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Abstract

A series of novel wideband filtering power dividers (WFPDs) with wide stopband rejection
performances is proposed in this paper. The proposed WFPD structure consists of a paral-
lel-coupled line, two transmission line (TL) sections, four loading terminations, and an isola-
tion resistor. The coupled line is applied at the input port to provide wideband impedance
transformation, while different types of loading terminations and TL sections are adopted
to realize various out-of-band rejection performances. To verify the proposed concepts,
three WFPDs operating at 3.0 GHz are designed and fabricated with 3 dB bandwidth of
79.7, 79.0, and 74.4%. In WFPD1, the measured out-of-band rejection of better than
13.4 dB extends to 2.57f0. Moreover, the measured out-of-band rejection of better than
17 dB extends to 2.47f0 (4.75f0) in WFPD2 (WFPD3), respectively. Good agreements between
the simulated and measured results validate the presented ideas.

Introduction

In modern microwave system, power dividers (PDs) [1] are widely applied in power amplifiers,
antenna arrays, mixers, and phase shifters. Bandpass filters are also essential devices in radio
frequency and microwave front ends. Conventionally, the PDs and bandpass filters are usually
cascaded to provide signals splitting and filtering performances simultaneously. However, the
cascades of PDs and bandpass filters will lead to relative high insertion losses and bulky circuit
sizes. To overcome such shortcomings, filtering PDs have been investigated in [2–19] which
can achieve signals splitting and filtering performances simultaneously in only one device.

In addition, wide upper stopband frequency range with deep rejection level is greatly
demanded to suppress the out-of-band interferences, i.e. background noises and intermodula-
tion signals from non-linear components, which commonly exist in modern communication
system. Recently, some narrowband PDs with high passband selectivities and good
out-of-band rejection performances are proposed in [2–9]. In [2], a low-pass filter is inserted
into the PD to realize harmonic suppression. Stub resonators introduced in [3–5] and com-
posite right-/left-handed transmission line (TL) structures employed in [6] could generate
transmission zeros (TZs), resulting in filtering responses and wide upper stopband ranges
with high attenuations. In [7–9], filtering PDs with good out-of-band rejection performances
have been designed based on coupling structures. Unfortunately, the 3 dB fractional band-
widths (BWs) of the PDs mentioned in [2–9] are all <12%, which makes them not suitable
for wideband communication systems.

With the development of wideband communication systems, it is essential to enhance the
BW of filtering PDs. Some wideband filtering PDs (WFPDs) have been presented in [10–19].
Coupling topology between a quarter-wavelength short-ended microstrip TL and two multi-
mode resonators is introduced in [10] to design WFPD with the 3 dB fractional BW of
32.1%. In [11], a WFPD with 3 dB fractional BW of 109.5% is achieved by adopting parallel-
coupled lines and a pair of quarter-wavelength short-circuited stubs. Periodic butterfly radial
slots are etched on top layer of substrate-integrated waveguide in [12] to realize a WFPD with
3 dB fractional BW of 44.4%. In [12], the upper stopband extends to 1.78f0 with the attenu-
ation of 26 dB, which is the best out-of-band rejection performance among the WFPDs pre-
sented in [10–12]. However, the poor out-of-band rejection performance will limit the
application of such devices in multi-standard wireless communication systems. Some efforts
[13–19] have also been made to design wideband PDs (WPDs) with filtering responses,
wide upper-stopband range as well as deep rejection levels. In [13], by replacing quarter-
wavelength TLs in conventional Wilkinson PD with filters, a WPD with passband selectivity
and harmonic suppression performances is realized. Coupled lines and loading terminations
are adopted in [14–19] to design WPDs with filtering responses and good out-of-band rejec-
tion performances. The WPD proposed in [19] achieves the best out-of-band rejection per-
formance among the structures presented in [10–19], where the upper stopband extends to
5.0f0 with a rejection level of 17.2 dB. However, the passband selectivity of WPD proposed
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in [19] needs to be further enhanced. The WPDs in [13–18] have
high passband selectivity performances, but the harmonic sup-
pression performances should be further improved.

In this paper, a series of novel wideband PDs with various TL
sections and loading terminations is proposed to realize high
passband selectivities and good out-of-band rejection perfor-
mances. The operating mechanisms of the basic WFPD circuit
are explained in detail based on the even-odd mode method.
Three WFPDs are designed, fabricated, and measured to verify
the proposed ideas.

Analysis of basic WFPD circuit

Figure 1(a) depicts the schematic representation of the basic
WFPD circuit, which consists of a parallel-coupled line, two
aligned TL sections, four loading terminations (ZT1, ZT1, ZT2,
ZT2), and an isolation resister (R). The even-mode equivalent cir-
cuit and the odd-mode equivalent circuit of the proposed basic
WFPD circuit are shown in Figs 1(b) and 1(c), respectively.
Define the source (load) impedance as ZS(ZL) and ZT1 = jXT1,
ZT2 = jXT2. As observed in the even-mode equivalent circuit, the
ABCD matrix of section Ae can be deduced as equation (1),
and the expression of Zeq,in could be derived as equation (2).
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Zeq,in = XT1(XT2F − jBTLZS)
2(XT1XT2E − jXT2F − ( jXT1DTL + BTL)ZS) , (2)

where E = CTLZL +DTL,

F = ATLZL + BTL.

As observed from Fig. 1(b), the terminal conditions of the
four-port coupled lines can be expressed as equation (3).
According to equation (3) and four-port impedance matrix of
the coupled line shown in paper [20], the input impedance in
port 1 (ZINE) can be calculated as equation (4). Thus, the reflec-
tion coefficient (S11) and the transmission coefficient (S21) can
be extracted as equation (5).
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V4 = −Zeq,in · I4, (3b)

ZINE = (Ze − Zo)2csc2u
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According to the odd-mode equivalent circuit shown in Fig. 1
(c), the ABCD matrix of section Ao could be expressed as equa-
tion (6), and input impedance in port 2 (ZINO) can be expressed
as equation (7). Thus, the return loss in port 2 (S22) could be
deduced as equation (8).
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S22 = ZINO − ZL
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Two kinds of TL sections, i.e. (1) quarter-wavelength TL and
(2) dual TLs (DTLs) are demonstrated in Fig. 2, which could be
adopted to replace the TL section in the basic WFPD circuit.

Fig. 1. Proposed WFPD circuit. (a) The schematic representation. (b) Even-mode
equivalent circuit. (c) Odd-mode equivalent circuit.
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Three types of loading terminations, i.e. (3) short-circuited stub,
(4) cascade open-circuited stub, and (5) short-circuited DTLs
stub shown in Fig. 3 could be employed as the practical realization
of ZT1 and ZT2. Various types of WFPDs can be designed with dif-
ferent TL sections and loading terminations.

Analysis of specific WFPDs

In this section, the signals splitting and signals filtering perfor-
mances of three different WFPDs are analyzed under even-mode
excitation. Then, isolation performances are explained under odd-
mode excitation.

Analysis of WFPD1 under even-mode excitation

For WFPD1, the loading termination ZT1 is selected as (3) short-
circuited stub and the loading termination ZT2 is implemented as (4)
cascade open-circuited stub, while TL section is chosen as (1) quarter-
wavelength TL. Based on the schematic representation of WFPD1
shown in Table 1, ABCD parameters of the (1) quarter-wavelength
transmission, XT1 and XT2 could be expressed as equation (9).

ATL BTL

CTL DTL

( )
= cos u jZ1

jY1 cos u

( )
, (9a)

XT1 = Z2 tan u, (9b)

XT2 = Z4 cot u(tan2u− Z3/Z4)
1+ Z3/Z4

, (9c)

ZINE = (Ze − Zo)2ZL

2Z2
1

, (10)

fTZ0 = 0, (11a)

fTZ1 = 2f0
p

arctan
							
Z3/Z4

√
, (11b)

fTZ2 = 2f0 − 2f0
p

arctan
							
Z3/Z4

√
, (11c)

fTZ3 = 2f0. (11d)
At f0, ATL =DTL = 1/XT1 = 1/XT2 = 0. Combining equations (4)

and (9), the input impedance in port 1 (ZINE) could be calculated
as equation (10) when WFPD1 is under even-mode excitation.

According to equations (1–5) and (9), the expressions of TZs
could be derived as equation (11), which agrees well with the nor-
malized frequency response of WFPD1 demonstrated in Table 1. In
the special case of ZS = ZL = 50 Ω, the initial values of Ze, Zo, and Z1
can be calculated as 158, 60, and 69 Ω based on equation (10). The
values of Ze, Zo, and Z1are adjusted as 158, 60, and 63 Ω to obtain
wider passband BW and equal ripple return loss response.

Analysis of WFPD2 under even-mode excitation

For WFPD2, the loading terminations ZT1and ZT2 are all imple-
mented as (4) open-circuited stub, while the TL section is selected
as (1) quarter-wavelength TL. The expressions of XT1 and XT2 can
be deduced as equation (12) based on the schematic representa-
tion of WFPD2 demonstrated in Table 1.

XT1 = Z4 cot u(tan2u− Z3/Z4)
1+ Z3/Z4

, (12a)

XT2 = Z6 cot u(tan2u− Z5/Z6)
1+ Z5/Z6

, (12b)

ZINE = (Ze − Zo)2ZL

2Z2
1

. (13)

At center frequency f0, ATL =DTL = 1/XT1 = 1/XT2 = 0. After
substituting equations (9a) and (12) into (4), the input impedance
in port 1 (ZINE) can be simplified as equation (13) when the
WFPD2 is under even-mode excitation. In the special case of
ZS = ZL = 50 Ω, the initial values of Ze, Zo, and Z1 can be calcu-
lated as 158, 60, and 69 Ω based on equation (13). To realize
wider passband BW and equal ripple return loss response, the
values ofZe, Zo, Z1 are tuned as 158, 60, and 63 Ω, respectively.

Combining equations (1–5), (9a), and (12), the frequencies of the
TZs below 2f0 can be deduced as equation (14). It can be observed
from the normalized frequency response that six TZs are introduced
below 2f0 in WFPD2, which agrees well with equation (14).
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p

arctan
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√
, (14b)
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p

arctan
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√
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Fig. 2. Two kinds of transmission line sections.

Fig. 3. Three kinds of loading terminations.
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Z5/Z6

√
, (14d)

fTZ4 = 2f0 − 2f0
p

arctan
							
Z3/Z4

√
, (14e)

fTZ5 = 2f0. (14f )

Figure 4 shows the normalized frequency responses of WFPD2
with various values of Z3, Z4, Z1, Ze, and Zo. As shown in Fig. 4
(a), passband selectivity and passband BW are mainly influenced
by the frequencies of fTZ1 and fTZ2, which can be adjusted by tuning
the impedances of cascade open-circuited stubs (Z3 and Z4). The fre-
quency of fTZ1 will shift to higher frequency and the frequency of

fTZ2 will shift to lower frequency when the value of Z3/Z4increases,
meanwhile the BW will become narrow when the value of Z3/Z4
increases. The conclusions came from Fig. 4(a) are in good agree-
ment with equation (14). Apply the same principle to WFPD1,
the required passband selectivity and BW could be realized by
adjusting the value of Z3/Z4, which accords with equation (11).

According to equations (10) and (13), the input impedance of
port 1 (ZINE) in WFPD1 and WFPD2 is mainly affected by the
values of Z1, Ze, and Zo. Normalized frequency responses of
WFPD2 with various values of Z1, Ze, and Zo are shown in Figs
4(b) and 4(c), respectively. Figure 4(b) demonstrates that in-band
return loss with constant BW can be optimized by selecting a
proper value of Z1. As observed in Fig. 4(c), the return loss in
the passband frequency range is influenced by values of Ze and
Zo. Thus, excellent in-band return loss in WFPD1 and WFPD2
could be realized by adjusting the values of Z1, Ze, and Zo.

Table 1. Summary of three WFPDs with different kinds of TL sections and loading terminations

WFPD types WFPD 1 WFPD 2 WFPD 3

Types of TL section and
loading terminations

TL section ZT1 ZT2 TL section ZT1 ZT2 TL section ZT1 ZT2

(1) (3) (4) (1) (4) (4) (2) (5) (4)

Schematic

Layout

Photograph

Normalized frequency
response S11 S21

Frequencies of TZs 0, 0.5f0, 1.5f0, 2f0 0, 0.38f0, 0.5f0, 1.5f0, 1.62f0, 2f0 0, 0.5f0, 1.5f0, 2.0f0, 2.5f0, 3.0f0,
3.5f0, 4.5f0

Out-of-band rejection performance >18 dB (2.4f0) >22 dB (2.5f0) >20 dB (4.7f0)

FBW 79.7% 79.0% 74.4%

Size 0.48λg×0.65λg 0.48λg×0.68λg 0.7λg×0.7λg
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Analysis of WFPD3 under even-mode excitation

As for WFPD3, the loading termination ZT1 is implemented as
(5) short-circuited DTLs and the loading termination ZT2 is
chosen as (4) cascade open-circuited stub, while the TL section
is selected as (2) DTLs. The ABCD matrix of the DTLs is
demonstrated in equation (15a) which has been presented in
paper [21]. XT1 and XT2 can be expressed as equations (15b)
and (15c).

cosasinb+ cosbsina
sina+ sinb

jZS sinasinb
sina+ sinb

jYS
(cosa− cosb)2+(sina+ sinb)2

sina+ sinb
cosasinb+ cosbsina

sina+ sinb

⎛
⎜⎜⎝

⎞
⎟⎟⎠,

(15a)

XT1 = tana+ tanb
Z5 tana · tanb , (15b)

XT2 =Z4 cotu(tan2u−Z3/Z4)
1+Z3/Z4

. (15c)

As shown in Fig. 2, the lengths of DTLs are defined as α, β, and α
+ β = 180°at f0. Thus, ATL =DTL = 1/XT1 = 1/XT2 = 0 at f0. According
to equations (4) and (15), input impedance in port 1 (ZINE) could be
calculated as equation (16) when WFPD3 is under even-mode exci-
tation. In a special case of ZS = ZL = 50 Ω, the initial values of Ze, Zo,
and Z1 can be calculated as 150, 60, and 147 Ω based on equation
(16). Moreover, the values of Ze, Zo, and Z1 are adjusted as 150,
60, and 136 Ω to obtain wider BW and equal ripple return loss
response. In WFPD3, the TZs below 2f0 are expressed as equation
(17) based on equations (1–5) and (15). The frequencies of TZs in
series and parallel DTLs are shown in equation (18), which has
been analyzed in our previous work [22]. The normalized frequency
response of WFPD3 is depicted in Table 1, which has a good agree-
ment with equations (17 and 18).

ZINE = (Ze − Zo)2((cosa− cosb)2 + (sina+ sinb)2)ZL

2Z2
1 sina sinb

, (16)

fTZ0 = 0, (17a)

fTZ1 = 2f0
p

arctan
							
Z3/Z4

√
, (17b)

fTZ2 = 2f0 − 2f0
p

arctan
							
Z3/Z4

√
, (17c)

fTZ3 = 2f0, (17d)

f STZn = (n+ 1)f0 n[ N+, f . 0 tan
fa
f0

( )
=− tan

f (p−a)
f0

( )∣∣∣∣
∣∣∣∣

}{
,

(18a)

Fig. 4. Normalized frequency responses of WFPD2 with various (a) Z3 and Z4, (b) Z1,
(c) Ze and Zo.

Fig. 5. Normalized frequency responses of WFPD3 with various electrical length (α).
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f PTZn =
npf0
a

,
npf0

(p−a) ,n[ N+

}{
. (18b)

According to equation (16), the return loss of WFPD3 is mainly
influenced by the values of Ze, Zo, and Z1. It could be seen from
equation (17) that the value of Z3/Z4 could be adjusted to obtain
required BW and passband selectivity. Figure 5 shows the normal-
ized frequency responses of WFPD3 with various electrical lengths
(α). It could be observed from Fig. 5 that TZ could be obtained at
3f0 when electrical length (α) is chosen as 60°, which accords to
equation (18). The best out-of-band rejection performance could
be obtained by defining the electrical length (α) as 60°.

Analysis of three WFPDs under odd-mode excitation

In WFPD1, WFPD2, and WPFD3, ATL =DTL = 1/XT1 = 1/XT2 = 0
at f0. Under odd-mode excitation, the input impedance in port 2
(ZINO) could be simplified as R/2 based on equation (7).

Simulated and measured results

Discussion about S parameters

To verify the analysis above, the proposed three WFPDs have
been constructed on the substrate with a relative dielectric con-
stant of 3.5 and a thickness of 31 mil. The photographs and
dimensions (unit: mm) of proposed WFPDs are shown in Table 1.

The EM-simulated and measured results of proposed WFPDs
are shown in Figs 6–8. For WFPD1, the measured S11 is >20 dB
and the minimum insertion loss is 3.4 dB (including power div-
ision loss) in the passband, while the 3 dB fractional BW
(FBW) is 79.7% from 1.81 to 4.21 GHz. As shown in Fig. 6(a),
the measured harmonic suppression is >13.4 dB from 4.5 to
7.7 GHz. It is seen from Fig. 6(b) that measured S22 is better
than 11.6 dB during the operating band and the measured isola-
tion (S23) is higher than 13 dB from DC to 8 GHz.

For WFPD2, the measured S11 is >15 dB and the minimum
insertion loss is 3.3 dB (including power division loss) in the pass-
band, while the 3 dB FBW is 79.0% from 1.80 to 4.15 GHz. As
shown in Fig. 7(a), the measured harmonic suppression is
>17.6 dB from 4.5 to 7.4 GHz. It is observed from Fig. 7(b) that mea-
sured S22is better than 13 dB during the operating band and the
measured isolation (S23) is higher than 12 dB from DC to 8 GHz.

For WFPD3, the measured S11 is >15 dB and the minimum inser-
tion loss is 3.5 dB (including power division loss) in the passband,
while the 3 dB FBW is 74.4% from 1.90 to 4.15 GHz. As shown in
Fig. 8(a), the measured harmonic suppression is >17.0 dB from 4.5
to 14.25 GHz. It is observed from Fig. 8(b) that measured S22 is better
than 15.5 dB during the operating band and the measured isolation
(S23) is higher than 11.5 dB from DC to 15 GHz.

The comparisons between the proposed WFPDs and other
published work are summaried in Table 2. Excellent performance
including wide FBW, low insertion loss, wide upper stopband
range with high attenuation and multiple TZs could be obtained
in the proposed WFPDs.

Discussion about power capacity

Coaxial lines and waveguides are usually employed to design micro-
wave components with high power capacity, like high-power PDs
[23–25]. Unlike the conventional Wilkinson PD with high power
capacity, the proposed WFPD structures are mainly constructed
by resonator-based impedance transforming networks which
make their power capacity more similar to the resonator-based
microstrip filters [26] as well as microstrip antennas [27] with
power capacity of several watts. However, the WFPDs in this
paper are very attractive to design filtering microstrip antenna arrays
or other microstrip transceiver circuits with low-power signals.

Conclusions

A series of WFPDs is proposed in this paper. Various kinds TL
sections and loaded stubs are adopted to design different types
of WFPDs. The proposed ideas are validated by the good agree-
ment between simulated results and measured results of proposed
WFPDs. The proposed three WFPDs have good filtering response
and out-of-band rejection performances, which can fulfil the
broadband communication requirements. Specifically, in this
paper, WFPD1 is introduced with simple design process and
compact circuit size to verify the proposed filtering PD structures
and analysis. However, WFPD1 suffers from poor out-of-band
rejection performance. By replacing short-circuited stubs in
WFPD1 with cascade open-circuited stubs, WFPD2 is con-
structed with improved out-of-band rejection, but WFPD2 has
the disadvantage of relative complicated design procedures and
larger circuit size. Employing DTLs in WFPD3, the upper stop-
band frequency range is greatly extended. However, WFPD3 has

Fig. 6. Simulated and measured results of WFPD1. (a) S11 and S21, (b) S22 and S23.
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the largest circuit size and most complicated design procedures. In
the practical application, according to the requirements of circuit
size, harmonic suppression performance as well as upper stop-
band BW, the sufficient WFPD type can be selected.
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Table 2. Comparisons between the proposed WFPDs and other published filtering PDs.

Ref. f0 (GHz) FBW (%) Insertion loss (dB) Stopband rejection (dB) Number of TZs

[4] 0.92 6.5 3.96 2.6f0$≥25 4

[5] 2.41 7.1 4.2 2.9f0$≥20 3

[7] 3.75 4 3.75 2.9f0$≥12 4

[8] 2.45 7.1 4.3 2.0f0$≥21 3

[9] 2.4 8.3 3.9 2.7f0$≥23 5

[13] 2.0 75.2 3.5 2.65f0$≥16 4

[17] 3.0 70 3.3 2.6f0$≥13 4

[19] 3.0 104.5 3.66 5.0f0$≥15 3

WFPD1 3.0 79.7 3.4 2.6f0$≥13.4 4

WFPD2 3.0 79.0 3.3 2.5f0$≥17.6 6

WFPD3 3.0 74.4 3.5 4.75f0$≥17 8

Fig. 8. Simulated and measured results of WFPD3. (a) S11 and S21, (b) S22 and S23.

Fig. 7. Simulated and measured results of WFPD2. (a) S11 and S21, (b) S22 and S23.
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