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An algebraic characterization of
finite symmetric tournaments

J.L. Berggren

A tournament T is called symmetric if its automorphism group

is transitive on the points and arcs of 1 . The main result of

this paper is that if T is a finite symmetric tournament then

T is isomorphic to one of the quadratic residue tournaments

formed on the points of a finite field GF (pn) , pn = 3 (h) , by

the following rule: If a, b £ GF(p ) then there is an arc

directed from a to b exactly when b - a is a non-zero

quadratic residue in GF(p ) .

Throughout this paper T will denote a finite tournament, A(T) its

automorphism group, and the number of points in T will be written as

\T\ . We call T a symmetric tournament if A(T) is transitive on the

points and arcs of T . If a and b are points of T and if an arc of

T is directed from a to b we write a > b .

The purpose of this paper is to prove the following theorem.

THEOREM A. Let T be a symmetric tournament. Then there is a

finite field GF(pn) , where pn = 3 I1*) , such that T is isomorphic to

the tournament formed on the points of GF(pn) by the following rule: If

a, b i GF(p ) then a > b if b - a = x , for some non-zero

x i GF(p } . Moreover, identifying T with this tournament, A(r) is the

group of all permutations of T of the form a -*• x a (a) + c , where c
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ranges over all elements of GF(pn} , x over all non-zero elements of

GF(p") 3 and o over all field automorphisms of GF (pn) .

REMARK. Assuming that T is a tournament formed from GF(p") in the

manner described above, Goldberg [2] proved that the automorphism group of

T is as described in the last sentence of Theorem A. However, this result

is an immediate corollary of our classification of symmetric tournaments,

so we also include it here.

We first state and prove a lemma. The various parts of this lemma are

well-known, but we include the statement and proof for completeness.

LEMMA 1. Let T be a symmetric tournament. The following

statements are true:

(i) A(T) has odd order and (so) is solvable;

(ii) A(T) is a primitive permutation group on the points of T ;

(Hi) there is a prime p = 3 C1*) and an odd integer n such that

\T\ = pn .

Proof. Since no element of A(T) can interchange two points of T ,

A(T) has odd order and is therefore solvable [J]. To prove (ii) suppose

B , ..., B is a system of imprimitivity for A(T) , so r > 2 and

\B \ > 2 . Let a, b € B and a € B . We may assume a > b . If

a > a then by arc transitivity there exists TT f A(T) such that

ir(a) = a and ir(i>) = o . Thus TT(B ) intersects both B and B

non-trivially, which is a contradiction of the definition of a system of

imprimitivity. The case c > a also yields a contradiction. Hence A(T)

acts primitively on T . Finally, we prove (iii). By (i) and (ii) we may

conclude from Satz 3.2(a) [3, Chapter II] that |T| = pK for some prime

p . For a t. T let 0(a) = {b € T \ a > b} . Since A(r) is transitive

on the points of T , \0{a)\ = \0(b)\ for all a, b € T . This implies

|0(a)| = (p"-l)/2 , so by arc-transitivity (p"-l)/2 divides the order of

A(T) , the stabilizer of a in A(T) . Hence (pM-l}/2 is odd and so

p = 3 CO and n is odd.
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Before proceeding we state some notation. For a prime p and integer

n > 0 let V = V(n, p) be an n-dlmensional vector space over the field

of order p and let V* = {a € V | a # 0} . If GL(n, p) = GL(y) is the

group of non-singular linear transformations of V onto V then for each

L i GL(n, p) and a £ 7 define a permutation [L, a] of 7 by the

following rule: [L, a](b) = L(b) + a , for all b d V . In particular, if

I denotes the identity of GL(n, p) then [J, a] is simply translation

by a . With this notation we now state and prove Theorem 1.

THEOREM 1. Let T be a symmetric tournament, \T\ = pn . Then we

may identify the points of T with those of V(n, p) so that

{[J, a] | a € V] 5 A(2") < {[L, a] \ I € GL(7), a i V] .

Further, identifying T with V in this manner and setting

0(0) = {a (. V \ 0 > a] and 1(0) = {a € V | a > 0} tften the o r i i t s on V*

of A(T)Q , t/ie stabilizer of 0 in A(lT) , are 0(0) and 1(0) .

Moreover 0(0) = -1(0) .

Proof. The first statement is an immediate consequence of our Lemma 1

and of Satz 3.5 [3, Chapter II]. The second statement is immediate, since

A(T) is transitive on the arcs of T . To prove the last statement

observe that |0(0)| = (pn-l)/2 , so |I(0)| = (pn-l}/2 . Suppose both a

and -a £ 0(0) . Since [J, -a] € A(T) we find -a > 0 and 0 > -a ,

a contradiction. Thus 0(0) = -1(0) .

REMARK. To fix notation let A(T) = G . Then the restrictions of G

to 0(0) or 1(0) yield representations T and !„ respectively of G

as a transitive permutation group.

LEMMA 2. The representations T and x are faithful

representations of G and are similar.

Proof. Since both 0(0) and 1(0) contain half the non-zero

elements of V , each contains a basis. Since G consists of linear

transformations of V it follows that T and x are faithful

representations of G . The last part of the lemma is proved by

considering the map from 0(0) onto 1(0) given by a •* -a , and the map

https://doi.org/10.1017/S0004972700044257 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700044257


56 J.L. Berggren

from T (G) to T (G) given by T.(g) •*• T-(g) . (Again one must recall

that the elements of G act linearly on V .)

We next show that G has a cyclic normal subgroup which acts

irreducibly on V . We first remark that any finite group A has a

maximal normal nilpotent subgroup, called its Fitting subgroup and written

Fit (A) .

LEMMA 3. If G = HT) then Fit(G) is cyclic and acts

semi-regutarly on V* .

Proof. As Fit(G) is nilpotent it is a direct product of its Sylow

subgroups, so it suffices to show that if Q is a Sylow subgroup of

Fit(G) then Q is cyclic and acts semiregularly on V* . Since Q is a

characteristic subgroup of Fit(G) and Fit(G) < G , we conclude Q < G .

By Lemma 2, G acts faithfully as a transitive group on 0(0) , so Q is

1/2-transitive on 0(0) [4, Proposition h.kl, that is, the orbits of Q

on 0(0) all have the same length. Ely the proof of Lemma 2, if U is an

orbit of Q on 0(0) then -U is an orbit of Q on 1(0) . Thus

viewing. Q as a permutation group on V* , Q is l/2-transitive on V* .

How |Q| is odd so, as Q is l/2-transitive on V* , it follows from [4,

Proposition 9-l6] that Q is cyclic and acts semiregularly on V* .

THEOREM 4. Let H = Fit(C) . Then H acts irreducibly on V .

Proof. We have just shown that H acts semiregularly on V* , that

is, the orbits of H on V* all have cardinality \H\ . In particular,

since this means \H\ (pn-l) , (\n\, p) = 1 . Now suppose H acts

reducibly on V . We may apply Maschke's Theorem (as (|#|, p) = 1 ) to

conclude V = U © W , where U and W are proper ^-invariant subspaces

of V . Let \ll\ = p and assume without loss of generality that

\l/\ S \w\ . Thus m 5 [n/2] , and since n is odd, this means

m £ (n-l)/2 . Since H acts semiregularly on V* and U contains an

orbit of H on V* , \H\ < \u\ = p™ . But H = Fit(G) , and since G is

solvable it follows from Satz U.2(b) [3, Chapter III] that H 2: CAH) ,

the centralizer in G of H . Thus G/H is isomorphic to a subgroup of

Aut(tf) , and, as H is cyclic of odd order, |Aut(ff)| < \H\ . Thus
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\G/B\ < \B\ . Hence |c| = \G/U\\B\ < pmpm < p""1 . But 0(0) is an

orbit of G and |0(O)| = (p"-l}/2 . Hence (pn-l)/2 < p*"1 . This

contradiction shows H acts irreducibly on V , for we may suppose

Pn>3.

Now observe that A(T) is represented as a primitive permutation

group on V with the following properties:

(1) N = {[I, a] | a € V] is an abelian minimal normal subgroup of

A(2") acting regularly on V ;

(2) A(T)0 has the abelian normal subgroup B = Fit(A(r)Q) which

acts irreducibly on V .

It is easy to show that, under these hypotheses, N is a minimal normal

subgroup of BN . The following theorem is an immediate consequence of

these remarks and Satz 3.12 [4, Chapter II].

THEOREM 5. Let T be a symmetric tournament of order pn and A(T)

the automorphism group of 1 . Then we may identify the points of T with

the points of the Galois field of order pn , GF(pn) , so that A(T) is a

subgroup of T (pn) , the group of permutations of GF(pn) of the form

a •*• xo(a) + a 3 where c runs over the elements of GF(p ) , x runs over

GF(pn) [the non-zero elements of GF(pn) ), and o runs over the field

automorphisms. Moreover, A(I') contains the subgroup consisting of all

translations of G?(p ) , permutations of the form a •* a + c ,

a € GF(pn) .

REMARK. The last sentence is easy to show once one observes that

A(7) contains an abelian minimal normal subgroup acting regularly on T .

The permutation of GF(p ) which maps an arbitrary a to xo{a) + c

we shall denote by [x, a, c] . Further, let S = {x2 | x € GF(p") } and

notice, since p" = 3 C O , S u (-5) = GF(pn}* while 5 n (-S) = (3 .

THEOREM 6. Either 0(0) = S or 0(0) = -5 .
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Proof. As 10(0) | = (p -l}/2 , if the theorem is false then there are

x, y $ GF(pn} such that 0 > x and 0 > -y2 . By arc transitivity

there is [w, a, 0] = ir € A(2I)Q such that TT(X2} = -y2 , that is,

to = -Lo^x" 1 ) ! . let u = W x " 1 ) • Since |A(T)Q| is odd,

2 ?
< TT> = < IT > . Let S be t h e orbi t of 1 under the ac t ion of < TTT > . Now

TT°(l) = 1 and TT2(l) = wa(u>) = - u 2 a ( - u 2 ) = (wa(u))2 . Suppose

= y2 . Then

= Lo(uO(tf))j

IT >Thus the orbit of 1 under the action of < IT > is a subset of 5 . Since

2
< TT > = < TT ) the same must be true of the orbit of 1 under < TT> . In

2 2 2

particular, ir(l) = -u (l) = -u is in 5 , so ir(l) = z . Hence

(-1) = (su'1)2 , so It | (p"-l) , a contradiction since (pn-l)/2 is odd.

REMARK. If, in T , 0(0) = -5 then we may define a new tournament

2" on the points of GF(pn) by the rule a > b in T' iff -a > -b in

T . Clearly T and T' are isomorphic tournaments so we may suppose

that, in 1 , 0(0) = {x \ x i GF(p ) } . We may now prove Theorem A.

Proof of Theorem A. ^y Theorem 5 we may identify the points of T

with those of GF (pn) so that A(T) is a subgroup K of T (j?n) . By

Theorem 6 and the remark after it we may assume 0(0) = {x \ x (. GF (p ) } .

Now if a, b € GF(p ) then, since by Theorem 5, K contains all

translations in r ( p } , a > b iff 0 > b - a , that is, b - a = x for

some x € GF(p } . To prove the last statement is now easy, for A(T) is

a subgroup of T(p ) and b - a and [x, a, a](b) - [x, a, c](.a) are

both in S or both in -S iff x t S .
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