n
are sums of generic p-symbols (at least after renumbering the variables) with
scalars extended to k`,n . Recall k`,n is isomorphic to k`−1,n(x`, y`,1, . . . , y`,n−1)

and therefore K is a prime to p extension of a purely transcendental extension of
k(x`, y`,1, . . . , y`,n−1). By Lemma 4.3(3)

∂2(genk(n+1, `,p)K̂ )= e(v/v`,n) · resK/k(x`,y`,1,...,y`,n−1)

(
x`

dy`,1
y`,1
∧ · · · ∧

dy`,n−1

y`,n−1

)
.

The latter is nonzero by Lemma 5.2.

Following the notation in [20], for D ∈ Hn+1
p (K ) we denote the essential

dimension of D as an element of Hn+1
p (K ) over k by edk(D) and the p-essential

dimension by edk(D; p).

LEMMA 5.4. edk(genk(n + 1, 1, p)) = edk(genk(n + 1, 1, p); p) = n + 1.

Proof. The essential dimension is bounded above by n+1 since genk(n+1, 1, p)
is defined over k1,n = k(x1, y11, . . . , y1,n). For the lower bound, suppose there is
a prime to p extension K/k1,n , a field k ⊂ E ⊂ K and a g ∈ Hn+1

p (E) so that
resK/E(g) = resK/k1,n (genk(n + 1, 1, p)). If tr. degk(E) < n + 1, then E is Cr for
some r < n + 1, hence Hn+1

p (E) = 0 as in [1]. This contradicts Lemma 5.2.

REMARK 5.5. The proof of Lemma 5.4 also shows that edk(genk(n+ 1, `, p)) >
edk(genk(n + 1, `, p); p) > n + 1. But this result will be subsumed by Theorem
5.8.

THEOREM 5.6 (Generalization of Babic & Chernousov’s 11.3). Let `, n > 1
and (K , v) a valued prime to p extension of (k`,n(z1, . . . , zr ), v`,n) with residue
degree and ramification index prime to p. There does not exist a differential basis
B = {a1, . . . , a`(n+1)+r } for K/k coming from K such that resK (genk(n+1, `, p))
descends to K p(a1, . . . , an+`−2).

Proof. This proof follows the general outline of the proof of [2, 11.3] and
proceeds by induction on the length of the generic symbol, `. Case ` = 1.
Let B = {a1, . . . , an+1+r } be a differential basis for K/k coming from K and
g ∈ Hn+1

p (L) with L = K p(a1, . . . , an−1) so that resK/L(g) = resK (genk(n + 1,
1, p)). By Lemma 3.4 the extension of scalars map Ωn

L → Ωn
K is the zero map,

hence the extension of scalars Hn+1
p (L) → Hn+1

p (K ) is also the zero map. This
contradicts resK (genk(n + 1, 1, p)) 6= 0 (Lemma 5.2).

Fix ` > 1 and assume the theorem holds for genk(n+1, `0, p) with 1 6 `0 < `

for all algebraically closed fields k of characteristic p, all n > 1 and all r > 0.
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Assume there exists a differential basis B = {a1, . . . , a`(n+1)+r } for K/k coming
from K and g ∈ Hn+1

p (L) with L = K p(a1, . . . , a`+n−2) such that resK/L(g) =
resK (genk(n + 1, `, p)). Let L and K have completions K̂ and L̂ and residue
fields K and L with respect to v. By [10, 7.8] the differential basis B for K/k
corresponds to a coefficient field K1 ⊂ K̂ containing {ai | v(ai) = 0}. Let ai0 = π

be the uniformizer of K in the differential basis so that K̂ ∼= K1((π)) and ai ∈ K1

for all i 6= i0.
Using Lemma 4.8 we can write

gK̂ = resK̂/L g = gm + · · · + g0 (15)

where each gi is a sum of elements of the form ( f/π i) (dae1/ae1)∧· · ·∧(daen/aen )

with f ∈ K1 and ei ∈ Λ`+n−2. We now consider the two cases i0 > `+ n − 2 and
i0 6 `+ n − 2 separately.

If i0 > `+n−2 then ae
∈ K1 for all e ∈Λ`+n−2 and each gi in (15) can be written

as gi = ωi/π
i with ωi ∈ Ω

n
K1

. In other words, gK̂ =
∑

i ωi/π
i with ωi ∈ Ω

n
K1

,

so we can apply Proposition 4.7. Since gK̂ = resK̂ (genk(n + 1, `, p)) ∈ U0(K̂ ),
Proposition 4.7 says gK̂ = g0. Since g0 ∈ Ω

n
K1

, 0 = ∂2(gK̂ ) = ∂2(gen(n + 1, `,
p)K̂ ). This contradicts Corollary 5.3.

When i0 6 `+ n − 2 we derive a contradiction using the induction hypothesis.
Assume i0 = ` + n − 2 (after reordering if necessary). As in (15) we can write
gK̂ =

∑
gi where gi are homogeneous with terms of the form

f
π i

dae1

ae1
∧ · · · ∧

daen

aen
(16)

with f ∈ K1 and ei ∈Λ`+n−2. Using a`+n−2 = ai0 = π , we want to separate out the
uniformizers in the logarithmic differentials in (16) as in the proof of Lemma 4.8.
Set ei = (εi,1, . . . , εi,i0) ∈ Λ`+n−2. Then

daei

aei
=

daeiπ−εi,i0

aeiπ−εi,i0
+ εi,i0

dπ
π

and aeiπ−εi,i0 ∈ K1 for all i . The terms in (16) become

f
π i

dae1

ae1
∧ · · · ∧

daen

aen

=
f
π i

(
dae1π−ε1,i0

ae1π−ε1,i0
+ ε1,i0

dπ
π

)
∧ · · · ∧

(
daenπ−εn,i0

aenπ−εn,i0
+ εn,i0

dπ
π

)
=
ωi

π i
+
νi

π i
∧

dπ
π
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with ωi ∈ Ω
n
K1

and νi ∈ Ω
n−1
K1

. gK̂ is once again in a form in which we can apply
Proposition 4.7; gK̂ = g0. Because the residue degree f (v/v`,n) is prime to p, K1

is a prime to p extension of k`,n(z1, . . . , zr ) ∼= k`−1,n(x`, y`,1, . . . , y`,n−1, z1, . . . ,

zr ), a purely transcendental extension of k`−1,n . Letw be an extension of the y`−1,n-
adic valuation on k`−1,n(x`, y`,1, . . . , y`,n−1, z1, . . . , zr ) to K1 with prime to p
residue degree and ramification index and having completion K̂1 and residue field
K 1. By Lemma 4.8(2b) there exists a differential basis B ′ = {a′1, . . . , a′`(n+1)+r−1}

for K1/k coming from K 1 such that K p
1 (a1, . . . , a`+n−3) = K p

1 (a
′

1, . . . , a′`+n−3)

and ∂1(g0) descends to K p
1 (a

′

1, . . . , a′`+n−3). Since ∂1(g0) = resK1(genk(n + 1,
` − 1, p)) and K1/k`−1,n is a prime to p extension of a purely transcendental
extension of k`−1,n , this contradicts our induction hypothesis.

COROLLARY 5.7. edk(genk(n + 1, `, p); p) > `+ n − 1.

Proof. Let K/k`,n be a prime to p extension and k ⊂ E ⊂ K be a subfield with
tr. degk(E) = ` + n − 2. Assume resK (genk(n + 1, `, p)) descends to E . Fix
an extension v of the valuation v`,n to K with residue degree and ramification
index prime to p. By Example 3.1 and Proposition 3.2 there exists a differential
basis {a1, . . . , a`(n+1)} of K/k coming from K such that E ⊂ K p(a1, . . . , at) with
t 6 ` + n − 2. Since resK (genk(n + 1, `, p)) descends to E it also descends to
K p(a1, . . . , at) ⊆ K p(a1, . . . , a`+n−2). This contradicts Theorem 5.6.

The next theorem improves the lower bound for the essential dimension of
genk(n + 1, `, p) given in Corollary 5.7 by one.

THEOREM 5.8. For `, n > 1,

edk(genk(n + 1, `, p)) > edk(genk(n + 1, `, p); p) > `+ n.

Proof. The proof is by induction on the symbol length ` and follows the outline
of the proof of [2, 10.2]. For ` = 1 we are done by Lemma 5.4. Fix ` > 1 and
assume the theorem holds for all genk(n + 1, `0, p) for all algebraically closed
fields k of characteristic p, all n > 1 and all `0 < `. Let K/k`,n be a finite prime
to p extension. Assume there exists a field k ⊂ E ⊂ K with tr. degk(E)= `+n−1
and g ∈ Hn+1

p (E) such that resK (g) = resK (genk(n + 1, `, p)). As usual fix v`,n
to be the y`,n-adic valuation on k`,n and fix v, an extension of v`,n to K with both
e(v/v`,n) and f (v/v`,n) prime to p. Write K̂ and K for the completion and residue
field of K . All first and second residues considered below will be with respect to
the valuation v on K̂ .
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Case 1. w = v|E is the trivial valuation. Let g ∈ Hn+1
p (E) be the class of the

n-form ∑
bi

dci,1

ci,1
∧ · · · ∧

dci,n

ci,n
∈ Ωn

E .

Since w(bi) = w(ci, j) = 0 for all i, j , ∂2(genk(n+ 1, `, p)K̂ ) = ∂2(gK̂ ) = 0. This
contradicts Corollary 5.3.

Case 2. w = v|E is nontrivial and p|e(v/w), the ramification index of v
over w. Since K/k`,n is a finite extension, tr. degk(K ) = tr. degk(k`,n) and
tr. degk(K ) = tr. degk(k`,n). Hence v is a geometric valuation on K of rank 1.
We can therefore apply Proposition 3.2 which says there exists a differential
basis {a1, . . . , a`(n+1)} for K/k coming from K so that E ⊂ K p(a1, . . . , at) with
t 6 `+n−1 = tr. degk(E). Moreover, since p|e(v/w), v(ai) = 0 for all 1 6 i 6 t
(see Remark 3.3). Set L = K p(a1, . . . , at) and from this point forward we denote
g = resL/E(g) ∈ Hn+1

p (L). By [10, 7.8] [2, 9.2] the differential basis {ai} for
K/k corresponds to a coefficient field K1 ⊂ K̂ containing {ai | v(ai) = 0}. In
particular, there is an isomorphism K̂ ∼= K1((π)) with π = ai0 , i0 > t and ai ∈ K1

for 1 6 i 6 t . By Lemma 4.8, gK̂ =
∑

gi with each gi a sum of elements of the
form f/π i (dae1/ae1)∧ · · · ∧ (daen/aen ) with f ∈ K1 and ei ∈ Λt . Since aei ∈ K1

for all ei ∈ Λt , f (dae1/ae1) ∧ · · · ∧ (daen/aen ) ∈ Ωn
K1

and therefore gK̂ =
∑

gi

satisfies the hypothesis of Proposition 4.7. Since gK̂ ∈ U0(K̂ ), we can conclude
gK̂ = g0. Lemma 4.8(1) shows ∂2(g0) = 0. This contradicts Corollary 5.3.

Case 3. w = v|E is nontrivial and p - e(v/w). Set e = e(v/w), let π be a
uniformizer for (K , v) and τ = uπ e be a uniformizer for (E, w) and B′ = {a1,

. . . , a`+n−2, τ } a differential basis for E/k coming from E , the residue field of E
with respect to w. We want to show the subset {a1, . . . , a`+n−2} of B′ extends to a
differential basis for K/k. To do this we first prove that the set

{ae
| e ∈ Λ`+n−2} ⊂ K (17)

is linearly independent over K p. Recall in the proof of Theorem 3.2 we took
a minimal generating set of these elements over K p to build a full differential
basis of K . In general the set in (17) will not be linearly independent over K p,
but it is in our case because we have assumed something special on E , that is,
resK (genk(n + 1, `, p)) descends to E and we can harness the power of Theorem
5.6.

Assume, after renumbering if necessary, there exists t < ` + n − 2 such
that a1, . . . , at are a minimal system of generators of K p(a1, . . . , a`+n−2) over
K p, i.e., K p(a1, . . . , a`+n−2, τ ) = K p(a1, . . . , at , τ ). Arguing as in the proof of
Proposition 3.2, there exists a differential basis for K/k, {a′1, . . . , a′`(n+1)−1, τ },
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such that K p(a1, . . . , at , τ ) = K p(a′1, . . . , a′t , τ ). Since t + 1 6 ` + n − 2 and
resK (genk(n + 1, `, p)) descends to E , the inclusion

E ⊂ K p(a1, . . . , at , τ ) = K p(a′1, . . . , a′t , τ ) ⊂ K p(a′1, . . . , a′`(n+1)−1, τ ) = K

contradicts Theorem 5.6. Thus the set in (17) is linearly independent over K p

and we may choose a`+n−1, . . . , a`(n+1)−1 ∈ R× such that B = {a1, . . . , a`(n+1)−1,

π} is a p-basis for K/k and hence a differential basis for K/k coming from
K . We have lined up our two completions Ê ⊂ K̂ to admit compatible coefficient
fields. That is, we can choose coefficient fields E1 and K1 of Ê and K̂ respectively
so that

Ê ∼= E1((τ )) ⊂ K̂ ∼= K1((π))

and E1 ⊂ K1. Since these coefficient fields correspond to the units in the
differential bases B′ and B respectively, we have {a1, . . . , a`+n−2} is a differential
basis for E1/k and {a1, . . . , a`(n+1)−1} is a differential basis for K1/k. Note in
particular that the transcendence degree of E1 over k is `+ n− 2, the order of the
differential basis [10, 16.14].

We now show g ∈ Hn+1
p,ur (Ê) = U0(Ê). Let m be the smallest integer such that

g ∈ Um(Ê). Assume m > 0 and consider the map

Um/Um−1(Ê)→ Uem/Uem−1(K̂ ) (18)

from Lemma 4.3. If p - m, then p - em and by Lemma 4.3(1) the differential form
side of the commutative diagram is multiplication by ū−m (recall τ = uπ e with
v(u) = 0) composed with extension of scalars. In particular, (18) is an injection if
and only if Ωn

E1
→ Ωn

K1
is an injection. By Lemma 4.5, the set inclusion {a1, . . . ,

a`+n−2} ⊆ {a1, . . . , a`(n+1)−1} of p-bases for E1 and K1 shows that Ωn
E1
→ Ωn

K1

is an injection. Since gK̂ ∈ U0(K̂ ) ⊂ Uem−1(K̂ ), this is a contradiction to the
minimality of m.

Assume m > 0 and p|m. Let ρ−1
m (gÊ) = (ωn +Ω

n
E1,d=0, ωn−1 +Ω

n−1
E1,d=0) with

ωi ∈ Ω
i
E1

. Since gK̂ ∈ U0(K̂ ) ⊂ Uem−1(K̂ ) Lemma 4.3(2) gives

(0, 0) = ψm
(
ωn +Ω

n
E1,d=0, ωn−1 +Ω

n−1
E1,d=0

)
(19)

=

(
ū−mωn + ωn−1 ∧

dū
ū
+Ωn

K1,d=0, eū−mωn−1 +Ω
n−1
K1,d=0

)
.

Since eū−m
∈ K p

1 − {0}, (19) shows d(ωn−1) = 0 in Ωn
K1

. Therefore, by Lemma
4.5, d(ωn−1) = 0 in Ωn

E1
and also d(ωn−1 ∧ dū/ū) = 0, i.e.,

u−mωn + ωn−1 ∧
dū
ū
+Ωn

K1,d=0 = u−mωn +Ω
n
K1,d=0.
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In particular, ωn + Ω
n
E1,d=0 ∈ ker(Ωn

E1
/Ωn

E1,d=0 → Ωn
K1
/Ωn

K1,d=0) which is 0 by
Lemma 4.5. Therefore, ωn ∈ Ω

n
E1,d=0. We have shown that gÊ ∈ ker(ρ−1

m ) = 0,
i.e., gÊ ∈ Um−1(Ê), contradicting the minimality of m. Therefore, g ∈ U0(Ê)
and we can use Lemma 4.3(3); set ρ−1

0 (gÊ) = (ωn, ωn−1) where ωi is a i-form
representing a class in Hi+1

p .

Hn+1
p,ur(K̂ )

ρ−1
0 // Hn+1

p (K1)⊕ Hn
p(K1) (ωn + ωn−1 ∧

dū
ū , eωn−1)

Hn+1
p,ur(Ê)

res

OO

ρ−1
0 // Hn+1

p (E1)⊕ Hn
p(E1)

ψ0

OO

(ωn, ωn−1)
_
ψ0

OO
(20)

Let genk(n + 1, `, p)K̂ denote the extension of scalars from k`,n to K̂ and set
y`,n = u ′π e′ with u ′ a unit in K and e′ = e(v/v`,n), an integer prime to p. By
Lemma 4.3(3) the map ρ−1

0 = (∂1, ∂2) applied to genk(n + 1, `, p)K̂ is:

∂1(genk(n + 1, `, p)K̂ ) = genk(n + 1, `− 1, p)K1

+ x`
dy`,1
y`,1
∧ · · · ∧

dy`,n−1

y`,n−1
∧

du ′

u ′

∂2(genk(n + 1, `, p)K̂ ) = e′ x`
dy`,1
y`,1
∧ · · · ∧

dy`,n−1

y`,n−1
.

Combining this with (20) we have two equalities in Hn+1
p (K1) and Hn

p(K1)

respectively:

genk(n + 1, `− 1, p)K1 + x`
dy`,1
y`,1
∧ · · · ∧

dy`,n−1

y`,n−1
∧

du ′

u ′
= ωn + ωn−1 ∧

dū
ū

e′ x`
dy`,1
y`,1
∧ · · · ∧

dy`,n−1

y`,n−1
= eωn−1. (21)

If ωn−1 ∧ (dū/ū) and x` (dy`,1/y`,1)∧ · · · ∧ (dy`,n−1/y`,n−1)∧ (du ′/u ′) were 0,
then genk(n + 1, ` − 1, p)K1 would descend to E1, a field with transcendence
degree n + ` − 2 = n + (` − 1) − 1 over k [6, VI.10.3, Corollary 4] and
we would proceed by analysing and manipulating the extensions E1 and K1 to
contradict the induction hypothesis. But these are not necessarily zero, so to get
our contradiction we need to split them.

Let k ′ be an algebraic closure of k(x`, y`,1, . . . , y`,n−1) and set

k ′`−1,n = k ′(xi , yi, j)16i6`−1, 16 j6n,

so that genk′(n + 1, ` − 1, p) ∈ Hn+1
p (k ′`−1,n). We derive a contradiction to the

induction hypothesis on this length ` − 1 generic p-symbol. Let K ′1 be the
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composite of K1 and k ′`−1,n (both fields are contained in an algebraic closure of
k ′`,n) and note that K ′1/k ′`−1,n is of degree prime to p. Set E ′1 to be the composite
of E1 and k ′ over k (each of these fields are contained in K ′1).

K ′1
GGGGGG

E ′1

yyyyyy
k ′`−1,n K1

k ′

DDDDDD
k`,n

FFFFF
E1

AAAAAA

k

{{{{{{

HHHHHHH

(22)

We now extend scalars: Hn+1
p (K1)→ Hn+1

p (K ′1). First note that genk(n+ 1, `− 1,
p)k′`−1,n

= genk′(n + 1, ` − 1, p). Also note that since the y`,i are pth powers in
k ′,

resk′`−1,n

(
x`

dy`,1
y`,1
∧ · · · ∧

dy`,n−1

y`,n−1

)
= 0.

In particular, resk′`−1,n/E1(eωn−1) = 0 and since p - e, resK ′1(ωn−1) = 0. Therefore,
extending scalars all the way up to Hn+1

p (K ′1), the two equations in (21) collapse
to

resK ′1/k′`−1,n
(genk′(n + 1, `− 1, p)) = resK ′1/E ′1(resE ′1/E1(ωn)).

Since K ′1/k ′`−1,n is a prime to p extension and the field E ′1 satisfies tr. degk′(E
′

1) 6
tr. degk(E1) = n + (`− 1)− 1, this contradicts the induction hypothesis.

Let n = 1, then gen(2, `, p) =
∑

i=1,` xi (dyi/yi) ∈ H2
p(K`,1) is the class of

the generic length ` p-symbol division algebra D` =
⊗`

i=1[xi , yi) in pBr(k(x1,

y1, . . . , x`, y`)). Combining Theorem 5.8 with [3, 3.2], we get the p-essential
dimension of D` as a p-torsion Brauer class:

COROLLARY 5.9. edk(D`; p) = edk(D`) = `+ 1.

Fix an algebraically closed field k of characteristic p. Recall Algp`,pr : Fields/k
→ sets is the functor taking a field extension K/k to the set of isomorphism
classes of central simple algebras over K of degree p` and exponent dividing
pr . As mentioned in the introduction there is a natural bijection between H1(K ,
GLp`/µpr ) and Algp`,pr (K ) (see [5, Example 1.1]). In particular, edk(Algp`,pr ) =

edk(GLp`/µpr ) and edk(Algp`,pr ; p) = edk(GLp`/µpr ; p).

COROLLARY 5.10. edk(GLp`/µp; p) = edk(Algp`,p; p) > `+ 1.
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Proof. By Corollary 5.9 D` is an algebra defined over an extension of k with
degree p`, exponent p and essential dimension `+ 1 as a p-torsion Brauer class.
The p-essential dimension of D` as an element of Algp`,p(K ) is at least `+1.
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