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Abstract
We consider the stochastically forced Burgers equation with an emphasis on spatially rough driving noise. We
show that the law of the process at a fixed time t, conditioned on no explosions, is absolutely continuous with
respect to the stochastic heat equation obtained by removing the nonlinearity from the equation. This establishes
a form of ellipticity in this infinite-dimensional setting. The results follow from a recasting of the Girsanov
Theorem to handle less spatially regular solutions while only proving absolute continuity at a fixed time and not
on path-space. The results are proven by decomposing the solution into the sum of auxiliary processes, which
are then shown to be absolutely continuous in law to a stochastic heat equation. The number of levels in this
decomposition diverges to infinite as we move to the stochastically forced Burgers equation associated to the KPZ
equation, which we conjecture is just beyond the validity of our results (and certainly the current proof). The
analysis provides insights into the structure of the solution as we approach the regularity of KPZ. A number of
techniques from singular SPDEs are employed, as we are beyond the regime of classical solutions for much of the
paper.
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1. Introduction

The lack of one distinguished standard Borel topology, with its associated Lebesgue measure, is the
source of many differences between stochastic dynamics in finite and infinite dimensions. It is typical for
the law of a stochastic ordinary differential equation to have a transition law that is absolutely continuous
with respect to the Lebesgue measure. In finite dimensions, the equivalence of transition densities is the
norm, while in infinite dimensions, it is the exception. Of course, this fact is at the core of the difference
between ordinary and partial differential equations. In the stochastic setting, it produced additional
difficulties, as many of the classical ideas, such as ellipticity, smoothing and transition densities, are tied
to the existence of a Lebesgue measure.

Here, we provide an analysis showing when there is a preferred topology whose associated Gaussian
measure plays the role of the Lebesgue measure in infinite dimensions. We study the stochastically
forced Burgers equation in a singular regime and show that the distribution of the dynamics at time t is
mutually absolutely continuous with the Gaussian measure associated with linear dynamics, where the
nonlinear term has been removed.

In the infinite-dimensional setting, if one only considers finite-dimensional functionals of the solution
(such as the evaluation in a space-time point), existence of densities with respect to the natural reference
measure – again, the Lebesgue measure – has a large literature, mostly related to Malliavin calculus.
Here we point out, for instance, the monograph [SS05] and the recent paper [KM22] that contains a more
thorough literature review, or the papers [MP06, HM11, GH19]. In particular, the setting in [MP06,
HM11, GH19] is orthogonal to ours, as the authors there consider equations driven by finite-dimensional
Wiener processes, while our equation is very singular with a stochastic forcing that is nondegenerate
in all directions. Through that lens, these papers are dealing with the hypoelliptic setting but only
answering finite-dimensional questions about any transition densities, while this paper considers what
might be called the truly elliptic setting, where the structure of the stochastic forcing sets the relevant
topology, and hence the reference measure, for the full infinite-dimensional setting (see [Mat03] for a
broader, although dated, discussion of this).
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Much more substantial literature is devoted to the same problem (in a smoother regime) at the level
of path measures, thanks to the Girsanov Theorem. We point out, for instance, the monograph [DPZ92].
There is strong evidence that that approach is not directly applicable to our setting.

The first works we are aware of that consider the problem we are interested in are [DPD04, MS05]. In
[DPD04], equivalence is proved for invariant measures and, via the strong Feller property, the solution
at fixed times. This work takes a different tack, leveraging the Time-Shifted Girsanov Method contained
in [MS05, MS08] and in a more consistent presentation in [Wat10]. Those works are the starting point
for this investigation, but we will see that significant work is required to extend to the singular setting.

In the case of rough but sufficiently smooth forcing, when all of the objects are classically defined, the
Time-Shifted Girsanov Method contained in [MS05, MS08, Wat10] can be applied to our setting. As the
roughness increases, we decompose the equation into an increasing number of levels of equations, and
some stochastic objects in some levels require renormalisations in the sense of [Hai13, GIP15, GP17,
MWX15, CC18]. The additional levels of decomposition are driven by our need to prove absolute
continuity and not by the need for renormalisations in the sense of singular SPDEs. The analysis further
illuminates the structure of the equations by underlining structural changes that occur as the roughness
increases. In particular, the KPZ equation (in Burgers equation form) presents itself as a boundary case
just beyond the analysis of this paper. There is strong evidence that this relates to a fundamental change
in the structure of the equation in the KPZ setting.

If the KPZ is the boundary case, it is still open whether our results extend to that case. When the
forcing is precisely the spatial derivative of the space-time white noise, the invariant measure is Gaussian.
However, it is unclear if any Gaussian structure persists if the structure of the noise is perturbed. Since the
semigroup in that setting is known to be Strong Feller in the KPZ case [HM18] even with more general
forcing, we know that the failure of our results to generalise will not be because of the appearance of
a rough, random shift outside of the needed Cameron-Martin space of admissible shifts as in [BG21].
(See [DP06] and Sections 3.3 and 5.1.) In [BG21], the authors prove the singularity of the Φ4

3 measure
with respect to the Gaussian free field and absolute continuity with respect to a random shift of the
Gaussian free field. A similar result is also established for the Φ3

3 measure in the work [OOT21].
Additionally, we believe that establishing absolute continuity of the dynamics with respect to a

Gaussian reference measure will open additional perspectives and approaches to analysing these rough
SPDEs. Finally, we mention that in [BF16], the authors prove a connection between a nonlinear problem
and a linear problem.

Outline of paper: The paper is organised as follows. Section 2 contains our main result, and Section 3
contains the main tools we use to prove it: decompositions of the solution and the Time-Shifted Girsanov
Method. In Section 4, we give the basic definitions and estimates and study the regularity of the solution
and of the terms appearing in the equation. In Section 5, we prove our general statements on absolute
continuity and equivalence, which are used in Section 6 and Section 7 to prove absolute continuity of
the decompositions. Altogether, these results prove the main theorem. In the Appendix, we recall some
details on Besov spaces and paraproducts (Appendix A), we define the Gaussian objects that appear
in the decompositions and prove their regularity (Appendix B), and we give a result of existence and
uniqueness for the needed equations (Appendix C).

2. Main result

Consider the stochastic Burgers equation on T = [0, 2𝜋] with the periodic boundary condition

ℒ𝑢𝑡 = 𝐵(𝑢𝑡 )𝑑𝑡 +𝑄𝑑𝑊𝑡 , (2.1)

where 𝐴 = −𝜕𝑥𝑥 , ℒ = 𝜕𝑡 + 𝐴, 𝐵(𝑢, 𝑣) = 𝜕𝑥 (𝑢𝑣), and we write 𝐵(𝑢) := 𝐵(𝑢, 𝑢). Also, W is a cylindrical
Brownian motion on 𝐿2 (T). Since A is a positive, symmetric operator on functions in 𝐿2 (T) with mean
zero in space, we can define 𝐴𝛿 for any 𝛿 ∈ R by its spectral decomposition. Assume that 𝑄 ≈ 𝐴𝛼/2 for
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some 𝛼 ∈ R, where we write 𝑄 ≈ 𝐴𝛽/2 for some 𝛽 ∈ R when A and Q have a common eigenbasis, and
𝐴−𝛽𝑄𝑄∗ is bounded with bounded inverse.

We denote by 𝑒−𝑡 𝐴 the semigroup generated by −𝐴. The use of the notation ℒ𝑢𝑡 on the left-hand
side of equation (2.1) is meant to be both compact and evocative of the fact that we will consider the
mild or integral formulation of the equation. Namely, if 𝑢0 is the initial condition, then u solves

𝑢𝑡 − 𝑒−𝑡 𝐴𝑢0 =
∫ 𝑡

0
𝑒−(𝑡−𝑠)𝐴𝐵(𝑢𝑠)𝑑𝑠 +

∫ 𝑡

0
𝑒−(𝑡−𝑠)𝐴𝑄𝑑𝑊𝑠 . (2.2)

Based on the assumption of Q and the structure of the equation, if 𝑢0 has spatial mean zero, all terms
in the equation will have mean zero, which is in consistency with the domains of 𝐴𝛿 and 𝑒−𝑡 𝐴. We will
consider the setting when 𝑄 ≈ 𝐴

𝛼
2 for 𝛼 < 1, with particular interest in the case of 𝛼 close to 1.

We will see that when 𝛼 < 1, local solutions exist in the Hölder space C ( 1
2−𝛼)

− up to a stopping time
𝜏∞ that is almost surely positive for initial conditions in C𝛾 for 𝛾 > −1.1 When 𝛼 < 1

2 , standard energy
estimates guarantee the existence of a unique global solution (that is 𝜏∞ = ∞ almost surely). When
𝛼 ≥ 1

2 , the solution is no longer a function, and extra care needs to be taken as it is a priori possible that
𝜏∞ < ∞ with positive probability.

Because, in the settings of primary interest, global solutions are not assured, we will extend our state
space to include an isolated ‘death’ state, denoted by , and define 𝑢𝑡 = when 𝑡 ≥ 𝜏∞. This also
has the advantage of underscoring the applicability of these ideas to equations with explosive solutions.
With this in mind, we will extend our state space to include the death state by defining C̄𝛽 = C𝛽 ∪ { }.
We extend the dynamics by setting 𝑢𝑡 = for all 𝑡 > 0 if 𝑢0 = . To state our main results, we define
the Markov transition semigroup P𝑡 by

(P𝑡𝜙) (𝑢0) = E𝑢0𝜙(𝑢𝑡 ),

where 𝜙 : C̄ ( 1
2−𝛼)

− → R is a bounded measurable function. This extends in a natural way to a transition
measure P𝑡 (𝑢0, 𝐾) = (P𝑡1𝐾 ) (𝑢0) = P𝑢0 (𝑢𝑡 ∈ 𝐾) for measurable subsets K of C̄ ( 1

2−𝛼)
− and to the left

action of probability measures 𝜇 on C̄ ( 1
2−𝛼)

− by

𝜇P𝑡𝜙 =
∫

(P𝑡𝜙) (𝑢)𝜇(𝑑𝑢).

Our main result will show that, at a fixed time t, the law of the random variable 𝑢𝑡 on the event
{𝜏∞ > 𝑡} is absolutely continuous to the law of the Ornstein-Uhlenbeck process obtained by removing
the nonlinearity from equation (2.1). In other words, if we define Q𝑡 (𝑧0, 𝐾) = P𝑧0 (𝑧𝑡 ∈ 𝐾), where

ℒ𝑧𝑡 = 𝑄𝑑𝑊𝑡 , (2.3)

then we have the following result, which will follow from more detailed results proved in later sections.

Theorem 2.1. For any 𝛼 < 1, 𝑡 > 0 and any 𝑢0, 𝑧0 ∈ C𝛾 with 𝛾 > −1 and zero spatial mean,
P𝑡 (𝑢0, · ) ∼ 𝑝Q𝑡 (𝑧0, · ) + (1 − 𝑝)1{ } ( · ), 2 where 𝑝 = P𝑢0 (𝜏∞ > 𝑡). In other words, the law of 𝑢𝑡 ,
conditioned on nonexplosion by time t, is equivalent as a measure to the law of 𝑧𝑡 when 𝑢𝑡 and 𝑧𝑡 start
from 𝑢0 and 𝑧0, respectively.

Remark 2.2. The absolute continuity given in Theorem 2.1 implies that any almost sure property of
the Gaussian measure Q𝑡 (𝑧0, · ) is shared by P𝑡 (𝑢0, · ). For example, the spatial Hölder regularity
or the Hausdorff dimension of spatial level-sets or solutions of equation (2.1) are the same as those of
equation (2.3). See [BR14] for results along these lines.

1A formal definition of the function spaces used is given at the start of Section 4.
2Here 𝜇 ∼ 𝜈 signifies that the two measures are mutually absolutely continuous with respect to each other. That is to say,

𝜇 
 𝜈 and 𝜈 
 𝜇, where 𝜈 
 𝜇 means 𝜈 is absolutely continuous with respect to 𝜇.
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Unfortunately, our methods are not (yet!) powerful enough to cover the case 𝛼 = 1. We remark,
though, that with a little effort and the help of [HM18], one can prove that, at least when the diffusion
operator in equation (2.1) is 𝑄 = 𝜕𝑥 ≈ 𝐴

1
2 , the law of the solutions of equation (2.1) and equation

(2.3) at each fixed time are both equivalent to the law of white noise. Indeed, by [HM18], the transition
semigroup of equation (2.1) is strong Feller. If one assumes that the transition semigroup is irreducible,
then by a theorem of Khasminskii (see, for instance, [DPZ96]), transition probabilities are equivalent.
The final part of the argument is, again by [HM18], that white noise is invariant for the semigroup. We
do not know if equivalence holds beyond the case 𝑄 = 𝜕𝑥 .

3. Central ideas in Theorem 2.1

We will now give the central arc of three different (but related) arguments that can prove Theorem 2.1.
Although there is overlap in the arguments, we feel each highlights a particular connection and helps to
give a more complete picture.

3.1. First decomposition

The core idea used to prove Theorem 2.1 is the decomposition of the solution of equation (2.1) into
the sum of different processes of increasing regularity. In equation (2.1), the smoothness of solutions
is dictated solely by the stochastic convolution term, namely the last term on the right-hand side of
equation (2.2).

We begin by taking the stochastic convolution as the first level in our decomposition. This first level
will be fed through the integrated nonlinearity, namely the first term on the right-hand side of equation
(2.2). We will then keep only the roughest component and use it to force the next level in our hierarchy.
At each level, we will include a stochastic forcing term that, although smoother than the forcing at the
previous level, will be sufficiently rough to generate a stochastic convolution that is less smooth than
the forcing generated by the previous level through the nonlinearity. Eventually, we will reach a level
where the terms in the equation can be handled by classical methods and the expansion terminated.

More concretely, fixing the number of levels n, 𝑛 ∈ N, we begin by positing the existence of process
𝑋 (0) , . . . , 𝑋 (𝑛) and remainder term 𝑅 (𝑛) so that

𝑢𝑡
dist
=

𝑛∑
𝑖=0

𝑋 (𝑖)
𝑡 + 𝑅 (𝑛)

𝑡 , (3.1)

where dist
= denotes equality in law. We define the terms in this expansion by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℒ𝑋 (0)
𝑡 = 𝑄0𝑑𝑊

(0)
𝑡 ,

ℒ𝑋 (1)
𝑡 = 𝐵(𝑋 (0)

𝑡 )𝑑𝑡 +𝑄1𝑑𝑊
(1)
𝑡 ,

ℒ𝑋 (2)
𝑡 =

(
𝐵(𝑋 (0,1)

𝑡 ) − 𝐵(𝑋 (0,0)
𝑡 )

)
𝑑𝑡 +𝑄2𝑑𝑊

(2)
𝑡 ,

ℒ𝑋 (3)
𝑡 =

(
𝐵(𝑋 (0,2)

𝑡 ) − 𝐵(𝑋 (0,1)
𝑡 )

)
𝑑𝑡 +𝑄3𝑑𝑊

(3)
𝑡 ,

...
...

...
...

ℒ𝑋 (𝑛)
𝑡 =

(
𝐵(𝑋 (0,𝑛−1)

𝑡 ) − 𝐵(𝑋 (0,𝑛−2)
𝑡 )

)
𝑑𝑡 +𝑄𝑛𝑑𝑊

(𝑛)
𝑡 ,

ℒ𝑅 (𝑛)
𝑡 =

(
𝐵(𝑋 (0,𝑛)

𝑡 + 𝑅 (𝑛)
𝑡 ) − 𝐵(𝑋 (0,𝑛−1)

𝑡 )
)
𝑑𝑡 +𝑄𝑛𝑑𝑊

(𝑛)
𝑡 ,

(3.2)

where the 𝑄1, . . . , 𝑄𝑛, 𝑄𝑛 are a collection of linear operators and the 𝑊 (0)
𝑡 , . . . ,𝑊 (𝑛)

𝑡 ,𝑊 (𝑛)
𝑡 are a

collection of standard, independent, cylindrical Wiener processes and

𝑋 (𝑚,𝑛)
𝑡 =

𝑛∑
𝑖=𝑚

𝑋 (𝑖)
𝑡 ,
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with 𝑋 (0,−1)
𝑡 = 𝑋 (0,−2)

𝑡 = 0. If we choose 𝑋 (0)
0 = · · · = 𝑋 (𝑛)

0 = 0 and 𝑅 (𝑛)
0 = 𝑢0 and require

𝑄0𝑄
∗
0 +𝑄1𝑄

∗
1 + · · · +𝑄𝑛𝑄

∗
𝑛 +𝑄𝑛𝑄

∗
𝑛 = 𝑄𝑄∗, (3.3)

then

𝑄𝑊𝑡
dist
= 𝑄𝑛𝑊

(𝑛)
𝑡 +

𝑛∑
𝑘=0

𝑄𝑘𝑊
(𝑘)
𝑡 , (3.4)

and, at least formally, the condition given in equation (3.1) holds. To make the argument complete, we
need to demonstrate that each of the equations in (3.2) is well defined and has at least local solutions. The
number of levels n will be chosen as a function of 𝛼. The closer 𝛼 is to one, the more levels are required.

Notice that because of equation (3.4), which followed from equation (3.3), the stochastic convolution
from equation (2.2) satisfies

𝑧𝑡 = 𝑒
−𝑡 𝐴𝑧0 +

∫ 𝑡

0
𝑒−(𝑡−𝑠)𝐴𝑄𝑑𝑊𝑠

dist
= 𝑍 (𝑛)

𝑡 +
𝑛∑
𝑘=0

𝑍 (𝑘)
𝑡 , (3.5)

where

ℒ𝑍 (𝑘)
𝑡 = 𝑄𝑘𝑑𝑊

(𝑘)
𝑡 and ℒ𝑍 (𝑛)

𝑡 = 𝑄𝑛𝑑𝑊
(𝑛)
𝑡 (3.6)

with initial conditions 𝑍 (0)
0 = · · · = 𝑍 (𝑛)

0 = 0 and 𝑍 (𝑛)
0 = 𝑧0. It is worth noting that 𝑍 (0)

𝑡 = 𝑋 (0)
𝑡 and that

all equations but 𝑅 (𝑛)
𝑡 are ‘feed-forward’ in the sense that the forcing drift 𝐵(𝑋 (0,𝑘−1)

𝑡 ) − 𝐵(𝑋 (0,𝑘−2)
𝑡 ) in

the kth level is adapted to the filtrationF (𝑘−1)
𝑡 = 𝜎(𝑊 ( 𝑗)

𝑠 : 𝑗 ≤ 𝑘−1, 𝑠 ≤ 𝑡). In this sense, conditioned on
F (𝑘−1)
𝑡 , 𝑋 (𝑘)

𝑡 is a forced linear equation with both stochastic and (conditionally) deterministic forcing.
This in turn implies that conditioned on F (𝑘−1)

𝑡 , 𝑋 (𝑘)
𝑡 is a Gaussian random variable.

We will prove Theorem 2.1 by showing that for any fixed 𝑡 > 0 and all 𝑘 = 1, . . . , 𝑛,3

Law(𝑋 (𝑘)
𝑡 | F (𝑘−1)

𝑡 ) ∼ Law(𝑍 (𝑘)
𝑡 ) a.s., and

Law(𝑅 (𝑛)
𝑡 | 𝜏∞ > 𝑡,F (𝑛)

𝑡 ) 
 Law(𝑍 (𝑛)
𝑡 ) a.s.

(3.7)

We will see in Section 6.1 that the random existence time of 𝑅 (𝑛) is almost surely equal to that of u,
and hence we will use 𝜏∞ in both settings. We will show in Section 6.2 how this sequence of statements
about the conditional laws combined with the structure of equation (3.2) will imply Theorem 2.1.

Remark 3.1. We have chosen to structure the initial conditions in equation (3.2) with 𝑋 (0)
0 = · · · =

𝑋 (𝑛)
0 = 0 and 𝑅 (𝑛)

0 = 𝑢0. This is solely for convenience, as a number of the estimates for 𝑋 (𝑘)
𝑡 and 𝑍𝑡

are simpler to develop without the mild complication of initial conditions. We could have just as easily
taken 𝑋 (0)

0 = 𝑢0 and the rest zero or 𝑅 (𝑛)
0 = 0 and 𝑋 (0)

0 = · · · = 𝑋 (𝑛)
0 = 1

𝑛𝑢0.

3.2. Second decomposition

Accepting the result of equation (3.7) from the previous section, it might seem reasonable to replace
the instances of 𝑋 ( 𝑗)

𝑡 in equation (3.1) with 𝑍 ( 𝑗)
𝑡 . This would have a number of advantages. One is that

the 𝑍 ( 𝑗)
𝑡 are explicit Gaussian processes that will simplify the rigorous definition of some of the more

singular terms in the decomposition. Additionally, it will emphasise the relationship between the 𝑋 ( 𝑗)
𝑡

3Given a random variable X and a 𝜎-algebra F , we write Law(𝑋 | F ) for the random measure defined by Law(𝑋 | F ) (𝐴) =
E( 1𝐴 (𝑋 ) | F ) . When F is not the trivial 𝜎-algebra, randomness will remain, and one typically requires that properties of
Law(𝑋 | F ) hold only almost surely.
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construction in equation (3.1) and the tree constructions developed in the analysis of singular SPDEs
(such as [Hai13, MWX15, GP17]), which is driven by isolating the singular objects in the solution.

Motivated by this discussion, we now consider the expansion

𝑢𝑡
dist
=

𝑛∑
𝑖=0
𝑌 (𝑖)
𝑡 + 𝑆 (𝑛)𝑡 , (3.8)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℒ𝑌 (0)
𝑡 = 𝑄0𝑑𝑊

(0)
𝑡 ,

ℒ𝑌 (1)
𝑡 = 𝐵(𝑍 (0)

𝑡 )𝑑𝑡 +𝑄1𝑑𝑊
(1)
𝑡 ,

ℒ𝑌 (2)
𝑡 = (𝐵(𝑍 (0,1)

𝑡 ) − 𝐵(𝑍 (0,0)
𝑡 ))𝑑𝑡 +𝑄2𝑑𝑊

(2)
𝑡 ,

ℒ𝑌 (3)
𝑡 = (𝐵(𝑍 (0,2)

𝑡 ) − 𝐵(𝑍 (0,1)
𝑡 ))𝑑𝑡 +𝑄3𝑑𝑊

(3)
𝑡 ,

...
...

...
...

ℒ𝑌 (𝑛)
𝑡 = (𝐵(𝑍 (0,𝑛−1)

𝑡 ) − 𝐵(𝑍 (0,𝑛−2)
𝑡 ))𝑑𝑡 +𝑄𝑛𝑑𝑊

(𝑛)
𝑡 ,

ℒ𝑆 (𝑛)𝑡 = (𝐵(𝑌 (0,𝑛)
𝑡 + 𝑆 (𝑛)𝑡 ) − 𝐵(𝑍 (0,𝑛−1)

𝑡 ))𝑑𝑡 +𝑄𝑛𝑑𝑊
(𝑛)
𝑡 ,

(3.9)

and the Qs are again as in equation (3.3) and

𝑍 (𝑚,𝑛)
𝑡 =

𝑛∑
𝑖=𝑚

𝑍 (𝑖)
𝑡 ,

with 𝑍 (1)
𝑡 , . . . , 𝑍 (𝑛)

𝑡 again defined by equation (3.6). Again, we take𝑌 (0)
0 = · · · = 𝑌 (𝑛)

0 = 0 and 𝑆 (𝑛)0 = 𝑢0,
where 𝑢0 was the initial condition of equation (2.1).

Although in many ways we find the X expansion in equation (3.9) more intuitive and better motivated,
we will find it easier to prove Theorem 2.1 for the Y expansion in equation (3.9) first. We will then use
it to deduce Theorem 2.1 for the X expansion in equation (3.2).

More concretely, we will begin by proving that for each 𝑘 ≤ 𝑛,

Law(𝑌 (𝑘)
𝑡 | F (𝑘−1)

𝑡 ) ∼ Law(𝑍 (𝑘)
𝑡 ) a.s., and

Law(𝑆 (𝑛)𝑡 | 𝑡 < 𝜏∞,F (𝑛)
𝑡 ) 
 Law(𝑍 (𝑛)

𝑡 ) a.s. .
(3.10)

Then we will deduce that for 𝑘 = 1, . . . , 𝑛,

Law(𝑋 (𝑘)
𝑡 | F (𝑘−1)

𝑡 ) ∼ Law(𝑌 (𝑘)
𝑡 | F (𝑘−1)

𝑡 ) a.s., and

Law(𝑅 (𝑛)
𝑡 | 𝜏∞ > 𝑡,F (𝑛)

𝑡 ) 
 Law(𝑍 (𝑛)
𝑡 ) a.s. .

(3.11)

By combining equation (3.10) with equation (3.11), we can deduce that equation (3.7) holds.
There is no fundamental obstruction to proving equation (3.7) directly, as it essentially requires the

same calculation as proving equation (3.11). Similarly, we could have directly proven equation (3.7)
before equation (3.10); however, along the way we would have collected most of the estimates needed
to prove equation (3.10). We hope that proving all three statements, namely equations (3.7), (3.11) and
(3.10), will help show the relationship between different ideas around singular SPDEs.

Remark 3.2. The careful reader has likely noticed that the absolute continuity statements in equations
(3.7), (3.11) and (3.10) are stated only at a fixed time t and not on the space of trajectories from 0 to t.
Hence one is not free to prove the result for the Y expansion by simply replacing the X with Z in equation
(3.2) by a change of measure on path-space to obtain equation (3.9). There is strong evidence that Z
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is not absolutely continuous with respect to X on path-space since the conditions we are checking are
optimal in finite dimensions. It is of course possible that our estimates are suboptimal. See Remark 5.7
for a discussion of optimality. Even though we cannot prove absolute continuity on path-space, we will
show that Y and X satisfy a modified version of absolute continuity on path-space relative to Z that will
imply equation (3.11).

3.3. Cameron-Martin Theorem and Time-Shifted Girsanov Method

The Cameron-Martin Theorem and the closely related Girsanov Theorem are the classical tools for
proving two stochastic processes are absolutely continuous. Both describe when a ‘shift’ in the drift can
be absorbed into a stochastic forcing term while keeping the law of the resulting random variable or
stochastic process absolutely continuous with respect to the original law.

More concretely, to prove equation (3.10), we will absorb the drift terms on the right-hand side of the
equations for 𝑌 (1)

𝑡 , . . . , 𝑌 (𝑛)
𝑡 , 𝑆 (𝑛)𝑡 into the stochastic forcing term on the right-hand side of the the same

equation. In the case of the Cameron-Martin Theorem, this absorption is done using the integrated, mild
form of the equation, analogous to equation (2.2). The resulting expressions are identical in form to the
analogous Z expressions implied by equation (3.6). The Girsanov Theorem proceeds similarly to the
Cameron-Martin Theorem, but the drift is removed instantaneously at the level of the driving equation
and not in an integrated form as in the Cameron-Martin Theorem. We will see that this leads to both
stronger conclusions and a need for stronger assumptions in order to apply the Girsanov Theorem.

In [MS05, MS08, Wat10], the Girsanov Theorem was recast by shifting the infinitesimal perturbation
injected by the drift at one instance of time to a later instance. By shifting the drift perturbation
forward in time by the flow 𝑒−𝑡 𝐴, it is regularised in space. This regularised, time-shifted drift can
then be compensated by the noise at the later moment in time, thereby extending the applicability of
Girsanov’s Theorem. This extended applicability will be critical to our results. The price of the extended
applicability is that only a modified form of trajectory-level absolute continuity is proven, which
nonetheless is sufficient to deduce absolute continuity at the terminal time of the path. We have dubbed
this approach the Time-Shifted Girsanov Method. A full discussion with all of the details is provided in
Section 5.3.

3.4. Gaussian regularity

When applying either the Cameron-Martin Theorem or the Time-Shifted Girsanov Method, there is
a tension between the roughness of the stochastic forcing, set by 𝑄 ≈ 𝐴

𝛼
2 , and the roughness of the

drift term on the right-hand side of the kth equations. The gap between these regularities cannot be too
big. Hence, it is critical to understand the regularity of the solutions and the drift term involving the
nonlinearity B.

When 𝛼 < 1
2 , we will see that the Time-Shifted Girsanov Method can be applied directly to equation

(2.1) to obtain the desired result following the general outline of [MS08, Wat10]. When 𝛼 ∈ [ 1
2 , 1), the

multilevel decomposition from equation (3.2) and equation (3.9) will be required to make sure the jump
in regularity between the stochastic forcing in an equation and the drift to be removed is not too large.

The reason for this change at 𝛼 = 1
2 is fundamental to our discussion. When 𝛼 < 1

2 , the product
of all the spatial functions f and g contained in 𝐵( 𝑓 , 𝑔) is well-defined classically as the functions
will have positive Hölder regularity. Hence, pointwise multiplication is well-defined. When 𝛼 ≥ 1

2 , we
must leverage the Gaussian structure of the specific processes being multiplied and a renormalisation
procedure to make sense of the product of some of the terms in 𝐵( 𝑓 , 𝑔). When 𝛼 ∈ [ 1

2 ,
3
4 ), through these

considerations, we will always be able to give meaning to 𝐵( 𝑓 , 𝑔) at each moment of time in all the
needed cases. When 𝛼 ∈ [ 3

4 , 1), at times we must consider the time-integrated version of the drift term
from the mild formulation (analogous to the second term from the right in equation (2.2)) and leverage
time decorrelations of the Gaussian process to make sense of the nonlinear term in its integrated form
𝐽 ( 𝑓 , 𝑔)𝑡 defined in equation (4.4).
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3.5. Relation to trees and chaos expansions

We now briefly explore the relationship between tree representations of stochastic Gaussian objects
from [Hai13, MWX15, GP17] and this work in a heuristic way. One way to view the trees in those works
is to consider the expansion one obtains by formally substituting the integral representation of z given
in equation (3.6) back into the first integral term on the right-hand side of equation (2.2). Repeated
applications of this is one way to develop an expansion of the solution 𝑢𝑡 in terms of finite trees of z with
a remainder. These tree representations of stochastic objects are key to the analysis in those works. We
will later see that the drift terms of equation (3.9) can be decomposed into some of the same trees of z.

We push the idea of tree expansions further by grouping the trees formed by Z with different regularity
and adding an extra stochastic forcing at each level. Here, looking back at equation (3.5), as we have
subdivided our noise into n levels (𝑍 (1) , . . . , 𝑍 (𝑛) ) and one remainder term (𝑍 (𝑛) ), we have a tree-like
expansion mixing the Gaussian inputs of different levels. This work can be viewed as giving a more
refined analysis of the stochastic objects in equation (2.1), since we finely decompose the noise into
Gaussian processes of different regularity. We will see that our eventual assumptions on the Qs will
imply that the regularity of the 𝑍 (𝑘) increases with k.

Note that the drifts in equation (3.2) and equation (3.9) can be expanded fully in terms of the sum
of trees of the Zs. Hence, we can understand the drifts in equation (3.2) and equation (3.9) as two
different groupings of a subset of the tree objects from this expansion. We group them at each level in
these two ways such that their regularity allows the use of the Cameron-Martin Theorem or the Time-
Shifted Girsanov Method at that level. Clearly this grouping is not unique, but it makes analysis based
on regularity more straightforward.

4. Preliminaries

We now collect a number of estimates and observations that will be needed to prove the versions of
Theorem 2.1 based on the expansion across noise levels given in equation (3.2) and equation (3.9). We
start by setting the function analytic setting in which we will work and recalling some basic estimates on
the operator A and the semigroup it generates. We then discuss the stochastic convolution, the regularity
of solutions given in equation (2.1) and equations (3.2) and (3.9).

4.1. Function spaces and basic estimates

We shall denote by C𝛾 , 𝛾 ∈ R, the separable version of the Besov-Hölder space 𝐵𝛾∞,∞(T) of order 𝛾,
namely the closure of periodic smooth functions with respect to the 𝐵𝛾∞,∞ norm. See Appendix A for
some details about Besov spaces. If 𝑓 ∈ C𝛾 , we will say that f has (Hölder) regularity 𝛾. We will write
C𝛾− for the intersection of all of space C𝛽 with 𝛽 < 𝛾.4

Given a Banach space X of functions 𝑓 (𝑥) on T, we will write 𝐶𝑇 X for the space of time-dependent
functions 𝑓 (𝑡, 𝑥) on [0, 𝑇] × T such that for each 𝑡 ∈ [0, 𝑇], 𝑓 (𝑡, · ) ∈ X and as 𝑠 → 𝑡, we have that
‖ 𝑓 (𝑠, · ) − 𝑓 (𝑡, · )‖X → 0. We will endow this space with the norm

‖ 𝑓 ‖𝐶𝑇 X = sup
𝑡 ∈[0,𝑇 ]

‖ 𝑓 (𝑡, · )‖X.

Typical examples we will consider are 𝐶𝑇 C𝛽 and 𝐶𝑇 𝐿2. If 𝑓 ∈ 𝐶𝑇 C𝛾 , we will say that f has (Hölder)
regularity 𝛾 (in space). For convenience, we will write𝐶𝑇 C𝛾

− for the intersection of all the spaces𝐶𝑇 C𝛽
with 𝛽 < 𝛾.

As we are interested in solutions that might have a finite time of existence, we will introduce the one-
point compactification of C𝛾 , C𝛾 = C𝛾 ∪{ }. C𝛾 is a topological space where the open neighbourhoods
of are given by {𝑢 ∈ C𝛾 : ‖𝑢‖C𝛾 > 𝑅} for 𝑅 > 0. With a light abuse of notation, we will write

4Notice that this definition does not coincide with the classical definition of Hölder spaces for integer values of the index. See
Remark A.3.
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𝐶𝑇 C
𝛾

to mean the space of all continuous functions on [0, 𝑇] taking values in C𝛾 . We do not place a
norm on 𝐶𝑇 C

𝛾
and view it only as a topological space. Observe that if 𝑢 ∈ 𝐶𝑇 C

𝛾
and 𝜏 ∈ (0,∞] such

that for 𝑡 ∈ [0, 𝑇], 𝑢𝑡 = if 𝑡 ≥ 𝜏 and 𝑢𝑡 ∈ C𝛾 if 𝑡 < 𝜏, then for all 𝑡 ∈ [0, 𝑇] ∩ [0, 𝜏), 𝑢 ∈ 𝐶𝑡C𝛾
because u is continuous in C𝛾 . We feel this justifies the notation 𝐶𝑇 C

𝛾
for continuous functions on C𝛾

even though the space is not endowed with the supremum norm. Additionally, because of our choice of
open neighbourhoods of , if 𝜏 < ∞, then ‖𝑢𝑡 ‖C𝛾 → ∞ as 𝑡 → 𝜏. Again, we will write 𝐶𝑇 C

𝛾−
for the

intersection of all of the spaces 𝐶𝑇 C
𝛽

with 𝛽 < 𝛾.
We collect a few useful properties of A and its semigroup in the following proposition. Here and

throughout the text, we write 𝑎 � 𝑏 to mean there exists a positive constant c so that 𝑎 ≤ 𝑐𝑏. When the
constant c depends on some parameters, we will denote them by subscripts on �. We will write � when
the reverse inequality holds for some constant and � when both � and � hold (for possibly different
constants).

Proposition 4.1. For 𝛾 ∈ R, 𝜕𝑥 : C𝛾 → C𝛾−1 and 𝐴 : C𝛾 → C𝛾−2 are bounded linear operators.
Additionally, if 𝛿 ∈ R with 𝛾 ≤ 𝛿, then

‖𝑒−𝑡 𝐴 𝑓 ‖C 𝛿 � 𝑡
1
2 (𝛾−𝛿) ‖ 𝑓 ‖C𝛾 and ‖𝐴

𝛿
2 𝑒−𝑡 𝐴 𝑓 ‖𝐿2 � 𝑡

1
2 (𝛾−𝛿) ‖𝐴

𝛾
2 𝑓 ‖𝐿2 . (4.1)

In particular, for any 𝜖 > 0 and 𝛿, 𝑡 > 0,

‖𝐴
𝛿
2 𝑒−𝑡 𝐴 𝑓 ‖𝐿2 � ‖𝐴

𝛿
2 𝑒−𝑡 𝐴 𝑓 ‖C 𝜖 �𝜖 𝑡

1
2 (𝛾−𝛿−𝜖 ) ‖ 𝑓 ‖C𝛾 . (4.2)

Using these estimates, one can obtain the regularity of the solution 𝑧𝑡 of equation (2.3).

Remark 4.2 (Regularity of stochastic convolution). Using the results given in equation (4.1) and some
classical embedding theorems, we have that if

𝑧𝑡 =
∫ 𝑡

0
𝑒−(𝑡−𝑠)𝐴Ξ 𝑑𝑊𝑠 , (4.3)

with Ξ ≈ 𝐴
𝛿
2 (and hence a mild solution of ℒ𝑧𝑡 = Ξ 𝑑𝑊𝑡 ), then ‖𝑧𝑡 ‖C𝛾 < ∞ uniformly on finite time

intervals for all 𝛾 < 1
2 − 𝛿. More compactly, 𝑧 ∈ 𝐶𝑡C ( 1

2−𝛿)
− for any 𝑡 > 0 almost surely.

Given the structure of the nonlinearity B, we are particularly interested in the properties of the
pointwise product of two functions. We now summarise the results in the classical setting and recall the
results in the Gaussian setting.

Remark 4.3 (Canonical regularity of Gaussian products). It is a classical result that if 𝑓 ∈ C 𝛿 and
𝑔 ∈ C𝛾 , then their product is well-defined if 𝛿 + 𝛾 > 0 with 𝑓 𝑔 ∈ C𝛾∧𝛿 . This can be summarised more
completely in the statement that the pointwise product (𝑔, 𝑓 ) ↦→ 𝑔 𝑓 is a continuous bilinear operator
between C𝛾 × C 𝛿 to C𝛾∧𝛿 if 𝛾 + 𝛿 > 0.

When 𝑓 ∈ C 𝛿 and 𝑔 ∈ C𝛾 with 𝛾 + 𝛿 ≤ 0, there is no canonical way to define the product. A
critical observation for this work, and most of the recent progress in singular PDEs [Hai13, GIP15,
MWX15, GP17, CC18], is that even when 𝛾 + 𝛿 ≤ 0, one can often define the product in 𝐵( 𝑓 , 𝑔) via a
renormalisation procedure to have canonical regularity by leveraging the particular Gaussian structure
of f and g. We will see that this is not possible in the needed cases when 𝛾 + 𝛿 ≤ − 1

2 . However, we
still can make sense of 𝐵( 𝑓 , 𝑔) convolved in time with the heat semigroup by leveraging the specific
structure of the time correlations of the specific f and g of interest.

With this fact about Gaussians in mind, we make the following definition to simplify discussions.

Definition 4.4. Given 𝑓 ∈ C 𝛿 and 𝑔 ∈ C𝛾 , we will say that the product 𝑓 𝑔 has the canonical
regularity if it is well-defined, possibly after a renormalisation procedure, with 𝑓 𝑔 ∈ C𝑟 , where
𝑟 = 𝛾 ∧ 𝛿 ∧ (𝛾 + 𝛿).
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4.2. Regularity of the mild form of the nonlinearity

Looking back at equation (2.2), we see that the nonlinearity B integrated in time against the heat
semigroup (namely, the first term on the right-hand side of this equation) will be a principal object of
interest. We now pause to study the main properties of this object while postponing some more technical
considerations to the Appendix.

In the sequel, it will be notationally convenient to define the bilinear operator 𝐽 ( 𝑓 , 𝑔)𝑡 by

𝐽 ( 𝑓 , 𝑔)𝑡 :=
∫ 𝑡

0
𝑒−(𝑡−𝑠)𝐴𝐵( 𝑓𝑠 , 𝑔𝑠) 𝑑𝑠, (4.4)

and 𝐽 ( 𝑓 )𝑡 = 𝐽 ( 𝑓 , 𝑓 )𝑡 .
Remark 4.5 (Canonical regularity of J). If 𝑓 ∈ 𝐶𝑡C𝛾 and 𝑔 ∈ 𝐶𝑡C 𝛿 with 𝛾 + 𝛿 > 0, then 𝐵( 𝑓 , 𝑔) ∈
𝐶𝑡C𝑟−1, where 𝑟 = 𝛾 ∧ 𝛿 ∧ (𝛾 + 𝛿), which implies that

‖𝐽 ( 𝑓 , 𝑔)𝑡 ‖C𝛽 �
∫ 𝑡

0
‖𝑒−(𝑡−𝑠)𝐴𝐵( 𝑓𝑠 , 𝑔𝑠)‖C𝛽 𝑑𝑠 � ‖ 𝑓 𝑔‖𝐶𝑡C𝑟

∫ 𝑡

0

1
(𝑡 − 𝑠) 1

2 (𝛽−𝑟+1)
𝑑𝑠 .

Here we have used the estimate from Proposition 4.1. Since this last integral is finite when 1
2 (𝛽−𝑟+1) < 1,

we deduce that 𝛽 < 𝑟 + 1, implying that 𝐽 ( 𝑓 , 𝑔)𝑡 ∈ C (𝑟+1)− , where 𝑟 = 𝛾 ∧ 𝛿 ∧ (𝛾 + 𝛿).
As mentioned in Remark 4.3 (and proved in Appendix B), we can prove that product 𝑓 𝑔 is well-

defined with canonical regularity in the specific examples needed in this work, when 𝑓 ∈ 𝐶𝑡C𝛾 and
𝑔 ∈ 𝐶𝑡C𝛽 with 𝛾 + 𝛿 > − 1

2 . However, we will show in Appendix B that when 𝛾 + 𝛿 > − 3
2 , 𝐽 ( 𝑓 , 𝑔) is

well-defined with 𝐽 ( 𝑓 , 𝑔) ∈ 𝐶𝑡C (𝑟+1)− , where 𝑟 = 𝛾 ∧ 𝛿 ∧ (𝛾 + 𝛿), even though the product 𝑓 𝑔 might
not be well-defined with its canonical regularity.
Definition 4.6. Given 𝑓 ∈ 𝐶𝑡C 𝛿 and 𝑔 ∈ 𝐶𝑡C𝛾 , we will say that 𝐽 ( 𝑓 , 𝑔) has canonical regularity
if 𝐽 ( 𝑓 , 𝑔) is well-defined (possibly via a renormalisation procedure) with 𝐽 ( 𝑓 , 𝑔) ∈ 𝐶𝑡C (𝑟+1)− , where
𝑟 = 𝛾 ∧ 𝛿 ∧ (𝛾 + 𝛿).
Remark 4.7 (J regularises in our setting). Looking at equation (2.1), it is relevant to understand when
the map 𝑓 ↦→ 𝐽 ( 𝑓 )𝑡 produces an image process that is more regular than the input process f. Assume
that we are in the setting where 𝐽 ( 𝑓 )𝑡 has canonical regularity. Then 𝐽 ( 𝑓 )𝑡 will be smoother if 𝑓 ∈ C𝛾
with 𝛾 < 𝛾+1 if 𝛾 > 0 and 𝛾 < 2𝛾+1 if 𝛾 < 0. Thus, J is always regularising when applied to functions
of positive regularity, and it will be regularising in the canonical setting for a distribution of negative
Hölder regularity greater than −1. We will always find ourselves in one of these two settings.

Building from the above, it is also relevant to understand how the regularising effect of J interact with
products. More specifically, later we need to compute the regularity of sums of terms that are essentially
like 𝐵(𝑧, 𝑧′), 𝐵(𝐽 (𝑧), 𝑧), 𝐵(𝐽 (𝑧)), and so on, where 𝑧′ is another Ornstein-Unlenbeck process with
positive Hölder regularity. In our setting, we will see that a term like 𝐵(𝑧, 𝑧′) is the least regular term,
which dictates the canonical regularity of the sum, while all other terms with more Js involved are more
regular.

The regularising nature of J highlighted in Remark 4.7 is closely related to the use of fixed point
methods to prove the existence and uniqueness of local in-time solutions with the needed regularity.
This is explored further in Appendix C.

4.3. Regularity of solutions

We now turn to the regularity of the Burgers equation (2.1) and those in our decompositions in equation
(3.2) and equation (3.9). Most of the equations are forced linear equations except for the remainder
equations 𝑅𝑡 and 𝑆𝑡 and the original Burgers equation (2.1). While the following discussion will be
illuminating in these later cases, it is most directly applicable in the setting of forced linear equations.
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A complete treatment in the nonlinear setting (namely 𝑅𝑡 , 𝑆𝑡 and equation (2.1)) involves a fixed point
argument that we postpone to Appendix C. Nonetheless, the discussion in this section will still be
illuminating to these cases while focusing on the forced linear equation setting.

We begin by studying a more general equation that can subsume most of the equations in our
decompositions in equation (3.2) and equation (3.9). Since all of the forcing drift terms on the right-
hand side of the equations are a finite sum of terms of the form 𝐵( 𝑓 , 𝑔) for some f and g, it is enough
to consider the more general equation

ℒ𝑣𝑡 = 𝐵( 𝑓𝑡 , 𝑔𝑡 )𝑑𝑡 + Ξ 𝑑𝑊𝑡 (4.5)

for some given 𝑓 ∈ 𝐶𝑡C𝛾 and 𝑔 ∈ 𝐶𝑡C 𝛿 and Ξ ≈ 𝐴𝛽/2 for some 𝛽, 𝛾 ∈ R. All of the forced linear
equations of interest are a finite sum of equations of this form.

The solution to equation (4.5) with initial condition 𝑣0 is given by

𝑣𝑡 = 𝑒
−𝑡 𝐴𝑣0 + 𝐽 ( 𝑓 , 𝑔)𝑡 + 𝑧𝑡 ,

where now 𝑧𝑡 is the stochastic convolution solving equation (4.3) and J is again defined by equation (4.4).
We will assume that f and g are such that 𝐽 ( 𝑓 , 𝑔)𝑡 has canonical regularity in the sense of Definition 4.6.

For any 𝑡 > 0 and any reasonable 𝑣0, 𝑒−𝑡 𝐴𝑣0 ∈ C𝑏 for all 𝑏 ∈ R. Hence, the first term will not be the
term that fixes the regularity of the equation, and either J or z will determine the maximal regularity of
the system.

By Remark 4.2, the stochastic convolution 𝑧 ∈ 𝐶𝑡C ( 1
2−𝛽)

− . By Definition 4.6, we have that 𝐽 ( 𝑓 , 𝑔) ∈
𝐶𝑡C (𝑟+1)− , where 𝑟 = 𝛾 ∧ 𝛿 ∧ (𝛾 + 𝛿). Hence the regularity of the solution will be set by the stochastic
convolution z to be 𝐶𝑡C ( 1

2−𝛽)
− if 𝑟 > 1

2 − 𝛽. We will arrange our choice of parameters so that equations
(3.2) and (3.9) will always satisfy this condition. Hence, the equations will always have their regularity
set by the stochastic convolution term in the equation. With this motivation, we make the following
definition.

Definition 4.8. We say that an equation of the general form in equation (4.5) has canonical regularity
if 𝑣𝑡 has the same Hölder regularity as the associated stochastic convolution 𝑧𝑡 uniformly on finite time
intervals.

The above considerations are also relevant to assessing the regularity of the remaining equations in
(3.2) and (3.9) as well as the original Burgers equation. Observe that the solution to equation (2.1) can
be written as

𝑢𝑡 = 𝑒
−𝑡 𝐴𝑢0 + 𝐽 (𝑢)𝑡 + 𝑧𝑡 ,

where 𝑧𝑡 solves equation (2.3). Since 𝑄 ≈ 𝐴𝛼/2, we know from Remark 4.2 that 𝑧 ∈ 𝐶𝑡C ( 1
2−𝛼)

− . Since
we are interested in 𝛼 < 1, we have that 1

2 − 𝛼 > − 1
2 . In light of Remark 4.7, we see that 𝑢𝑡 has the

same regularity in space as 𝑧𝑡 ; then 𝐽 (𝑢)𝑡 will be more regular in space (assuming we can show that
𝐽 (𝑢)𝑡 has the canonical regularity dictated by u). Hence, it is expected that in our setting the regularity
of equation (2.1) will be set by the regularity of the stochastic convolution term so 𝑢 ∈ 𝐶𝑡C ( 1

2−𝛼)
− . For

more details, see the discussion in Appendix C.

5. Absolute continuity of measures

We now turn to the main tools used to establish the absolute continuity statements required to prove
Theorem 2.1 as outlined in Section 3.3.

Whether at the level of the Burgers equation (2.1) or when considering one of the levels in the
expansions in equation (3.1) or equation (3.8), we are left considering when the law of 𝑣𝑡 is equivalent
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with respect to the law of 𝑧𝑡 , where

ℒ𝑣𝑡 = 𝐹𝑡 𝑑𝑡 + Ξ 𝑑𝑊𝑡 ,

ℒ𝑧𝑡 = Ξ 𝑑𝑊𝑡 .
(5.1)

Here Ξ ≈ 𝐴𝛽/2 for some 𝛽 ∈ R, and 𝐹𝑡 is a continuous (in time) stochastic process with the space
regularity to be specified presently. We always assume that 𝐹𝑡 is adapted to some filtration to which𝑊𝑡

is also adapted. In some instances, it is possible that F is independent of W.
When all the terms are well-defined and 𝑧0 = 𝑣0, observe that 𝑣𝑡 = 𝑧𝑡 + ℎ𝑡 , where

ℎ𝑡 =
∫ 𝑡

0
𝑒−(𝑡−𝑠)𝐴𝐹𝑠 𝑑𝑠. (5.2)

5.1. The Cameron-Martin Theorem

The Cameron-Martin Theorem gives if and only if conditions describing when the Law(𝑧𝑡 ) is equivalent
to Law(𝑣𝑡 ), with 𝑣𝑡 = 𝑧𝑡 + ℎ𝑡 , for a fixed time t and a deterministic shift ℎ𝑡 . If Ξ ≈ 𝐴𝛽/2, then the
covariance operator of the Gaussian random variable 𝑧𝑡 is (up to a compact operator) 𝐴𝛽−1. Then
Cameron-Martin Theorem requires that ‖𝐴

1−𝛽
2 ℎ𝑡 ‖𝐿2 < ∞ (see [DP06, Theorem 2.8]). If 𝐹𝑡 is random

but independent of the stochastic forcing 𝑊𝑡 , then we can still apply the Cameron-Martin Theorem by
first conditioning on the trajectory of F. This produces the following sufficient condition for absolute
continuity, which is a version of the classical Cameron-Martin Theorem adapted to our setting.

Theorem 5.1 (A version of Cameron-Martin). In the setting of equation (5.1) with 𝑧0 = 𝑣0, let G𝑡 be a
filtration independent of the Brownian forcing 𝑊𝑡 . Let ℎ𝑡 be as in equation (5.2) and adapted to G𝑡 . If
for some 𝑡 > 0, ‖𝐴

1−𝛽
2 ℎ𝑡 ‖𝐿2 < ∞ almost surely, then Law(𝑧𝑡 + ℎ𝑡 | G𝑡 ) is equivalent as a measure to

Law(𝑧𝑡 ) almost surely. In particular, it is sufficient that ℎ𝑡 ∈ C𝛾 almost surely for 𝛾 + 𝛽 > 1.

Remark 5.2. If 𝐹 = 𝐵( 𝑓 , 𝑔) for some 𝑓 ∈ 𝐶𝑡C𝛾 and 𝑔 ∈ 𝐶𝑡C 𝛿 such that 𝐽 ( 𝑓 , 𝑔)𝑡 has canonical
regularity, then ℎ𝑡 = 𝐽 ( 𝑓 , 𝑔)𝑡 ∈ C (𝑟+1)− , where 𝑟 = 𝛾 ∧ 𝛿∧ (𝛾 + 𝛿). Hence, the condition in Theorem 5.1
becomes 𝑟 + 𝛽 = 𝛾 ∧ 𝛿 ∧ (𝛾 + 𝛿) + 𝛽 > 0.

Notice that this remark extends to the setting where

𝐹 =
𝑚∑
𝑖=0

𝑐𝑖𝐵( 𝑓 (𝑖) , 𝑔 (𝑖) ) (5.3)

for some 𝑐𝑖 ∈ R, 𝑓 (𝑖) ∈ 𝐶𝑡C𝛾𝑖 and 𝑔 (𝑖) ∈ 𝐶𝑡C 𝛿𝑖 , where 𝑟𝑖 = 𝛾𝑖 ∧ 𝛿𝑖 ∧ (𝛾𝑖 + 𝛿𝑖) and the condition on the
indexes becomes 𝑟 + 𝛽 > 0 with 𝑟 = min 𝑟𝑖 .

Remark 5.3. Theorem 5.1 immediately extends to the setting where 𝑣𝑡 = 𝑧𝑡 + ℎ𝑡 + 𝑘𝑡 and both ℎ𝑡 and
𝑘𝑡 are adapted to G𝑡 , with ℎ𝑡 satisfying the assumptions of Theorem 5.1. Then Law(𝑧𝑡 + ℎ𝑡 + 𝑘𝑡 | G𝑡 ) is
equivalent as a measure to Law(𝑧𝑡 + 𝑘𝑡 | G𝑡 ) almost surely.

Remark 5.4. The condition that 𝑧0 = 𝑣0 is only for simplicity and not needed.

Proof of Theorem 5.1. Without loss of generality, we can take 𝑧0 = 𝑣0 = 0 since the effect of the initial
condition cancels out when looking at the difference between 𝑧𝑡 and 𝑣𝑡 . Since ℎ𝑡 is adapted to G𝑡 , we can
apply the classical Cameron-Martin Theorem with ℎ𝑡 considered deterministic by conditioning. A direct
application of the Itô isometry to equation (4.3) shows that 𝑧𝑡 from equation (5.1) has covariance operator
𝐶𝑡 =

∫ 𝑡

0 𝑒
−(𝑡−𝑠)𝐴ΞΞ∗𝑒−(𝑡−𝑠)𝐴𝑑𝑠. Because Ξ ≈ 𝐴𝛽/2, we have that 𝐶𝑡 ≈ 𝐶𝑡 =

∫ 𝑡

0 𝑒
−(𝑡−𝑠)𝐴𝐴𝛽𝑒−(𝑡−𝑠)𝐴𝑑𝑠.

Hence, the classical condition from the Cameron-Martin Theorem that ‖𝐶
1
2
𝑡 ℎ𝑡 ‖𝐿2 < ∞ is equivalent to

‖𝐴
1−𝛽

2 ℎ𝑡 ‖𝐿2 < ∞. Since this condition is assumed to hold almost surely, the classical Cameron-Martin
Theorem implies that Law(𝑧𝑡 + ℎ𝑡 | 𝜎(ℎ𝑠 : 𝑠 ≤ 𝑡) ) is equivalent as a measure to Law(𝑧𝑡 ) almost surely.
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Since 𝜎(𝑊𝑠 : 𝑠 ≤ 𝑡) is independent of G𝑡 , we have that the complement of 𝜎(ℎ𝑠 : 𝑠 ≤ 𝑡) in G𝑡 is
independent of the random measure Law(𝑧𝑡 + ℎ𝑡 | 𝜎(ℎ𝑠 : 𝑠 ≤ 𝑡) ), which implies that Law(𝑧𝑡 + ℎ𝑡 | G𝑡 )
is equivalent as a measure to Law(𝑧𝑡 ). To verify the last remark, observe that since ℎ𝑡 ∈ C𝛾 , we
almost surely have 𝐴

1−𝛽
2 ℎ𝑡 ∈ C𝛾+𝛽−1 almost surely. Now since ‖𝐴

1−𝛽
2 ℎ𝑡 ‖𝐿2 � ‖𝐴

1−𝛽
2 ℎ𝑡 ‖C 𝜖 , we see that

if 𝛽 + 𝛾 − 1 > 𝜖 for some 𝜖 > 0, the last remark holds. This is possible because we have assumed
𝛽 + 𝛾 > 1. �

5.2. The standard Girsanov Theorem

The Girsanov Theorem is essentially the specialisation of the Cameron-Martin Theorem to the path-
space of a stochastic differential equation, while relaxing the assumptions to allow random shifts in the
drift that are adapted to the Brownian motion forcing the SDE.

We again consider the setting of equation (5.1). Since we will be discussing path-space measures,
we will write 𝑣 [0,𝑡 ] and 𝑧 [0,𝑡 ] for the random variable denoting the entire path of v and z respectively,
on the time interval [0, 𝑡]. We now give a version of the Girsanov Theorem adapted to our setting.

Theorem 5.5 (A version of Girsanov). In the setting of equation (5.1) with 𝑧0 = 𝑣0, let F𝑡 be a filtration
to which W is an adapted Brownian motion, and let G𝑡 be a filtration independent of F𝑡 . Let 𝜏 be a
stopping time adapted to H𝑡 = 𝜎(G𝑡 ,F𝑡 ) with P(𝜏 > 0) > 0 such that 𝑣𝑡 and 𝐹𝑡 are stochastic processes
adapted to H𝑡∧𝜏 so that 𝑣𝑡 solves equation (5.1) for 𝑡 < 𝜏, and∫ 𝑡

0
‖𝐴−𝛽/2𝐹𝑠 ‖2

𝐿2 𝑑𝑠 < ∞, (5.4)

almost surely for all 𝑡 < 𝜏. Then Law(𝑣 [0,𝑡 ] | 𝑡 < 𝜏,G𝑡 ) 
 Law(𝑧 [0,𝑡 ] ) almost surely.
In particular, it is sufficient that 𝐹 ∈ 𝐶𝑡C𝜎 for 𝜎 + 𝛽 > 0 and any 𝑡 < 𝜏 for equation (5.4) to hold

almost surely.

Remark 5.6. In the setting of Theorem 5.5, we assume that there exist stochastic processes 𝑓𝑡 and 𝑔𝑡
so that 𝐹𝑡 = 𝐵( 𝑓𝑡 , 𝑔𝑡 ) for all 𝑡 < 𝜏 with 𝑓 ∈ 𝐶𝑡C𝛾 , 𝑔 ∈ 𝐶𝑡C 𝛿 and such that 𝐹𝑡 = 𝐵( 𝑓𝑡 , 𝑔𝑡 ) has canonical
regularity, namely 𝐹 ∈ 𝐶𝑡C𝑟−1 for 𝑟 = 𝛾 ∧ 𝛿 ∧ (𝛾 + 𝛿) and all 𝑡 < 𝜏. Then Theorem 5.5 applies, and the
regularity assumption in equation (5.4) is implied by 𝑟 − 1 + 𝛽 = 𝛾 ∧ 𝛿 ∧ (𝛾 + 𝛿) + 𝛽 − 1 > 0 or, rather,
𝑟 + 𝛽 = 𝛾 ∧ 𝛿 ∧ (𝛾 + 𝛿) + 𝛽 > 1.

The condition 𝑟 + 𝛽 = 𝛾∧𝛿∧ (𝛾+𝛿) + 𝛽 > 1 from Remark 5.6 should be contrasted with the condition
𝑟 + 𝛽 = 𝛾∧𝛿∧ (𝛾+𝛿) + 𝛽 > 0 from Remark 5.2. Relative to the Cameron-Martin Theorem 5.1, the basic
Girsanov Theorem 5.5 does have the advantage that 𝐹𝑡 can be adapted to the forcing Brownian motion
and not independent. Also, the results are not comparable, as Theorem 5.5 proves pathwise equivalence
while Theorem 5.1 only proves equivalence at a fixed time t.

Proof of Theorem 5.5. We begin by defining

𝜏𝑀 = 𝜏 ∧ inf
{
𝑡 > 0 :

∫ 𝑡

0
‖𝐴−𝛽/2𝐹𝑠 ‖2

𝐿2𝑑𝑠 > 𝑀
}

and

ℒ 𝑣𝑀𝑡 = 1{𝑡<𝜏𝑀 }𝐹𝑡 𝑑𝑡 + Ξ 𝑑𝑊𝑡 .

Observe that 𝑣𝑀𝑡 is well-defined on [0, 𝑡] for any 𝑡 > 0 due to the stopping time and that 𝑣𝑡 = 𝑣𝑀𝑡 on the
event {𝑡 < 𝜏𝑀 }. Then

exp
( ∫ 𝑡

0
‖𝐴−𝛽/21{𝑠<𝜏𝑀 }𝐹𝑠 ‖2

𝐿2𝑑𝑠
)
< 𝐶 (1 + 𝑒𝑀 ),
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almost surely for some fixed constant C. Thus, the classical Kazamaki criterion (see for instance [Kry09])
ensures that the local-martingale in the Girsanov Theorem is an integrable martingale. Let 𝑣𝑀[0,𝑡 ] and
𝑧 [0,𝑡 ] be the path-valued random variables over the time interval [0, 𝑡]. We have that Law(𝑣𝑀[0,𝑡 ] ) is
equivalent as a measure to Law(𝑧 [0,𝑡 ] ). Since G𝑡 is independent of the Brownian motion W, we have
that Law(𝑣𝑀[0,𝑡 ] | G𝑡 ) is equivalent as a measure to Law(𝑧 [0,𝑡 ] ) almost surely.

We now show that we can remove the truncation level M. Now let E be a measurable subset of paths
of length T such that P(𝑧 [0,𝑇 ] ∈ 𝐸) = 0. To prove the absolute continuity claim, we need to show that
P
(
𝑣 [0,𝑇 ] ∈ 𝐸, 𝜏 > 𝑇 | G𝑇

)
= 0 almost surely. If P(𝜏 > 𝑇 | G𝑇 ) = 0 almost surely, we are done. Hence

we proceed assuming P(𝜏 > 𝑇 | G𝑇 ) > 0 almost surely.
Because, conditioned on G𝑇 , the law of 𝑣𝑀[0,𝑇 ] is equivalent to the law of 𝑧 [0,𝑇 ] almost surely, we

know that P(𝑣𝑀[0,𝑇 ] ∈ 𝐸 | G𝑇 ) = 0 for all 𝑀 > 0 almost surely. We also know from the construction of
𝑣𝑀 that P(𝑣𝑀[0,𝑇 ] ∈ 𝐸, 𝜏𝑀 > 𝑇 | G𝑇 ) = P(𝑣 [0,𝑇 ] ∈ 𝐸, 𝜏𝑀 > 𝑇 | G𝑇 ). Now, since{

𝑣 [0,𝑇 ] ∈ 𝐸, 𝜏 > 𝑇
}
⊂

⋃
𝑀>0

{
𝑣 [0,𝑇 ] ∈ 𝐸, 𝜏𝑀 > 𝑇

}
,

we have that

P
(
𝑣 [0,𝑇 ] ∈ 𝐸, 𝜏 > 𝑇 | G𝑇

)
≤ sup

𝑀>0
P
(
𝑣 [0,𝑇 ] ∈ 𝐸, 𝜏𝑀 > 𝑇 | G𝑇

)
≤ sup

𝑀>0
P
(
𝑣𝑀[0,𝑇 ] ∈ 𝐸, 𝜏𝑀 > 𝑇 | G𝑇

)
≤ sup

𝑀>0
P
(
𝑣𝑀[0,𝑇 ] ∈ 𝐸 | G𝑇

)
= 0,

as already noted, since P
(
𝑧 [0,𝑇 ] ∈ 𝐸

)
= 0. �

Remark 5.7. We believe that in the context of diffusions, namely when the F in equation (5.1) is a
nonanticipative function of v, the condition given in equation (5.4) of Theorem 5.5 should be optimal
in the sense that equivalence holds if and only if equation (5.4) holds. This statement is true in finite
dimension; see [LS01, Theorem 7.5].

Remark 5.8. Building on Remark 5.7, by adding a condition similar to equation (5.4) for z, it should be
possible to prove equivalence of the laws. The extension of these results in the framework of Theorem 5.5
goes beyond the scope of this paper and will be addressed elsewhere.

Alternatively, if one has control of some moments of the solution sufficient to imply global existence
(namely 𝜏∞ = ∞), one can typically prove the equivalence between the laws in Remark 5.6. For example,
this can be accomplished using the relative entropy calculations given in Lemma C.1 of [MS05].

5.3. The Time-Shifted Girsanov Method

We now present the Time-Shifted Girsanov Method, which was developed in [MS05, MS08, Wat10].
It will provide essentially the same regularity conditions in our setting as in Remark 5.2 while allowing
adapted shifts as in the standard Girsanov Theorem. Interestingly, we will see that the classical Cameron-
Martin Theorem still holds some advantages when dealing with extremely rough Gaussian objects.

Considering the mild-integral formulation of equation (5.1)

𝑣𝑡 − 𝑒−𝑡 𝐴𝑣0 =
∫ 𝑡

0
𝑒−(𝑡−𝑠)𝐴𝐹𝑠 𝑑𝑠 +

∫ 𝑡

0
𝑒−(𝑡−𝑠)𝐴Ξ 𝑑𝑊𝑠 , (5.5)

we can understand the first term as the shift of the Gaussian measure, which is the second term. We will
now recast the drift term in equation (5.5) to extend the applicability of the Girsanov Theorem.
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We begin with the observation that for fixed 𝑇 > 0,∫ 𝑇

0
𝑒−(𝑇 −𝑠)𝐴𝐹𝑠𝑑𝑠 =

∫ 𝑇

0
𝑒−

1
2 (𝑇 −𝑠)𝐴𝑒−

1
2 (𝑇 −𝑠)𝐴𝐹𝑠 𝑑𝑠

= 2
∫ 𝑇

𝑇
2

𝑒−(𝑇 −𝑠)𝐴𝑒−(𝑇 −𝑠)𝐴𝐹2𝑠−𝑇 𝑑𝑠 =
∫ 𝑇

0
𝑒−(𝑇 −𝑠)𝐴𝐹𝑠 𝑑𝑠,

(5.6)

where

𝐹𝑠 = 21[ 𝑇2 ,𝑇 ] (𝑠)𝑒
−(𝑇−𝑠)𝐴𝐹2𝑠−𝑇 . (5.7)

Since 2𝑠 −𝑇 ≤ 𝑠 for all 𝑠 ∈ [𝑇2 , 𝑇], 𝐹𝑠 is adapted to the filtration of 𝜎-algebras generated by the forcing
Wiener process W when 𝐹𝑠 is also adapted to the same filtration. Hence, we can define the auxiliary Itô
stochastic differential equation

ℒ 𝑣̃𝑡 = 𝐹𝑡 𝑑𝑡 + Ξ 𝑑𝑊𝑡 , (5.8)

which is driven by the same stochastic forcing as used to construct 𝑣𝑡 . Choosing the initial data to
coincide with 𝑣0, the mild/integral formulation of this equation is

𝑣̃𝑡 − 𝑒−𝑡 𝐴𝑣0 =
∫ 𝑡

0
𝑒−(𝑡−𝑠)𝐴𝐹𝑠 𝑑𝑠 +

∫ 𝑡

0
𝑒−(𝑡−𝑠)𝐴Ξ 𝑑𝑊𝑠 . (5.9)

By comparing equation (5.5) and equation (5.9), we see that 𝑣̃𝑇 = 𝑣𝑇 , while 𝑣̃𝑡 need not equal 𝑣𝑡 for
𝑡 ≠ 𝑇 . Hence, if we use the standard Girsanov Theorem to show that the law of 𝑣̃ [0,𝑇 ] on path-space
is absolutely continuous with respect to the law of 𝑧 [0,𝑇 ] (the solution to equation (5.1)), then we can
conclude that the law of 𝑣̃𝑇 (at the specific time T) is absolutely continuous with respect to the law of
𝑧𝑇 (again at the specific time T). Finally, since 𝑣𝑇 = 𝑣̃𝑇 , we conclude that the law of 𝑣𝑇 is absolutely
continuous with respect to the law of 𝑧𝑇 , both at the specific time T.

The power of this reformulation is seen when we write the condition needed to apply the Girsanov
Theorem to remove the drift from equation (5.8). We now are required to have control over moments of∫ 𝑇

0
‖𝐴−𝛽/2𝐹𝑠 ‖2

𝐿2 𝑑𝑠 =
∫ 𝑇

0
‖𝐴−𝛽/2𝑒−(𝑇 −𝑠)𝐴𝐹𝑠 ‖2

𝐿2 𝑑𝑠 (5.10)

to apply the standard Girsanov Theorem to transform the path-space law of 𝑣̃ [0,𝑇 ] to that of 𝑧 [0,𝑇 ] .
Comparing equation (5.4) with equation (5.10), we see that the additional semigroup 𝑒−(𝑇 −𝑠)𝐴 in the
integrand improves its regularity significantly.

Similarly, if we want to compare the distribution at time𝑇 > 0 of two equations starting from different
initial conditions 𝑣0, 𝑧0 ∈ C𝑏, for 𝛽 ∈ R, then we can observe that

𝑒−𝑇 𝐴𝑣0 = 𝑒−𝑇 𝐴𝑧0 + 𝑒−𝑇 𝐴(𝑣0 − 𝑧0) = 𝑒−𝑇 𝐴𝑧0 +
∫ 𝑇

𝑇
2

𝑒−(𝑇 −𝑠)𝐴 2
𝑇
𝑒−𝑠𝐴(𝑣0 − 𝑧0) 𝑑𝑠

= 𝑒−𝑇 𝐴𝑧0 +
∫ 𝑇

𝑇
2

𝑒−(𝑇 −𝑠)𝐴𝐹 (0)
𝑠 𝑑𝑠,

where 𝐹 (0)
𝑠 = 1[ 𝑇2 ,𝑇 ] (𝑠) 2

𝑇 𝑒
−𝑠𝐴(𝑣0 − 𝑧0). This is the observation at the core of the Bismut-Elworthy-Li

formula [Bis84, EL94]. Observe that 𝐹 (0) ∈ 𝐶𝑇 C𝑏 for any 𝑏 ∈ R, regardless of the initial conditions, so
𝐴−

𝛽
2 𝐹 (0) ∈ 𝐶𝑇 𝐿2, and we will always be able to use the Girsanov Theorem to remove this term.
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It will be convenient to consider a slightly generalised setting where 𝑣𝑡 , 𝑣̃𝑡 and 𝜁𝑡 , respectively, solve
mild forms of the following equations,

ℒ 𝑣𝑡 = 𝐹𝑡 𝑑𝑡 + 𝐺𝑡 𝑑𝑡 + Ξ 𝑑𝑊𝑡 ,

ℒ 𝑣̃𝑡 = (𝐹𝑡 + 𝐹 (0)
𝑡 ) 𝑑𝑡 + 𝐺𝑡 𝑑𝑡 + Ξ 𝑑𝑊𝑡 ,

ℒ 𝜁𝑡 = 𝐺𝑡 𝑑𝑡 + Ξ 𝑑𝑊𝑡 ,

(5.11)

with initial conditions 𝑣0 and 𝑧0, where 𝜁0 = 𝑣̃0 = 𝑧0. Here 𝐹𝑡 is defined as in equation (5.7), 𝐹 (0)
𝑡 as

just above, and 𝐺𝑡 and 𝐹𝑡 are some stochastic processes.

Theorem 5.9 (Time-Shifted Girsanov Method). In the setting of equation (5.11), let F𝑡 be a filtration to
which W is an adapted Brownian motion, let G𝑡 be a filtration independent of F𝑡 . Fix initial conditions
𝑣0 and 𝑧0, and let 𝜏 be a stopping time adapted to H𝑡 = 𝜎(F𝑡 ,G𝑡 ) such that P(𝜏 > 0) > 0. Let 𝐺𝑡 be
stochastic processes adapted to G𝑡 and defined for all 𝑡 ≥ 0. Let 𝑣𝑡 and 𝐹𝑡 be stochastic process adapted
to H𝑡∧𝜏 such that 𝑣𝑡 solves equation (5.11) for 𝑡 < 𝜏 and∫ 𝑡

0
‖𝐴−

𝛽
2 𝑒−(𝑡−𝑠)𝐴𝐹𝑠 ‖2

𝐿2 𝑑𝑠 < ∞ (5.12)

almost surely for all 𝑡 < 𝜏, and 𝑣𝑡 and 𝜁𝑡 have initial conditions 𝑣0 and 𝑧0, respectively. Then Law(𝑣𝑡 |
𝑡 < 𝜏,G𝑡 ) 
 Law(𝜁𝑡 | G𝑡 ) almost surely. Additionally, there exists a solution 𝑣̃𝑡 , which solves equation
(5.11) for 𝑡 < 𝜏 and with Law(𝑣̃ [0,𝑡 ] | 𝑡 < 𝜏,G𝑡 ) 
 Law(𝜁 [0,𝑡 ] | G𝑡 ) almost surely. In particular, it is
sufficient that 𝐹 ∈ 𝐶𝑡C𝜎 almost surely for 𝜎 + 𝛽+1 > 0 and for any 𝑡 < 𝜏 to ensure that equation (5.12)
holds.

Remark 5.10. In the setting of Theorem 5.9, we assume that there exist stochastic processes 𝑓𝑡 and 𝑔𝑡
so that 𝐹𝑡 = 𝐵( 𝑓𝑡 , 𝑔𝑡 ) for all 𝑡 < 𝜏 with 𝑓 ∈ 𝐶𝑡C𝛾 , 𝑔 ∈ 𝐶𝑡C 𝛿 and such that 𝐹𝑡 = 𝐵( 𝑓𝑡 , 𝑔𝑡 ) has canonical
regularity, namely 𝐹 ∈ 𝐶𝑡C𝑟−1 for 𝑟 = 𝛾 ∧ 𝛿 ∧ (𝛾 + 𝛿) and all 𝑡 < 𝜏. Then the regularity assumption of
equation (5.4) is satisfied, provided that 𝑟 + 𝛽 = 𝛾 ∧ 𝛿 ∧ (𝛾 + 𝛿) + 𝛽 > 0.

As in Remark 5.2, this remark extends to the setting where

𝐹 =
𝑚∑
𝑖=0

𝑐𝑖𝐵( 𝑓 (𝑖) , 𝑔 (𝑖) )

for some 𝑐𝑖 ∈ R, 𝑓 (𝑖) ∈ 𝐶𝑡C𝛾𝑖 and 𝑔 (𝑖) ∈ 𝐶𝑡C 𝛿𝑖 , where 𝑟𝑖 = 𝛾𝑖 ∧ 𝛿𝑖 ∧ (𝛾𝑖 + 𝛿𝑖) and the condition on the
indexes becomes 𝑟 + 𝛽 > 0 with 𝑟 = min 𝑟𝑖 .

Remark 5.11 (Comparing Theorems 5.1, 5.5 and 5.9). Comparing the Cameron-Martin Theorem, the
Standard Girsanov Theorem and the Time-Shifted Girsanov Method in the setting of 𝐹𝑡 = 𝐵( 𝑓𝑡 , 𝑔𝑡 ),
we see that the Cameron-Martin Theorem and the Time-Shifted Girsanov Method impose identical
regularity conditions on 𝑓𝑡 and 𝑔𝑡 . The Time-Shifted Girsanov Method has the added advantage of
allowing one to consider f and g, which are only adapted to the Brownian motion W and not independent
as the Cameron-Martin theorem requires. This added flexibility will be critical to proving the needed
absolute continuity for the remainder variables R and S.

Both only prove equivalence at a fixed time, which is an advantage, as we only need this for our
applications. However, we will see that the requirement that 𝐵( 𝑓𝑡 , 𝑔𝑡 ) has the canonical regularity of
the Time-Shifted Girsanov Method will be more restrictive than the requirement that 𝐽 ( 𝑓 , 𝑔)𝑡 has the
canonical regularity of the Cameron-Martin Theorem.

Proof of Theorem 5.9. Fixing a time T, we define∫ 𝑇

0
‖𝐴−

𝛽
2 𝐹𝑠 ‖2

𝐿2 𝑑𝑠 =
∫ 𝑇

0
‖𝐴−

𝛽
2 𝑒−(𝑇 −𝑠)𝐴𝐹𝑠 ‖2

𝐿2 𝑑𝑠 < ∞,
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almost surely on the event {𝑇 < 𝜏}. Fix a positive integer M. The following stopping time

𝜏𝑀 = 𝜏 ∧ inf
{
𝑡 > 0 :

∫ 𝑡

0
‖𝐴−

𝛽
2 𝐹𝑠 ‖2

𝐿2 𝑑𝑠 > 𝑀
}

is well-defined, and 𝜏𝑀 → 𝜏 monotonically as 𝑀 → ∞. Let 𝑣̃𝑡 be the solution to equation (5.8), and
observe that it is well-defined on [0, 𝑇] on the event {𝑇 < 𝜏} with 𝑣𝑇 = 𝑣̃𝑇 on the same event. Now
consider

ℒ 𝑣̃𝑀𝑡 = 1{𝑡<𝜏𝑀 }𝐹𝑡 𝑑𝑡 + 𝐹 (0)
𝑡 𝑑𝑡 + 𝐺𝑡 𝑑𝑡 + Ξ 𝑑𝑊𝑡 ,

with 𝑣̃0 = 𝑧0. Clearly, 𝑣̃𝑀𝑡 = 𝑣̃𝑡 for 𝑡 < 𝜏𝑀 . Furthermore, because of the definition of 𝜏𝑀 and the fact
that 𝐹 (0) ∈ 𝐶𝑇 C𝑏 for any 𝑏 ∈ R, the classical Girsanov Theorem implies that the law of the trajectories
of 𝑣̃𝑀 on [0, 𝑇], conditioned on G𝑇 , are equivalent (i.e., mutually absolutely continuous) to the law
of 𝜁 , conditioned on G𝑇 , on [0, 𝑇]. In the sequel, we will write 𝜁 [0,𝑇 ] for the random variable on paths
of lengths T induced by the law of 𝜁 .

By the same argument as in Theorem 5.5, we remove the localisation by 𝜏𝑀 to obtain Law(𝑣̃ [0,𝑇 ] |
𝜏 > 𝑇) 
 Law(𝜁 [0,𝑇 ] | G𝑇

)
almost surely.

To conclude the proof, we let D be any measurable subset such that P(𝜁𝑇 ∈ 𝐷 | G𝑇 ) = 0, where 𝑧𝑇
is the distribution of z at the fixed time T. Let 𝐷 [0,𝑇 ] be the subset of path-space of trajectories that are
in D at time T. Then

0 = P
(
𝜁𝑇 ∈ 𝐷 | G𝑇 )

= P(𝜁 [0,𝑇 ] ∈ 𝐷 [0,𝑇 ] | G𝑇
)
= P

(̃
𝑣 [0,𝑇 ] ∈ 𝐷 [0,𝑇 ] , 𝜏 > 𝑇 | G𝑇

)
= P

(̃
𝑣𝑇 ∈ 𝐷, 𝜏 > 𝑇 | G𝑇

)
= P

(
𝑣𝑇 ∈ 𝐷, 𝜏 > 𝑇 | G𝑇

)
, (5.13)

where the last equality follows from the fact that 𝑣̃𝑇 = 𝑣𝑇 on the event {𝜏 > 𝑇}. The chain of implications
in equation (5.13) shows that the law of 𝑣𝑇 restricted to the event {𝜏 > 𝑇} is absolutely continuous with
respect to the law of 𝜁𝑇 with both conditioned on G𝑇 . �

5.4. Range of applicability of methods

We now consider the regimes for which the Cameron-Martin Theorem and the Time-Shifted Girsanov
Method can be applied directly to equation (2.1) to prove Theorem 2.1. We will proceed formally with
the understanding that some neglected factors will lead to additional complications that will require
more nuanced arguments.

For the moment, we assume that equation (2.1) has canonical regularity, namely the regularity
dictated by the stochastic convolution term. Thus, 𝑢 ∈ 𝐶𝑡C ( 1

2−𝛼)
− , where recall that 𝛼 is the exponent

that sets the spatial regularity of the forcing.
When 𝛼 < 1

2 , the solution 𝑢𝑡 to equation (2.1) has positive Hölder regularity with 𝑢𝑡 ∈ C ( 1
2−𝛼)

− . This
implies that 𝐵(𝑢𝑡 ) has canonical regularity with 𝐵(𝑢𝑡 ) ∈ C (− 1

2−𝛼)
− . Thus, the regularity condition to

apply the Cameron-Martin Theorem or the Time-Shifted Girsanov Method to equation (2.2) becomes
1
2 − 𝛼 + 𝛼 = 1

2 > 0, which is always true. See Remark 5.2, Remark 5.10 and Remark 5.11.
When 𝛼 ≥ 1

2 , the solution 𝑢𝑡 to equation (2.1) has negative Hölder regularity since 𝑢𝑡 ∈ C ( 1
2−𝛼)

− still.
If we proceed as if the relevant terms have canonical regularity (𝐵(𝑢𝑡 ) in the case of the Time-Shifted
Girsanov Method and 𝐽 (𝑢)𝑡 in the case of the Cameron-Martin Theorem), then the regularity condition
becomes 2( 1

2 − 𝛼) + 𝛼 = 1 − 𝛼 > 0, which restricts us to the setting of 𝛼 < 1. One cannot directly
apply either the Time-Shifted Girsanov Method or the Cameron-Martin Theorem to equation (2.1) when
𝛼 ≥ 1

2 . We will see that we need the multilevel decomposition to incrementally improve the regularity of
the solution to the point where we can apply the Time-Shifted Girsanov Method to the last level, namely
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𝑅 (𝑛) or 𝑆 (𝑛) depending on the decomposition. Along the way, we typically use the Cameron-Martin
Theorem to prove equivalence of the levels in the decomposition to the appropriate Gaussian processes.
This is possible since the fed-forward structure of the decomposition means each level is conditionally
independent from the previous. When 𝛼 ∈ [ 3

4 , 1), there is an added complication that the terms to be
removed by the change of measure can be defined only when integrated against the heat semigroup.
This necessitates the use of the Cameron-Martin Theorem rather than the Time-Shifted Girsanov
Method.

5.5. Interpreting the Time-Shifted Girsanov Method

It is tempting to dismiss the manipulations in equation (5.6) as a trick of algebraic manipulation. We
encourage you not to do so.

The standard Girsanov Theorem compares the two equations of the form in equation (5.1) and asks
when we can shift the noise realisation to another ‘allowed’ noise realisation to absorb any differences in
the drift terms, namely the 𝐹𝑡 in our setting. Here, ‘allowed’ means in a way that across all realisations,
the resulting noise term’s distribution stays equivalent to the original noise term’s distribution. To
keep the path measures equivalent on [0, 𝑇], one needs to do this instantaneously at every moment of
time.

Since the equation for 𝑧𝑡 in equation (5.1) is a forced linear equation, the linear superposition
principle (a.k.a. Duhamel’s principle or the variation of constants formula) applies. It states that we
move an impulse injected into the system at time s to another time t by mapping it under the linear flow
from the tangent space at time s to the tangent space at time t. Through this lens, we can interoperate
equation (5.6) as a reordering of the impulses injected into the system by 𝐹𝑠 over the interval 𝑠 ∈ [0, 𝑇].
The impulse injected at time s is moved to time 𝑡 = 1

2 (𝑇 + 𝑠) via 𝑒−(𝑡−𝑠)𝐴 = 𝑒−
1
2 (𝑇 −𝑠)𝐴. 𝐹𝑡 is the resulting

effective impulse at the time 𝑡 = 1
2 (𝑇 + 𝑠). The Time-Shifted Girsanov Method compensates for the

time-shifted impulse 𝐹𝑡 using the forcing via a change of measure. The resulting 𝐹𝑡 is more regular than
𝐹𝑡 for 𝑡 < 𝑇 . The regularising effect of the semigroup 𝑒𝑡 𝐴 vanishes as we approach T. The requirement
𝛽+𝛾+1 > 0 ensures that the singularity at 𝑡 = 𝑇 is sufficiently integrable to apply the classical Girsanov
Theorem to the resulting process with its forcing impulses rearranged, which was denoted by 𝑣̃ in the
Time-Shifted Girsanov discussion in Section 5.3.

6. A decomposition of noise and smoothness

The idea of decomposing the solution into the sum of terms of different regularity is a staple of SPDE
analysis dating back at least to the pioneering work of Da Prato, Zabczyk, Flandoli, Debussche and so
on. See, for instance, [DPZ96, FG95, DPD02]. The decomposition of the solution 𝑢𝑡 into 𝑧𝑡 + 𝑣𝑡 , where
𝑧𝑡 solves equation (2.3), is the starting point of many arguments. The advantage of this decomposition
is that z, the rougher of the two equations, is very explicit and has all the direct stochastic forcing. In
contrast, typically the equation for v is not a stochastic equation (as it contains no Itô integrals). Rather,
it is a random equation, and z is contained in some of its terms. This leads to v typically being more
regular than z.

We will build on these ideas with some important distinctions. The most basic will be that because
we intend to use the Cameron-Martin Theorem/Time-Shifted Girsanov Method on each level, we will
leave noise in each equation. Moreover, we see that our explorations expose additional structures in the
equation. In particular, to reach 𝛼 arbitrarily close to one, we will be required to divide our solution into
an ever-increasing number of pieces as we approach one.

As mentioned in the introduction, there are three key ingredients in our result. The first is that products
of Gaussian objects can be defined via renormalisations with their canonical regularity. The second is
the Cameron-Martin Theorem/Time-Shifted Girsanov Method. These two elements were discussed in
the proceeding two sections. We now introduce the third component, a noise decomposition across
scales. With all three central ideas on the table, we can sketch the main proofs of this note.
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6.1. Regularity and existence times of solutions

We begin with a simple lemma that relates the maximal time of existence of 𝑢𝑡 with those of
𝑋 (0) , 𝑋 (1) , . . ., 𝑋 (𝑛) , 𝑅 (𝑛) satisfying equations (3.1) and (3.2) and 𝑌 (0) , 𝑌 (1) , . . ., 𝑌 (𝑛) , 𝑆 (𝑛) satisfying
equations (3.8) and (3.9).

Lemma 6.1. Let 𝜏∞ be the maximal existence time of 𝑢𝑡 .

1. If (𝑋 (0) , 𝑋 (1) , . . . , 𝑋 (𝑛) , 𝑅 (𝑛) ) solves equation (3.2), then 𝑋 (0)
𝑡 , 𝑋 (1)

𝑡 , . . . , 𝑋 (𝑛)
𝑡 exist for all time t.

Additionally, if equation (3.1) holds (or, equivalently, equation (3.3) holds), then the maximal time
of existence for 𝑅 (𝑛) is the same as 𝜏∞ almost surely.

2. If (𝑌 (0) , 𝑌 (1) , . . . , 𝑌 (𝑛) , 𝑆 (𝑛) ) solves equation (3.9), then 𝑌 (0)
𝑡 , 𝑌 (1)

𝑡 , . . . , 𝑌 (𝑛)
𝑡 exist for all time t.

Additionally, if equation (3.8) holds (or, equivalently, equation (3.3) holds), then the maximal time
of existence for 𝑆 (𝑛) is the same as 𝜏∞ almost surely.

Proof. The argument is the same in both cases. We detail the first case. 𝑋 (0)
𝑡 , 𝑋 (1)

𝑡 , . . ., 𝑋 (𝑛)
𝑡 exist for

all time t because they are linear equations, and the drifts are well-defined for all time. If equation (3.1)
holds, we have

𝑢𝑡 −
𝑛∑
𝑖=0

𝑋 (𝑖)
𝑡

dist
= 𝑅 (𝑛)

𝑡 ,

so the maximal time of existence for 𝑅 (𝑛) is almost surely the same as that of u. If equation (3.3) holds,
then equation (3.2) combined with equation (3.3) implies equation (3.1). �

Remark 6.2. Moving forward, we will take 𝑢𝑡 to be constructed by the decomposition in either equation
(3.1) or equation (3.8). Hence, in light of Lemma 6.1, the existence time 𝜏∞ will almost surely be that
of 𝑅 (𝑛) and 𝑆 (𝑛) . Recalling the definition of 𝐶𝑇 C

𝛿
from Section 4.1, we will see in Proposition 6.19

and Proposition 7.3 that 𝑅 (𝑛) , 𝑆 (𝑛) ∈ 𝐶𝑇 C
𝛿−

for some 𝛿 > 0, by setting 𝑅 (𝑛)
𝑡 = for 𝑡 ≥ 𝜏∞ and the

same for 𝑆 (𝑛) . Both of these results follow from the rather classical existence and uniqueness theory in
Appendix C, once all the more singular terms have been properly renormalised to give them meaning.

6.2. Absolute continuity via decomposition

As already indicated, we will prove Theorem 2.1 using the decomposition in either equation (3.1) or
equation (3.8). In the first case, we will prove equation (3.7), and in the second case equation (3.10). In
both cases, Theorem 2.1 will follow from inductively applying the following lemma.

Lemma 6.3. Let U, 𝑈 ′, Z and 𝑍 ′ be random variables. Let G be a 𝜎-algebra such that U and Z are
G-measurable and 𝑍 ′ is independent of G. If Law(𝑈) 
 Law(𝑍) and Law(𝑈 ′ | G) 
 Law(𝑍 ′) almost
surely, then Law(𝑈 ′ +𝑈) 
 Law(𝑍 ′ + 𝑍).

Proof of Lemma 6.3. We can assume Law(𝑈 ′ | G) (𝜔) 
 Law(𝑍 ′) for every𝜔. Let D be any measurable
set with P(𝑍 ′ + 𝑍 ∈ 𝐷) = 0. Since Z is G-measurable and 𝑍 ′ is independent of G, there exists a set E
such that P(𝑍 ∈ 𝐸) = 1 and

0 = P(𝑍 ′ ∈ 𝐷 − 𝑥 | 𝑍 = 𝑥) = P(𝑍 ′ ∈ 𝐷 − 𝑥)

for every 𝑥 ∈ 𝐸 . Also, we have P(𝑈 ∈ 𝐸) = 1 since Law(𝑈) 
 Law(𝑍), and P(𝑈 ′ ∈ 𝐷 − 𝑥 | G) = 0
for every 𝑥 ∈ 𝐸 since Law(𝑈 ′ | G) 
 Law(𝑍 ′). In particular, since U is G-measurable, the previous
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statement implies

P(𝑈 +𝑈 ′ ∈ 𝐷) =
∫
𝐸
P(𝑈 ′ ∈ 𝐷 − 𝑥 | 𝑈 = 𝑥) P(𝑈 ∈ 𝑑𝑥) = 0,

which completes the proof. �

Corollary 6.4. Assume that, for some n, the system of equations (3.2) (respectively, (3.9)) is well-defined
and satisfies the absolute continuity conditions given in equation (3.7) (respectively, equation (3.10)).
Then in the first case,

Law

(
𝑅 (𝑛)
𝑡 +

𝑛∑
𝑘=0

𝑋 (𝑘)
𝑡

��� 𝜏∞ > 𝑡

)

 Law

(
𝑍 (𝑛)
𝑡 +

𝑛∑
𝑘=0

𝑍 (𝑘)
𝑡

)

holds, and in the second,

Law

(
𝑆 (𝑛)𝑡 +

𝑛∑
𝑘=0

𝑌 (𝑘)
𝑡

��� 𝜏∞ > 𝑡

)

 Law

(
𝑍 (𝑛)
𝑡 +

𝑛∑
𝑘=0

𝑍 (𝑘)
𝑡

)

holds.

Proof of Corollary 6.4. The proof in the two cases is the same. We give the first. Since Law(𝑋 (0)
𝑡 ) =

Law(𝑍 (0)
𝑡 ) and Law(𝑋 (1)

𝑡 | F (0)
𝑡 ) ∼ Law(𝑍 (1)

𝑡 ) almost surely, where 𝑋 (0)
𝑡 and 𝑍 (0)

𝑡 are adapted to
F (0)
𝑡 and 𝑍 (1)

𝑡 is independent of F (0)
𝑡 , Lemma 6.3 implies that Law(𝑋 (0)

𝑡 + 𝑋 (1)
𝑡 ) ∼ Law(𝑍 (0)

𝑡 + 𝑍 (1)
𝑡 ).

We proceed inductively. If we have shown that Law(
∑𝑚−1

𝑘=0 𝑋
(𝑘)
𝑡 ) ∼ Law(

∑𝑚−1
𝑘=0 𝑍

(𝑘)
𝑡 ), then because∑𝑚−1

𝑘=0 𝑋
(𝑘)
𝑡 and

∑𝑚−1
𝑘=0 𝑍

(𝑘)
𝑡 are adapted to F (𝑚−1)

𝑡 and 𝑍 (𝑚)
𝑡 is independent of F (𝑚−1)

𝑡 , the fact that
Law(𝑋 (𝑚)

𝑡 | F (𝑚−1)
𝑡 ) ∼ Law(𝑍 (𝑚)

𝑡 ) almost surely implies the next step in the induction, again using
Lemma 6.3. For the final step in the proof, note that Law(𝑅 (𝑛)

𝑡 | 𝜏∞ > 𝑡,F (𝑛)
𝑡 ) 
 Law(𝑍 (𝑛)

𝑡 ). We repeat
the previous steps for 1 ≤ 𝑚 ≤ 𝑛 with Lemma 6.3 by conditioning on {𝜏∞ > 𝑡} and apply Lemma 6.3
once more to include 𝑅 (𝑛)

𝑡 and 𝑍 (𝑛)
𝑡 in the summations. �

The proof of the following corollary is completely analogous to that of Corollary 6.4.

Corollary 6.5. Assume that, for some n, the system of equations (3.2) and (3.9) is well-defined with
equation (3.11) holding. Then

Law

(
𝑛∑
𝑘=0

𝑋 (𝑘)
𝑡

)
∼ Law

(
𝑛∑
𝑘=0

𝑌 (𝑘)
𝑡

)
.

6.3. Some informal computations

With the tools above, we can informally describe how to choose the number of levels and the 𝑄𝑖s in
the decomposition given by equations (3.2) and (3.9). We focus on equation (3.2) because the equation
structure of 𝑋 (𝑖) and the remainder 𝑅 (𝑛) are aligned, which makes discussions more intuitive. But the
intuition is the same for equation (3.9), and later we will see that the result for equation (3.9) is actually
more straightforward to prove rigorously. For simplicity, we do not distinguish between the Cameron-
Martin Theorem and the Time-Shifted Girsanov Method, since they require the same condition on
canonical regularity, as discussed in Remark 5.11.

Building on the preliminary discussion in Section 4, the first idea is that we assume every Gaussian
term: that is, each of the 𝑋 (0,𝑖) , 𝐵(𝑋 (0,𝑖) ) or 𝐽 (𝑋 (0,𝑖) ) in equation (3.2) can be well-defined with its
canonical regularity. As a reminder, it means 𝑋 (𝑖) has the same Hölder regularity as 𝑍 (𝑖) , and the B terms
(and J terms) have canonical regularity following Remark 4.3 and Remark 4.5. The second idea is that
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we want 𝑋 (𝑖) to become smoother as i increases, so we can take 𝑄𝑖 ≈ 𝐴𝛼𝑖/2 so that 𝑍 (𝑖) ∈ 𝐶𝑇 C ( 1
2−𝛼𝑖)− ,

where 𝛼𝑖 decreases as i increases. It is straightforward to show (later) that we can choose 𝑄𝑖 , 𝑄𝑛

satisfying equation (3.3) with 𝛼0 = 𝛼.
When 𝛼 < 1

2 , as discussed in Section 5.4, we can directly apply the Time-Shifted Girsanov Method
to equation (2.2) and obtain Law(𝑢𝑡 ) 
 Law(𝑧𝑡 ). In fact, since the solutions can be seen to be almost
surely global with finite control of some moments of the norm, one can show that Law(𝑢𝑡 ) ∼ Law(𝑧𝑡 ).

When 𝛼 ≥ 1
2 , then 𝑢𝑡 ∈ C ( 1

2−𝛼)
− is a distribution with its canonical regularity, so we cannot make

sense of 𝑢2
𝑡 classically. We first consider 𝑢𝑡 = 𝑋 (0)

𝑡 + 𝑋 (1)
𝑡 + 𝑅 (1)

𝑡 in equation (3.2) for 𝑡 < 𝜏∞. Clearly,
𝑋 (0) = 𝑍 (0) . To apply the Cameron-Martin Theorem or the Time-Shifted Girsanov Method on 𝑋 (1) to
show equation (3.7), the regularity condition is 2𝛼0 −𝛼1 < 1. On the other hand, note that the remainder
𝑅 (1) is not a Gaussian object. We want 𝑅 (1)

𝑡 to have positive regularity so that 𝐵(𝑅 (1)
𝑡 ) is well-defined,

so we can take 𝑄1 ≈ 𝐴𝛽1 for some 𝛽1 <
1
2 . For convenience of computing regularity, we additionally

impose 𝛼1 <
1
2 so that 𝑍 (1) has positive regularity. Assume 𝑅 (1) also has its canonical regularity as 𝑍 (1) .

Then 𝐵(𝑋 (0,1)
𝑡 , 𝑅 (1)

𝑡 ) is well-defined classically if 1 − 𝛽1 − 𝛼0 > 0, and the roughest term in the drift is

𝐵(𝑋 (0,1) ) − 𝐵(𝑋 (0) ) = 2𝐵(𝑋 (0) , 𝑋 (1) ) + 𝐵(𝑋 (1) ) ∈ 𝐶𝑇 C (− 1
2−𝛼0)− ,

so the Time-Shifted Girsanov condition for 𝑅 (1) is 1
2 − 𝛼0 + 𝛽1 > 0. By collecting the above constraints

on 𝛼0, 𝛼1 and 𝛽1, we see that as long as 𝛼 = 𝛼0 <
3
4 , we can find 𝛼1 and 𝛽1 such that all constraints are

satisfied and

Law(𝑢𝑡 | 𝑡 < 𝜏∞) = Law(𝑋 (0)
𝑡 + 𝑋 (1)

𝑡 + 𝑅 (1)
𝑡 | 𝑡 < 𝜏∞)


 Law(𝑍 (0)
𝑡 + 𝑍 (1)

𝑡 + 𝑍 (1)
𝑡 ) = Law(𝑧𝑡 )

follows from Corollary 6.4.

Remark 6.6. The careful reader may notice that for 𝑋 (1) and 𝑅 (1) to have their canonical regularity,
additional constraints on 𝛼1 and 𝛽1 are needed to ensure that the stochastic forcing is rougher than the
drifts, but one can check and will see later that those constraints are implied by the constraints for the
Cameron-Martin Theorem/Time-Shifted Girsanov Method.

The previous informal computation is based on the decomposition equation (3.2) when 𝑛 = 1. Next,
we consider the case 𝑛 = 2: that is, 𝑢𝑡 = 𝑋 (0)

𝑡 + 𝑋 (1)
𝑡 + 𝑋 (2)

𝑡 + 𝑅 (2)
𝑡 . Again, based on the same reasoning,

we take 𝑄𝑖 ≈ 𝐴𝛼𝑖/2, 𝑖 = 0, 1 and 𝑄2 ≈ 𝐴𝛽2/2, and we assume that 𝑅 (2) has its canonical regularity as
𝑍 (2) and 𝛼2 <

1
2 ≤ 𝛼1 < 𝛼0 for convenience. For the same reason as in the case 𝑛 = 1 above, we need

𝛽2 <
1
2 , 2𝛼0 − 𝛼1 < 1, 1 − 𝛽2 − 𝛼0 > 0 and 1

2 − 𝛼0 + 𝛽2 > 0. Similarly, to show equation (3.7) on 𝑋 (2) ,
we need additionally 𝛼0 +𝛼1 −𝛼2 < 1. However, one can check that the above constraints on 𝛼𝑖 , 𝛽2 give
no solutions if 𝛼0 ≥ 3

4 , and the bottleneck is the constraint 1 − 𝛽2 − 𝛼0 > 0 for 𝐵(𝑋 (0,2)
𝑡 , 𝑅 (2)

𝑡 ) to be
classically well-defined. To resolve this issue, we employ the Da Prato-Debussche trick of interpreting
𝑅 (2) = 𝜂 (2) + 𝜌 (2) , where 𝜂 (2) and 𝜌 (2) satisfy

ℒ𝜂 (2)𝑡 = 𝑄2 𝑑𝑊
(2)
𝑡 ,

ℒ𝜌 (2)𝑡 = 𝐵(𝑋 (0,2)
𝑡 ) − 𝐵(𝑋 (0,1)

𝑡 ) + 2𝐵(𝑋 (0,2)
𝑡 , 𝜂 (2)𝑡 )

+2𝐵(𝑋 (0,2)
𝑡 , 𝜌 (2)𝑡 ) + 𝐵(𝜌 (2)𝑡 ) + 2𝐵(𝜌 (2)𝑡 , 𝜂 (2)𝑡 ) + 𝐵(𝜂 (2)𝑡 ),

with 𝜂 (2)0 = 0 and 𝜌 (2)0 = 𝑢0. Then we can interpret

𝐵(𝑋 (0,2)
𝑡 , 𝑅 (2)

𝑡 ) = 𝐵(𝑋 (0,2)
𝑡 , 𝜂 (2)𝑡 ) + 𝐵(𝑋 (0,2)

𝑡 , 𝜌 (2)𝑡 ),
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where 𝐵(𝑋 (0,2) , 𝜂 (2) ) is a well-defined Gaussian object, and one can check and will see that as long as
𝛼0 < 1, 𝐵(𝑋 (0,2) , 𝜌 (2) ) is classically well-defined. Now we do not need the constraint 1 − 𝛽2 − 𝛼0 > 0,
and the remaining constraints can be satisfied as long as 𝛼 = 𝛼0 <

5
6 .

Following the heuristics above, we can increase the number n of levels of the decomposition given by
equation (3.2) to obtain the main result up to 𝛼 < 1. The informal computations above will be justified
in a clean and rigorous way in the next section.

6.4. Basic assumptions on the factorisation of noise into levels

We now fix additional structure in the X and Y systems (equations (3.2) and (3.9), respectively) to allow
us to better characterise the regularity of the different levels. We assume that there exists a sequence of
real numbers

𝛽𝑛 < 𝛼𝑛 < 𝛼𝑛−1 < . . . < 𝛼0 = 𝛼, (6.1)

with

𝛼𝑛 <
1
2
≤ 𝛼𝑛−1 (6.2)

such that

𝑄𝑖 ≈ 𝐴𝛼𝑖/2 and 𝑄𝑛 ≈ 𝐴𝛽𝑛/2 . (6.3)

We will see that the effect of the assumption in equation (6.1) is to make the levels in equations (3.2)
and (3.9) have increasing spatial regularity as k increases. The conditions given by equations 6.1–6.3
will be our standing structural assumption on the noise.

Remark 6.7 (Importance of Condition (6.2)). At first sight, Condition (6.2) may seem unnecessary for
our main result. However, it is critical mainly for two reasons:

1. In later arguments, Condition (6.2) gives a clean break between terms that are functions (positive
Hölder regularity) and those that are distributions (nonpositive Hölder regularity). In particular, it
makes computations for regularity straightforward.

2. It makes sure the drift in the remainder equation, R or S, can be defined without being convolved with
the heat kernel. This in turn allows us to apply the Time-Shifted Girsanov Method. This is critical
as the remainder equations have drift terms that depend on the solution of the equation. As such,
we cannot apply the Cameron-Martin Theorem, and tools based on the Girsanov Theorem seem the
only option.

Remark 6.8 (First Note on 𝛼 < 1). Throughout this note, we implicitly assume 𝛼0 = 𝛼 < 1, because
in Appendix B, we only construct relevant Gaussian objects up to the case of 𝛼 < 1. However, if the
condition 𝛼0 < 1 is explicitly stated in the assumptions of later results, it highlights another nontrivial
dependence on this condition.

The following lemma shows that one can choose the {𝛼𝑖 : 𝑖 = 0, . . . , 𝑛} and 𝛽𝑛 so that in addition
to equations 6.1–6.3, the condition in equation (3.3) holds, which implies that the sum of the stochastic
forcing in equation (3.2) or equation (3.9) has the same distribution as that of the Burgers equation in
equation (2.1).

Lemma 6.9. For any sequence of real numbers as in equation (6.1) and any choice of operator Q from
equation (2.1) with 𝑄 ≈ 𝐴𝛼/2, there exist operators 𝑄0, 𝑄1, . . . , 𝑄𝑛, 𝑄𝑛 satisfying equation (6.3) and
equation (3.3).
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Proof of Lemma 6.9. We can take 𝑄𝑖 = 1√
𝑛+2

𝐴𝛼𝑖/2 for 1 ≤ 𝑖 ≤ 𝑛 and 𝑄𝑛 = 1√
𝑛+2

𝐴𝛽𝑛/2. Note that the
operator

𝑄𝑄∗ −𝑄𝑛𝑄
∗
𝑛 −𝑄𝑛𝑄

∗
𝑛 − · · · −𝑄2𝑄

∗
2 −𝑄1𝑄

∗
1

is symmetric and positive definite, so it is equal to 𝑄0𝑄
∗
0 for some operator 𝑄0. Since 𝑄 ≈ 𝐴𝛼/2 and

𝛼 = 𝛼0 is the largest among 𝛼𝑖s and 𝛽𝑛, we have 𝑄0 ≈ 𝐴𝛼0/2. �

Remark 6.10 (Sums of 𝑍 (𝑖) ). With the proofs of Lemma 6.9, we note that for 0 ≤ 𝑖 ≤ 𝑛,

𝑍 (0,𝑖)
𝑡

dist
=

∫ 𝑡

0
𝑒−(𝑡−𝑠)𝐴𝑄 (0,𝑖)𝑑𝑊𝑠

for some operator 𝑄 (0,𝑖) ≈ 𝐴𝛼0/2.

6.5. The 𝑌 (𝑖) Equations

We will begin by establishing the needed structural and desired absolute continuity results for𝑌 (𝑖) . They
will be leveraged to prove the results about the X system.

Proposition 6.11 (Canonical regularity of drifts). Under the standing noise factorisation assumptions
in equations 6.1–6.3, one has with probability one

𝐽 (𝑍 (0,𝑖−1) ) − 𝐽 (𝑍 (0,𝑖−2) ) ∈ 𝐶𝑇 C (2−𝛼0−𝛼𝑖−1)− (6.4)

for 1 ≤ 𝑖 ≤ 𝑛. In particular, 𝐽 (𝑍 (0,𝑖−1) )−𝐽 (𝑍 (0,𝑖−2) ) has canonical regularity. In addition, the equations
for {𝑌 (𝑖) : 𝑖 = 0, . . . , 𝑛} are well-posed with global solutions.

Proof of Proposition 6.11. By the assumptions in equations 6.1–6.3 and Proposition B.8, 𝑍 (𝑖) ∈
𝐶𝑇 C ( 1

2−𝛼𝑖)− . The expression

𝐽 (𝑍 (0,𝑖−1) ) − 𝐽 (𝑍 (0,𝑖−2) ) = 𝐽 (𝑍 (𝑖−1) ) + 2
𝑖−2∑
𝑗=0
𝐽 (𝑍 ( 𝑗) , 𝑍 (𝑖−1) ) (6.5)

is well-defined and belongs to𝐶𝑇 C (2−𝛼0−𝛼𝑖−1)− almost surely, by Proposition B.12 and Proposition B.16,
because 𝐽 (𝑍 (0) , 𝑍 (𝑖−1) ) ∈ 𝐶𝑇 C (2−𝛼0−𝛼𝑖−1)− almost surely is the least regular term. �

Proposition 6.12 (Constraints from canonical regularity of𝑌 (𝑖) ). Under the standing noise factorisation
assumptions in equations 6.1–6.3, if in addition 𝛼0 + 𝛼𝑖−1 − 𝛼𝑖 < 3

2 for all 1 ≤ 𝑖 ≤ 𝑛, then all the 𝑌 (𝑖)

equations have canonical regularity

𝑌 (𝑖) ∈ 𝐶𝑇 C ( 1
2−𝛼𝑖)− ,

namely, that of the stochastic convolution in each equation.

Proof of Proposition 6.12. For any 1 ≤ 𝑖 ≤ 𝑛 and 𝑡 > 0, we only need to make sure that the drift

𝐽 (𝑍 (0,𝑖−1) ) − 𝐽 (𝑍 (0,𝑖−2) ) ∈ 𝐶𝑇 C (2−𝛼0−𝛼𝑖−1)− a.s.

is smoother than the stochastic convolution

𝑍 (𝑖) ∈ 𝐶𝑇 C ( 1
2−𝛼𝑖)− a.s.

so that𝑌 (𝑖) has the same regularity as the stochastic convolution. This holds if 2−𝛼0−𝛼𝑖−1 >
1
2 −𝛼𝑖 . �
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We will apply the Cameron-Martin Theorem 5.1 in our setting to each level by conditioning on
previous levels. As mentioned in Remark 5.11 and Section 5.4, the reason we cannot apply Time-
Shifted Girsanov Method to some of the levels is that some of the terms involving 𝑍 (𝑖) can only be
defined when convolving with the heat kernel. For example, we cannot define 𝐵(𝑍 (0)

𝑡 ) but can only
define 𝐽 (𝑍 (0) )𝑡 when 𝛼0 ≥ 3

4 (see Appendix B for more details). In this case, the Time-Shifted Girsanov
Method, Theorem 5.9, cannot be applied.

Proposition 6.13 (Constraints from Cameron-Martin for 𝑌 (𝑖) ). Under the standing noise factorisation
assumptions in equations 6.1–6.3, if 𝛼0 + 𝛼𝑖−1 − 𝛼𝑖 < 1 for all 1 ≤ 𝑖 ≤ 𝑛, then the regularity conditions
given in Remark 5.2, needed to apply the Cameron-Martin Theorem 5.1, hold. More concretely, it implies
that for 1 ≤ 𝑖 ≤ 𝑛, for any 𝑡 > 0, it holds almost surely that

Law(𝑌 (𝑖)
𝑡 | F (𝑖−1)

𝑡 ) ∼ Law(𝑍 (𝑖)
𝑡 ),

where we recall F (𝑖−1)
𝑡 = 𝜎(𝑊 ( 𝑗)

𝑠 : 𝑗 ≤ 𝑖 − 1, 𝑠 ≤ 𝑡).

Proof of Proposition 6.13. For each 1 ≤ 𝑖 ≤ 𝑛, we have

𝑌 (𝑖)
𝑡 = 𝐽 (𝑍 (0,𝑖−1) )𝑡 − 𝐽 (𝑍 (0,𝑖−2) )𝑡 + 𝑍 (𝑖)

𝑡 .

Since𝑄 (𝑖) ≈ 𝐴𝛼𝑖/2, by equation (6.4), the condition from Theorem 5.1 and Remark 5.2 for the equation
of 𝑌 (𝑖) is exactly 𝛼0 + 𝛼𝑖−1 − 𝛼𝑖 < 1. �

Remark 6.14 (Redundant constraints). It is clear that the parameter constraints in Proposition 6.13
imply those in Proposition 6.12.

With all the constraints so far, we establish the relation between the range of 𝛼 and the corresponding
number n of levels needed in the decomposition (except for the remainder).

Proposition 6.15 (Choosing the number of levels n in {𝑌 (𝑖) }). Fix an n and an 𝛼 so that 1
2 ≤ 𝛼 < 2𝑛+1

2𝑛+2 .
Then there exists a sequence of real numbers 𝛼𝑛 < . . . < 𝛼0 = 𝛼 such that the standing noise
factorisation assumptions on the {𝛼 𝑗 : 𝑗 = 0, . . . , 𝑛} in equations 6.1–6.3 hold as well as the hypothesis
of Proposition 6.11, Proposition 6.12 and Proposition 6.13.

Proof of Proposition 6.15. First, we make sure the assumption in equation (6.2) is satisfied. Based on
Proposition 6.12, Proposition 6.13 and Remark 6.14, we only need to make sure 𝛼0 + 𝛼𝑖−1 − 𝛼𝑖 < 1 for
any 1 ≤ 𝑖 ≤ 𝑛. In particular, we have 𝛼0 + 𝛼𝑖−1 − 1 < 𝛼𝑖 , which implies

𝛼1 > 2𝛼0 − 1
=⇒ 𝛼2 > 𝛼1 + 𝛼0 − 1 > 3𝛼0 − 2
=⇒ 𝛼3 > 𝛼2 + 𝛼0 − 1 > 4𝛼0 − 3

...

=⇒ 𝛼𝑛 > 𝛼𝑛−1 + 𝛼0 − 1 > (𝑛 + 1)𝛼0 − 𝑛.

Since 𝛼𝑛 < 1
2 , we deduce 1

2 ≤ 𝛼0 and (𝑛 + 1)𝛼0 − 𝑛 < 1
2 , so 1

2 ≤ 𝛼 = 𝛼0 <
2𝑛+1
2𝑛+2 ; and starting from this

constraint, we may find the possible values of 𝛼1, . . . , 𝛼𝑛. �

Remark 6.16 (Second Note on 𝛼 < 1). From Proposition 6.15, we see that when 𝛼 < 1, each level of
the decomposition ‘gains’ regularity of the gap 1 − 𝛼, and this gap is crucial for our method to work.
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6.6. Analysis of remainder 𝑆 (𝑛) and associated constraints

Recall the remainder equation from equation (3.9):

ℒ𝑆 (𝑛)𝑡 =
(
𝐵(𝑌 (0,𝑛)

𝑡 ) − 𝐵(𝑍 (0,𝑛−1)
𝑡 ) + 2𝐵(𝑌 (0,𝑛)

𝑡 , 𝑆 (𝑛)𝑡 ) + 𝐵(𝑆 (𝑛)𝑡 )
)
𝑑𝑡 +𝑄𝑛𝑑𝑊

(𝑛)
𝑡 . (6.6)

Note that in this equation, the drift depends on the solution 𝑆 (𝑛) itself, so we cannot apply the Cameron-
Martin Theorem 5.1 by conditioning on previous levels. However, unlike the previous level, the drift
is regular enough that it can be defined without convolving with the heat kernel. This is reflected by
the fact that 𝛼 + 𝛼𝑛 < 3

2 and 𝛼 + 𝛽𝑛 < 3
2 . We are in a good position to use the Time-Shifted Girsanov

Method, Theorem 5.9.
We first study the well-posedness of 𝑆 (𝑛) and canonical regularity of the terms. We start with the

term 𝐵(𝑌 (0,𝑛)
𝑡 ) − 𝐵(𝑍 (0,𝑛−1)

𝑡 ).
Proposition 6.17. Under the standing noise factorisation assumptions in equations 6.1–6.3, if the 𝑌 (𝑖)

equations are well-posed, with all their terms possessing canonical regularity (as guaranteed, for
example, by Proposition 6.11 and Proposition 6.12), then if additionally 𝛼0 < 1, with probability one
for any 𝑡 > 0, we have

𝐵(𝑌 (0,𝑛) ) − 𝐵(𝑍 (0,𝑛−1) ) ∈ 𝐶𝑇 C (− 1
2−𝛼0)− . (6.7)

That is to say, these terms are well-defined with their canonical regularity.
Proof of Proposition 6.17. Note that

𝑌 (0,𝑛) = 𝐽 (𝑍 (0,𝑛−1) ) + 𝑍 (0,𝑛) ,

which yields

𝐵(𝑌 (0,𝑛) ) − 𝐵(𝑍 (0,𝑛−1) ) = 𝐵
(
𝐽 (𝑍 (0,𝑛−1) ) + 𝑍 (0,𝑛) ) − 𝐵(𝑍 (0,𝑛−1) )

= 𝐵
(
𝐽 (𝑍 (0,𝑛−1) )

)
+ 2𝐵

(
𝐽 (𝑍 (0,𝑛−1) ), 𝑍 (0,𝑛) )

+ 𝐵(𝑍 (0,𝑛) ) − 𝐵(𝑍 (0,𝑛−1) );

and to leverage independence among the 𝑍 (𝑖) , we note that

𝐵(𝐽 (𝑍 (0,𝑛−1) ), 𝑍 (0,𝑛) ) = 𝐵(𝐽 (𝑍 (0,𝑛−1) ), 𝑍 (0,𝑛−1) ) + 𝐵(𝐽 (𝑍 (0,𝑛−1) ), 𝑍 (𝑛) ),

𝐵(𝑍 (0,𝑛) ) − 𝐵(𝑍 (0,𝑛−1) ) = 𝐵(𝑍 (𝑛) ) + 2𝐵(𝑍 (0,𝑛−1) , 𝑍 (𝑛) ).

By 𝛼0 < 1, 𝛼𝑛 < 1
2 , Remark 6.10, Section B.3–B.7,

𝐵(𝐽 (𝑍 (0,𝑛−1) )) ∈ 𝐶𝑇 C (1−2𝛼0)− ,

𝐵(𝐽 (𝑍 (0,𝑛−1) ), 𝑍 (0,𝑛) ) ∈ 𝐶𝑇 C (− 1
2−𝛼0)− ,

𝐵(𝑍 (0,𝑛) ) − 𝐵(𝑍 (0,𝑛−1) ) ∈ 𝐶𝑇 C (− 1
2−𝛼0)− ,

almost surely. Therefore, since 𝛼0 < 1,

𝐵(𝑌 (0,𝑛) ) − 𝐵(𝑍 (0,𝑛−1) ) ∈ 𝐶𝑇 C (− 1
2−𝛼0)−

almost surely. �

Unlike the system in equation (3.9) of𝑌 (𝑖) , where all terms are Gaussian objects, some product terms
in equation (6.6) may not be a priori well-defined. Assume for the moment that 𝑆 (𝑛) is well-defined
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with its canonical regularity. From the assumptions of Lemma 6.17, we have 𝛽𝑛 < 𝛼𝑛 <
1
2 , so 𝑆 (𝑛)𝑡

is function-valued almost surely, which makes 𝐵(𝑆 (𝑛)𝑡 ) well-defined and belong to C (− 1
2−𝛽𝑛)

− almost
surely. The only term we need to define appropriately is 𝐵(𝑌 (0,𝑛)

𝑡 , 𝑆 (𝑛)𝑡 ).
As motivated in Section 6.3, we interpret the term 𝐵(𝑌 (0,𝑛)

𝑡 , 𝑆 (𝑛)𝑡 ) as

𝐵(𝑌 (0,𝑛)
𝑡 , 𝜂 (𝑛)𝑡 ) + 𝐵(𝑌 (0,𝑛)

𝑡 , 𝜌 (𝑛)𝑡 ),

where 𝜂 (𝑛) and 𝜌 (𝑛) solve

ℒ𝜂 (𝑛)𝑡 = 𝑄𝑛𝑑𝑊
(𝑛)
𝑡 ,

ℒ𝜌 (𝑛)𝑡 = 𝐵(𝑌 (0,𝑛)
𝑡 ) − 𝐵(𝑍 (0,𝑛−1)

𝑡 ) + 2𝐵(𝑌 (0,𝑛)
𝑡 , 𝜂 (𝑛)𝑡 )

+ 2𝐵(𝑌 (0,𝑛)
𝑡 , 𝜌 (𝑛)𝑡 ) + 𝐵(𝜌 (𝑛)𝑡 ) + 2𝐵(𝜌 (𝑛)𝑡 , 𝜂 (𝑛)𝑡 ) + 𝐵(𝜂 (𝑛)𝑡 ), (6.8)

with 𝜂 (𝑛)0 = 0 and 𝜌 (𝑛)0 = 𝑢0. Note that the stochastic forcing term 𝜂 (𝑛) is just 𝑍 (𝑛) but with zero initial
condition. In this case, 𝐵(𝑌 (0,𝑛) , 𝜂 (𝑛) ) can be defined with Sections B.3–B.7 since 𝜂 (𝑛) is an Ornstein-
Uhlenbeck process with zero initial condition. On the other hand, as we remove the stochastic forcing
term, 𝜌 (𝑛) has better regularity so that 𝐵(𝑌 (0,𝑛) , 𝜌 (𝑛) ) can be classically defined with the appropriate
choice of parameters.

Lemma 6.18. Assume the standing noise factorisation assumptions in equations 6.1–6.3 hold. If the
𝑌 (𝑖) equations are well-posed, with all their terms possessing canonical regularity, then with probability
one,

𝜂 (𝑛) ∈ 𝐶𝑇 C ( 1
2−𝛽𝑛)

−
, 𝐵(𝑌 (0,𝑛) , 𝜂 (𝑛) ) ∈ 𝐶𝑇 C (− 1

2−𝛼0)− . (6.9)

If 𝛼0 < 1, then 𝜌 (𝑛) and 𝐵(𝑌 (0,𝑛) , 𝜌 (𝑛) ) are well-defined locally in time, and for any 𝑇 < 𝜏∞, the
maximal existence time,

𝜌 (𝑛) ∈ 𝐶𝑇 C ( 3
2−𝛼0)− , 𝐵(𝑌 (0,𝑛) , 𝜌 (𝑛) ) ∈ 𝐶𝑇 C (− 1

2−𝛼0)− . (6.10)

In particular, 𝑆 (𝑛) = 𝜂 (𝑛) + 𝜌 (𝑛) is well-defined locally in time, and for 𝑇 < 𝜏∞,

𝐵(𝑌 (0,𝑛) , 𝑆 (𝑛) ) = 𝐵(𝑌 (0,𝑛) , 𝜂 (𝑛) ) + 𝐵(𝑌 (0,𝑛) , 𝜌 (𝑛) ) ∈ 𝐶𝑇 C (− 1
2−𝛼0)− .

Proof of Lemma 6.18. The first statement is proved as before with Remark 6.10, Proposition B.8, and
Section B.6 and B.7.

We turn to the second statement. Note that we can rewrite equation (6.8) as

ℒ𝜌 (𝑛)𝑡 = 𝐵(𝜌 (𝑛)𝑡 ) + 2𝐵(𝜌 (𝑛)𝑡 , 𝜂 (𝑛)𝑡 ) + 𝐹 (𝑛)
𝑡 ,

where 𝐹 (𝑛) is given by

𝐹 (𝑛)
𝑡 := 𝐵(𝑌 (0,𝑛)

𝑡 ) − 𝐵(𝑍 (0,𝑛−1)
𝑡 ) + 2𝐵(𝑌 (0,𝑛)

𝑡 , 𝜂 (𝑛)𝑡 ) + 𝐵(𝜂 (𝑛)𝑡 ).

By equation (6.9), we know 𝜂 (𝑛) ∈ 𝐶𝑇 C ( 1
2−𝛽𝑛)

− . By Sections B.6 and B.7, since 𝛼0 + 𝛽𝑛 < 3
2 , it is clear

that

𝐵(𝑌 (0,𝑛) , 𝜂 (𝑛) ) ∈ 𝐶𝑇 C (− 1
2−𝛼0)− .
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Hence, by equation (6.7), we have 𝐹 (𝑛) ∈ 𝐶𝑇 C (− 1
2−𝛼0)− . By a standard fixed-point argument in

Appendix C, we obtain that equation (6.8) is well-posed with local in time solutions such that
𝜌 (𝑛) ∈ 𝐶𝑇 C ( 3

2−𝛼0)− . In particular, since 𝛼0 < 1, 𝐵(𝑌 (0,𝑛) , 𝜌 (𝑛) ) ∈ 𝐶𝑇 C (− 1
2−𝛼0)− is well-defined

classically. �

Now we are in a good place to figure out the needed constraints for 𝑆 (𝑛) to have its canonical regularity
and for the application of the Time-Shifted Girsanov Method.

Proposition 6.19 (Constraint from canonical regularity for 𝑆 (𝑛) ). Under the standing noise factorisation
assumptions in equations 6.1–6.3, if the 𝑌 (𝑖) equations are well-posed with all their terms possessing
canonical regularity, then if in addition 𝛼0 < 1 and 𝛼0 − 𝛽𝑛 < 1, then 𝑆 (𝑛) has canonical regularity

𝑆 (𝑛) ∈ 𝐶𝑇 C ( 1
2−𝛽𝑛)

−

for any 𝑇 < 𝜏∞, namely that of the stochastic convolution in the equation. Setting 𝑆 (𝑛)𝑡 = for 𝑡 ≥ 𝜏∞,

we have that 𝑆 (𝑛) ∈ 𝐶𝑇 C
( 1

2−𝛽𝑛)
−

for any 𝑇 > 0 (see Section 4.1 for the definition of 𝐶𝑇 C
𝛿
).

Proof. By Lemma 6.18, we have 𝑆 (𝑛) = 𝜂 (𝑛) + 𝜌 (𝑛) , where 𝜌 (𝑛) ∈ 𝐶𝑇 C ( 3
2−𝛼0)− and 𝜂 (𝑛) ∈ 𝐶𝑇 C ( 1

2−𝛽𝑛)
−

for 𝑇 < 𝜏∞, the maximal existence time. Since 𝜂 (𝑛) is exactly the stochastic convolution in the equation,
it suffices to have 𝜂 (𝑛) less regular than 𝜌 (𝑛) , which is guaranteed by the condition 3

2 −𝛼0 >
1
2 − 𝛽𝑛. �

Proposition 6.20 (Constraint from Time-Shifted Girsanov for 𝑆 (𝑛) ). Under the standing noise fac-
torisation assumptions in equations 6.1–6.3, if the 𝑌 (𝑖) equations are well-posed, with all their terms
possessing canonical regularity, and if in addition 𝛼0 < 1 and 𝛼0 − 𝛽𝑛 < 1

2 , then the regularity condi-
tions needed to apply Time-Shifted Girsanov Method to 𝑆 (𝑛) hold. More concretely, it implies that for
any 𝑡 > 0, it holds almost surely that

Law(𝑆 (𝑛)𝑡 | 𝑡 < 𝜏∞,F (𝑛)
𝑡 ) 
 Law(𝑍 (𝑛)

𝑡 ),

where we recall F (𝑛)
𝑡 = 𝜎(𝑊 ( 𝑗)

𝑠 : 𝑗 ≤ 𝑛, 𝑠 ≤ 𝑡).
In particular, as long as 𝛼0 < 1, 𝛽𝑛 (and 𝛼𝑛) can be taken close enough to 1

2 to satisfy the condition
𝛼0 − 𝛽𝑛 < 1

2 .

Proof. In the setting of Proposition 6.17 and Lemma 6.18, we see that the roughest drift term in equation
(6.6) is in 𝐶𝑇 C (− 1

2−𝛼0)− , so the Time-Shifted Girsanov condition from Remark 5.10 and the associate
Theorem 5.9 is satisfied if 1

2 − 𝛼0 + 𝛽𝑛 > 0. �

Remark 6.21 (Redundant constraint). As in Remark 6.14, the constraint for the Time-Shifted Girsanov
Method 𝛼0 − 𝛽𝑛 < 1

2 in Proposition 6.20 also implies that 𝛼0 − 𝛽𝑛 < 1 in Proposition 6.19: that is, 𝑆 (𝑛)
has canonical regularity.

Remark 6.22 (Third note on 𝛼 < 1). We reiterate where 𝛼 = 𝛼0 < 1 is needed for the analysis of the
remainder 𝑆 (𝑛) :

1. Together with equations (6.1)–(6.2) – that is, 𝛼 + 𝛼𝑛 < 3
2 and 𝛼 + 𝛽𝑛 < 3

2 – it makes sure various
𝐵( 𝑓 , 𝑔) terms, such as equation (6.7) and equation (6.9), are well-defined with their canonical
regularity, where f and g are Gaussian objects.

2. It makes sure 𝐵(𝑌 (0,𝑛) ) − 𝐵(𝑍 (0,𝑛−1) ) has the same regularity as 𝐵(𝑍 (0,𝑛) ) − 𝐵(𝑍 (0,𝑛−1) ) so that
equation (6.7) holds. This corresponds to the regularisation effect of J as discussed in Remark 4.7.

3. It makes sure equation (6.8) is well-posed with equation (6.10).

Finally, by collecting all the results above, we prove our main absolute continuity of the law of 𝑢𝑡
with respect to the law of 𝑧𝑡 defined in equation (2.3), for 𝛼 < 1.
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Corollary 6.23 (The overall result on the Y system). Fix an n and an 𝛼 so that 1
2 ≤ 𝛼 < 2𝑛+1

2𝑛+2 .
Then there exists a sequence of real numbers 𝛽𝑛 < 𝛼𝑛 < . . . < 𝛼0 = 𝛼 such that the standing noise
factorisation assumptions on the {𝛼 𝑗 : 𝑗 = 0, . . . , 𝑛} in equations 6.1–6.3 hold as well as the hypothesis
of Proposition 6.11, Proposition 6.12, Proposition 6.13, Proposition 6.17, Lemma 6.18, Proposition
6.19 and Proposition 6.20. More concretely, it implies that for any 𝑡 > 0, it holds almost surely that

Law(𝑢𝑡 | 𝜏∞ > 𝑡) = Law

(
𝑆 (𝑛)𝑡 +

𝑛∑
𝑘=0

𝑌 (𝑘)
𝑡

��� 𝜏∞ > 𝑡

)


 Law

(
𝑍 (𝑛)
𝑡 +

𝑛∑
𝑘=0

𝑍 (𝑘)
𝑡

)
= Law(𝑧𝑡 ),

where, as a reminder, 𝑧𝑡 is the linear part of 𝑢𝑡 with initial condition 𝑧0 as defined in equation (2.3).

Proof. The constraint from 𝑆 (𝑛) can be satisfied as long as 𝛼 = 𝛼0 < 1. The result follows from
Proposition 6.15 and Corollary 6.4. �

7. The X decomposition of noise and smoothness

Now we consider the X system given by equation (3.2). We note that the maximal existence time 𝜏∞
of solutions of equation (3.2) is the same as u, as in Lemma 6.1. We want to show that the same
noise factorisation assumptions in equations 6.1–6.3 on the system given by equation (3.2) also give
the desired absolute continuity result in equation (3.11). Since all computations are based on canonical
regularity, which is dictated by the same stochastic forcing terms, we may follow the same arguments of
the previous section with minimal modifications. The main change is the need to make sense of products
of more complicated Gaussian chaos objects 𝑋 (0,𝑖) . The idea is that when 𝛼 = 𝛼0 < 1, the singular
terms have positive regularity after convolving with the heat kernel once or twice. Hence, most products
can be classically defined, and the remaining ones are exactly those that appeared before. Compared to
the direct construction of 𝑋 (0,𝑖) , we don’t need to construct objects in nth Gaussian chaos for arbitrary
large n.

Lemma 7.1 (Canonical regularity of 𝑋 (𝑖) and drifts). Under the standing noise factorisation assumptions
in equations 6.1–6.3, if, in addition, 𝛼0 < 1 and 𝛼0 + 𝛼𝑖−1 − 𝛼𝑖 < 3

2 for 1 ≤ 𝑖 ≤ 𝑛, then it holds almost
surely that for 0 ≤ 𝑖 ≤ 𝑛,

𝑋 (𝑖) ∈ 𝐶𝑇 C ( 1
2−𝛼𝑖)− , 𝐽 (𝑋 (0,𝑖−1) ) − 𝐽 (𝑋 (0,𝑖−2) ) ∈ 𝐶𝑇 C (2−𝛼0−𝛼𝑖−1)− . (7.1)

In particular, the terms are well-defined with their canonical regularity.

Proof. With the same argument in Proposition 6.12, as long as each term in the equation for 𝑋 (𝑖) is well-
defined, it holds almost surely that 𝑋 (𝑖) ∈ 𝐶𝑇 C ( 1

2−𝛼𝑖)− . Hence, we can focus on the drifts in equation
(3.2). We proceed by (finite) induction.

We start with base cases. For 𝑖 = 0, clearly 𝑋 (0,0) = 𝑋 (0) = 𝑍 (0) , and it holds almost surely that
𝑋 (0) ∈ 𝐶𝑇 C ( 1

2−𝛼0)− . For 𝑖 = 1, 𝐽 (𝑋 (0) ) = 𝐽 (𝑍 (0) ) is well-defined by Proposition B.12, and it holds
almost surely that

𝐽 (𝑋 (0) ) ∈ 𝐶𝑇 C (2−2𝛼0)− .

For the purpose of induction, we also note that

𝐵(𝐽 (𝑋 (0) ), 𝑍 (0,1) ) = 𝐵(𝐽 (𝑍 (0) ), 𝑍 (0,1) ) = 𝐵(𝐽 (𝑍 (0) ), 𝑍 (0) ) + 𝐵(𝐽 (𝑍 (0) ), 𝑍 (1) )
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is well-defined by Remark 6.10, Section B.4 and B.7, and it holds almost surely that

𝐵(𝐽 (𝑋 (0,0) ), 𝑍 (0,1) ) ∈ 𝐶𝑇 C (− 1
2−𝛼0)− .

Next, we show our induction step. Assume that for 0 ≤ 𝑗 ≤ 𝑖 < 𝑛, each term in the equation for 𝑋 ( 𝑗)

is well-defined, and it holds almost surely that

𝐽 (𝑋 (0, 𝑗−1) ) − 𝐽 (𝑋 (0, 𝑗−2) ) ∈ 𝐶𝑇 C (2−𝛼0−𝛼𝑗−1)− , 𝐵(𝐽 (𝑋 (0, 𝑗) ), 𝑍 (0, 𝑗+1) ) ∈ 𝐶𝑇 C (− 1
2−𝛼0)− .

We want to show

𝐽 (𝑋 (0,𝑖) ) − 𝐽 (𝑋 (0,𝑖−1) ) ∈ 𝐶𝑇 C (2−𝛼0−𝛼𝑖)− ,

𝐵(𝐽 (𝑋 (0,𝑖) ), 𝑍 (0,𝑖+1) ) ∈ 𝐶𝑇 C (− 1
2−𝛼0)− . (7.2)

We start with proving the first part of equation (7.2). Note that

𝑋 (0,𝑖) = 𝐽 (𝑋 (0,𝑖−1) ) + 𝑍 (0,𝑖) .

We can rewrite

𝐽 (𝑋 (0,𝑖) ) = 𝐽 (𝐽 (𝑋 (0,𝑖−1) ) + 𝑍 (0,𝑖) )
= 𝐽 (𝐽 (𝑋 (0,𝑖−1) )) + 2𝐽 (𝐽 (𝑋 (0,𝑖−1) ), 𝑍 (0,𝑖) ) + 𝐽 (𝑍 (0,𝑖) ),

which gives

𝐽 (𝑋 (0,𝑖) ) − 𝐽 (𝑋 (0,𝑖−1) )
= 𝐽 (𝐽 (𝑋 (0,𝑖−1) ) + 𝑍 (0,𝑖) ) − 𝐽 (𝐽 (𝑋 (0,𝑖−2) ) + 𝑍 (0,𝑖−1) )
= 𝐽 (𝐽 (𝑋 (0,𝑖−1) )) − 𝐽 (𝐽 (𝑋 (0,𝑖−2) )) + 𝐽 (𝑍 (0,𝑖) ) − 𝐽 (𝑍 (0,𝑖−1) )
+ 2(𝐽 (𝐽 (𝑋 (0,𝑖−1) ), 𝑍 (0,𝑖) ) − 𝐽 (𝐽 (𝑋 (0,𝑖−2) ), 𝑍 (0,𝑖−1) )), (7.3)

so it suffices to show the existence and regularity of each term in equation (7.3). For 𝑗 < 𝑖, using the
induction hypothesis, we can define 𝐽 (𝑋 (0, 𝑗) ) by the telescoping sum

𝐽 (𝑋 (0, 𝑗) ) =
𝑗∑

ℓ=0
𝐽 (𝑋 (0,ℓ) ) − 𝐽 (𝑋 (0,ℓ−1) ).

Since 𝐽 (𝑋 (0, 𝑗) ) has the regularity of 𝐽 (𝑋 (0) ), the roughest term in the sum, and 𝛼 < 1, 𝐵(𝐽 (𝑋 (0, 𝑗) )) is
well-defined classically and

𝐵(𝐽 (𝑋 (0, 𝑗) )) ∈ 𝐶𝑇 C (1−2𝛼0)− . (7.4)

Also, by the induction hypothesis, we know

𝐵(𝐽 (𝑋 (0,𝑖−1) ), 𝑍 (0,𝑖) ) − 𝐵(𝐽 (𝑋 (0,𝑖−2) ), 𝑍 (0,𝑖−1) ) ∈ 𝐶𝑇 C (− 1
2−𝛼0)− . (7.5)

By Proposition 6.11, we have

𝐽 (𝑍 (0,𝑖) ) − 𝐽 (𝑍 (0,𝑖−1) ) ∈ 𝐶𝑇 C (2−𝛼0−𝛼𝑖)− .

Since 𝛼𝑖 > 1
2 , based on equation (7.4) and equation (7.5), 𝐽 (𝑋 (0,𝑖) ) − 𝐽 (𝑋 (0,𝑖−1) ) is well-defined with

the same regularity of 𝐽 (𝑍 (0,𝑖) ) − 𝐽 (𝑍 (0,𝑖−1) ), which is the roughest term in equation (7.3).
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To finish the induction step, we show the second part of equation (7.2). As before, we only need to
work with each term in the following expansion:

𝐵(𝐽 (𝑋 (0,𝑖) ), 𝑍 (0,𝑖+1) ) = 𝐵(𝐽 (𝐽 (𝑋 (0,𝑖−1) ) + 𝑍 (0,𝑖) ), 𝑍 (0,𝑖+1) )
= 𝐵(𝐽2(𝑋 (0,𝑖−1) )) + 𝐵(𝐽 (𝑍 (0,𝑖) ), 𝑍 (0,𝑖+1) )
+ 2𝐵(𝐽 (𝐽 (𝑋 (0,𝑖−1) ), 𝑍 (0,𝑖) ), 𝑍 (0,𝑖+1) ).

Similarly, since 𝛼0 < 1, 𝐵(𝐽2(𝑋 (0,𝑖−1) )) is well-defined classically and

𝐵(𝐽2(𝑋 (0,𝑖−1) )) ∈ 𝐶𝑇 C (2−2𝛼0)− .

Again, by equations 6.1–6.3, equation (6.5) and Sections B.4 and B.7,

𝐵(𝐽 (𝑍 (0,𝑖) ), 𝑍 (0,𝑖+1) ) ∈ 𝐶𝑇 C (− 1
2−𝛼0)− .

By the induction hypothesis, we know

𝐽 (𝐽 (𝑋 (0,𝑖−1) ), 𝑍 (0,𝑖) ) ∈ 𝐶𝑇 C ( 3
2−𝛼0)− .

Again, since 𝛼0 < 1 and 𝑍 (0,𝑖+1) ∈ 𝐶𝑇 C ( 1
2−𝛼0)− , the following term is classically well-defined

𝐵(𝐽 (𝐽 (𝑋 (0,𝑖−1) ), 𝑍 (0,𝑖) ), 𝑍 (0,𝑖+1) ) ∈ 𝐶𝑇 C (− 1
2−𝛼0)−

because the sum of the regularity of the two terms in the product is positive. Therefore,
𝐵(𝐽 (𝑋 (0,𝑖) ), 𝑍 (0,𝑖+1) ) is well-defined with the desired regularity. �

Consider proving equation (3.11) for each level 𝑋 (𝑖) of equation (3.2) before the remainder 𝑅 (𝑛) ,
where

𝑋 (𝑖)
𝑡 = 𝐽 (𝑋 (0,𝑖−1) )𝑡 − 𝐽 (𝑋 (0,𝑖−2) )𝑡 + 𝑍 (𝑖)

𝑡 .

In the decomposition in equation (7.3), the term 𝐽 (𝑍 (0,𝑖−1) ) − 𝐽 (𝑍 (0,𝑖−2) ) is exactly the drift in the
𝑌 (𝑖) equation (3.9), which gives the same constraint as in the assumption of Proposition 6.13 for the
Cameron-Martin theorem in Theorem 5.1 and Remark 5.2. Since the remaining terms in equation (7.3)
at time 𝑡 > 0 are smoother than the term 𝐽 (𝑍 (0,𝑖−1) )𝑡 − 𝐽 (𝑍 (0,𝑖−2) )𝑡 and adapted to F (𝑖−1)

𝑡 , they also
satisfy the condition for the Cameron-Martin Theorem 5.1. Thus, we arrive at the same constraint for
parameters as in the assumption of Proposition 6.13.

Proposition 7.2. Under the standing noise factorisation assumptions in equations 6.1–6.3, if 𝛼0+𝛼𝑖−1−
𝛼𝑖 < 1 for all 1 ≤ 𝑖 ≤ 𝑛, then the regularity conditions needed to apply Theorem 5.1, the Cameron-
Martin Theorem, hold for 𝑋 (𝑖) . More concretely, it implies that for 1 ≤ 𝑖 ≤ 𝑛, for any 𝑡 > 0, it holds
almost surely that

Law(𝑋 (𝑖)
𝑡 | F (𝑖−1)

𝑡 ) ∼ Law(𝑌 (𝑖)
𝑡 | F (𝑖−1)

𝑡 ) ∼ Law(𝑍 (𝑖)
𝑡 ),

where we recall F (𝑖−1)
𝑡 = 𝜎(𝑊 ( 𝑗)

𝑠 : 𝑗 ≤ 𝑖 − 1, 𝑠 ≤ 𝑡).

For the remainder, recall from (3.2) that

ℒ𝑅 (𝑛)
𝑡 =

(
𝐵(𝑋 (0,𝑛)

𝑡 ) − 𝐵(𝑋 (0,𝑛−1)
𝑡 ) + 2𝐵(𝑋 (0,𝑛)

𝑡 , 𝑅 (𝑛)
𝑡 ) + 𝐵(𝑅 (𝑛)

𝑡 )
)
𝑑𝑡 +𝑄𝑛𝑑𝑊

(𝑛)
𝑡 , (7.6)

with initial condition 𝑢0. It remains to make sense of the term 𝐵(𝑋 (0,𝑛) ) −𝐵(𝑋 (0,𝑛−1) ) with its canonical
regularity. From the proof of Lemma 7.1, in particular the decomposition in equation (7.3) with J

https://doi.org/10.1017/fms.2022.64 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.64


32 J. C. Mattingly, M. Romito and L. Su

replaced by B and i replace by n, we can show the same regularity for each term in the decomposition
except for the term 𝐵(𝑍 (0,𝑖) ) − 𝐵(𝑍 (0,𝑖−1) ). Under Condition (6.2), instead we have

𝐵(𝑍 (0,𝑖) ) − 𝐵(𝑍 (0,𝑖−1) ) ∈ 𝐶𝑇 C (− 1
2−𝛼0)−

by Section B.3, B.6 and the similar argument in Lemma 6.17. In this case, we have

𝐵(𝑋 (0,𝑛) ) − 𝐵(𝑋 (0,𝑛−1) ) ∈ 𝐶𝑇 C (− 1
2−𝛼0)− . (7.7)

Now we use basically the same argument in Lemma 6.18 and Proposition 6.17 to obtain the same
constraint for canonical regularity.

Proposition 7.3 (Constraint from canonical regularity for 𝑅 (𝑛) ). Under the standing noise factorisation
assumptions in equations 6.1–6.3, if the 𝑋 (𝑖) equations are well-posed, with all their terms possessing
canonical regularity, and if in addition 𝛼0 < 1 and 𝛼0 − 𝛽𝑛 < 1, then 𝑅 (𝑛) has canonical regularity

𝑅 (𝑛) ∈ 𝐶𝑇 C ( 1
2−𝛽𝑛)

−
,

namely that of the stochastic convolution in the equation, and

𝐵(𝑋 (0,𝑛) , 𝑅 (𝑛) ) ∈ 𝐶𝑇 C ( 1
2−𝛼0)−

for any 𝑇 < 𝜏∞ almost surely. Setting 𝑅 (𝑛)
𝑡 = for 𝑡 ≥ 𝜏∞, we have that 𝑅 (𝑛) ∈ 𝐶𝑇 C

( 1
2−𝛽𝑛)

−
for any

𝑇 > 0.

Remark 7.4 (Fourth note on 𝛼 < 1). We note again the dependencies on 𝛼 < 1:

1. Under this condition, the 𝐽 (𝑍) terms have positive Hölder regularity, which greatly reduces the
complexity of making sense of the X equations in Lemma 7.1.

2. It makes sure 𝐵(𝑋 (0,𝑘) ) − 𝐵(𝑋 (0,𝑘−1) ) has the same regularity as 𝐵(𝑍 (0,𝑘) ) − 𝐵(𝑍 (0,𝑘−1) ) for
1 ≤ 𝑘 ≤ 𝑛 so that equation (7.1) and equation (7.7) hold. This also corresponds to the regularisation
effect of J as discussed in Remark 4.7.

3. It makes sure the 𝑅 (𝑛) equation is well-posed and the Time-Shifted Girsanov Method applies in
exactly the same way as the 𝑆 (𝑛) equation.

We observe that the terms in 𝑅 (𝑛) have the same regularity as the corresponding terms in 𝑆 (𝑛) , so we
obtain the same result of Proposition 6.20 for 𝑅 (𝑛) .

Proposition 7.5 (Constraint from Time-Shifted Girsanov for 𝑅 (𝑛) ). Under the standing noise factori-
sation assumptions in equations 6.1–6.3, if the 𝑋 (𝑖) equations are well-posed, with all their terms
possessing canonical regularity, and if in addition, 𝛼0 < 1 and 𝛼0 − 𝛽𝑛 < 1

2 , then the regularity condi-
tion needed to apply Theorem 5.9, the Time-Shifted Girsanov Method, to 𝑅 (𝑛) holds. More concretely,
it implies that for any 𝑡 > 0, it holds almost surely that

Law(𝑅 (𝑛)
𝑡 | 𝑡 < 𝜏∞,F (𝑛)

𝑡 ) 
 Law(𝑍 (𝑛)
𝑡 ),

where we recall F (𝑛)
𝑡 = 𝜎(𝑊 ( 𝑗)

𝑠 : 𝑗 ≤ 𝑛, 𝑠 ≤ 𝑡).
In particular, as long as 𝛼0 < 1, 𝛽𝑛 (and 𝛼𝑛) can be taken close enough to 1

2 to satisfy the condition
𝛼0 − 𝛽𝑛 < 1

2 .

Again, since the main argument in the previous section follows from computations of the same
regularity, we can obtain the same overall result as the previous section by Corollary 6.4.

Corollary 7.6 (The overall result on the X system). Fix an n and an 𝛼 so that 1
2 ≤ 𝛼 < 2𝑛+1

2𝑛+2 . Then there
exists a sequence of real numbers 𝛽𝑛 < 𝛼𝑛 < . . . < 𝛼0 = 𝛼 such that the standing noise factorisation
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assumptions on the {𝛼 𝑗 : 𝑗 = 0, . . . , 𝑛} in equations 6.1–6.3 hold as well as the hypothesis of Lemma 7.1,
Proposition 7.2, Proposition 7.3 and Proposition 7.5. More concretely, it implies that for any 𝑡 > 0, it
holds almost surely that

Law(𝑢𝑡 | 𝜏∞ > 𝑡) = Law

(
𝑅 (𝑛)
𝑡 +

𝑛∑
𝑘=0

𝑋 (𝑘)
𝑡

��� 𝜏∞ > 𝑡

)


 Law

(
𝑍 (𝑛)
𝑡 +

𝑛∑
𝑘=0

𝑍 (𝑘)
𝑡

)
= Law(𝑧𝑡 ),

where, as a reminder, 𝑧𝑡 is the linear part of 𝑢𝑡 with initial condition 𝑧0 as defined in equation (2.3).

8. Discussion

The Time-Shifted Girsanov Method, described in Section 5.3, was used in [MS05] to show that the
hyper-viscous two-dimensional Navier-Stokes equation satisfied the translation of Theorem 2.1 to that
setting when the forcing is smooth enough to have classical solutions but not so smooth that is infinitely
differentiable in space. This is completely analogous to the theorem proven here when 𝛼 < 1

2 . We
conjecture that the translation of Theorem 2.1 for the classical two-dimensional Navier-Stokes equation
does not hold for the same kind of forcing as in Section 5.3, because it is just beyond the validity
of the Time-Shifted Girsanov Method. It would be interesting to compare and contrast that setting to
the current one when 𝛼 = 1, since both cases are right at the boundary of the Time-Shifted Girsanov
Method, while the former case does not involve any singularity. In both settings, it would be interesting
to understand the structure of the transition measure when 𝑄 ≈ 𝑒−𝐴, where we expect the system to
have more in common with a finite-dimensional hypoelliptic system.

A. Besov spaces and Paraproducts

Results of this section can be found at [BCD11, GIP15, CC18]. We recall the definition of Littlewood-
Paley blocks. Let 𝜒, 𝜑 be smooth radial functions R→ R such that
◦ 0 ≤ 𝜒, 𝜑 ≤ 1, 𝜒(𝜉) +

∑
𝑗≥0 𝜑(2− 𝑗𝜉) = 1 for any 𝜉 ∈ R,

◦ supp 𝜒 ⊆ 𝐵(0, 𝑅), supp 𝜑 ⊆ 𝐵(0, 2𝑅) \ 𝐵(0, 𝑅),
◦ supp 𝜑(2− 𝑗 ·) ∩ supp 𝜑(2−𝑖 ·) = ∅ if |𝑖 − 𝑗 | > 1.
The pair (𝜒, 𝜑) is called a dyadic partition of unity. We use the notations

𝜑−1 = 𝜒, 𝜑 𝑗 = 𝜑(2− 𝑗 ·) (A.1)

for 𝑗 ≥ 0. Then the family of Fourier multipliers (Δ 𝑗 ) 𝑗≥−1 denotes the associated Littlewood-Paley
blocks: that is,

Δ−1 = 𝜒(𝐷), Δ 𝑗 = 𝜑(2− 𝑗𝐷)

for 𝑗 ≥ 0.
Definition A.1. For 𝑠 ∈ R, 𝑝, 𝑞 ∈ [1,∞], the Besov space 𝐵𝑠𝑝,𝑞 is defined as

𝐵𝑠𝑝,𝑞 =
{
𝑢 ∈ 𝒮′ : ‖𝑢‖𝐵𝑠

𝑝,𝑞
:=

���(2 𝑗𝑠 ‖Δ 𝑗𝑢‖𝐿𝑝

)
𝑗≥−1

���
ℓ𝑞
< ∞

}
.

As a convention, we denote by C𝑠 the separable version of the Besov-Hölder space 𝐵𝑠∞,∞: that is, C𝑠 is
the closure of 𝐶∞(T) with respect to ‖ · ‖𝐵𝑠

∞,∞ . We also write ‖ · ‖C𝑠 to mean ‖ · ‖𝐵𝑠
∞,∞ .

Remark A.2. To show that 𝑢 ∈ 𝒮′ is in C𝑠 , it suffices to show ‖𝑢‖𝐵𝑠′
∞,∞

< ∞ for some 𝑠′ > 𝑠.
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Remark A.3. For 0 < 𝑠 < 1, f is in the classical space of s-Hölder continuous functions if and only if
𝑓 ∈ 𝐿∞ and ‖ 𝑓 ‖C𝑠 < ∞.

Proposition A.4 (Besov embedding). Let 1 ≤ 𝑝1 ≤ 𝑝2 ≤ ∞ and 1 ≤ 𝑞1 ≤ 𝑞2 ≤ ∞. For 𝑠 ∈ R, the

space 𝐵𝑠𝑝1 ,𝑞1 is continuously embedded in 𝐵
𝑠−( 1

𝑝1
− 1

𝑝2
)

𝑝2 ,𝑞2 .

Definition A.5. A smooth function 𝜂 : R→ R is said to be an 𝑆𝑚-multiplier if for every multi-index 𝛼,����𝜕𝛼𝜂𝜕𝑥𝛼
(𝜉)

���� �𝛼 (1 + |𝜉 |)𝑚−|𝛼 | , ∀𝜉 ∈ R.

Proposition A.6. Let 𝑚 ∈ R and 𝜂 be a 𝑆𝑚-multiplier. Then for all 𝑠 ∈ R and 1 ≤ 𝑝, 𝑞 ≤ ∞, the
operator 𝜂(𝐷) is continuous from 𝐵𝑠𝑝,𝑞 to 𝐵𝑠−𝑚𝑝,𝑞 .

The following estimate can be found at [CC18, Lemma 2.5] and [GIP15, Lemma A.7].

Proposition A.7. Let A be the negative Laplacian and 𝛾, 𝛿 ∈ R with 𝛾 ≤ 𝛿. Then

‖𝑒−𝑡 𝐴𝑢‖C 𝛿 � 𝑡
1
2 (𝛾−𝛿) ‖𝑢‖C𝛾

for all 𝑢 ∈ C𝛾 .

For 𝑢 ∈ C𝛾 and 𝑣 ∈ C 𝛿 , we can formally decompose the product 𝑢𝑣 as

𝑢𝑣 = 𝑢 ≺ 𝑣 + 𝑢 ◦ 𝑣 + 𝑢 � 𝑣, (A.2)

where

𝑢 ≺ 𝑣 = 𝑣 � 𝑢 :=
∑
𝑖< 𝑗−1

Δ 𝑖𝑢Δ 𝑗𝑣, 𝑢 ◦ 𝑣 =
∑

|𝑖− 𝑗 |<1
Δ 𝑖𝑢Δ 𝑗𝑣.

Proposition A.8 (Bony estimates). Let 𝛾, 𝛿 ∈ R. Then we have the estimates

◦ ‖𝑢 ≺ 𝑣‖C 𝛿 � ‖𝑢‖𝐿∞ ‖𝑣‖C 𝛿 for 𝑢 ∈ 𝐿∞ and 𝑣 ∈ C 𝛿 .
◦ ‖𝑢 ≺ 𝑣‖C𝛾+𝛿 � ‖𝑢‖C𝛾 ‖𝑣‖C 𝛿 for 𝛾 < 0, 𝑢 ∈ C𝛾 and 𝑣 ∈ C 𝛿 .
◦ ‖𝑢 ◦ 𝑣‖C𝛾+𝛿 � ‖𝑢‖C𝛾 ‖𝑣‖C 𝛿 for 𝛾 + 𝛿 > 0, 𝑢 ∈ C𝛾 and 𝑣 ∈ C 𝛿 .

Remark A.9. Note that the paraproduct ≺ is always a well-defined continuous bilinear operator. The
product C𝛾 × C 𝛿 → C𝛾∧𝛿∧(𝛾+𝛿) , (𝑢, 𝑣) ↦→ 𝑢𝑣 is a well-defined, continuous bilinear map, provided
𝛾 + 𝛿 > 0. In this case, we say the product is classically well-defined. On the other hand, if we can
directly show the existence of the resonant product 𝑢 ◦ 𝑣 of two terms u and v, then the product 𝑢𝑣 will
be well-defined. In this case, we usually have 𝑢 ◦ 𝑣 ∈ C𝛾+𝛿 given that 𝑢 ∈ C𝛾 and 𝑣 ∈ C 𝛿 , so we still
obtain 𝑢𝑣 ∈ C𝛾∧𝛿∧(𝛾+𝛿) without the condition 𝛾 + 𝛿 > 0.

B. Construction of finite Gaussian chaos objects

In this section, we construct various singular processes with their canonical regularity that are necessary
for our analysis above. We refer to [Hai13, GP17, MWX15, CC18, GIP15] for relevant technical details.
In particular, [GP17] provides constructions of many of these Gaussian objects that correspond to
the harder case of 𝛼 = 1 in our setting. We mainly apply the unified argument in [MWX15] and
point out the minimal modifications for our setting. More specially, we only need to change relevant
Fourier multipliers of the nonlinearity and the driving noise and compute estimates with the same
procedure. In principle, all of these objects can be constructed by invoking the abstract main result from
[CH16], but we find it instructive to construct them by hand as a reference for ‘pedestrians’ in the spirit
of [MWX15].
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We first set up some notations:

◦ We write Z0 = Z \ {0}.
◦ For 𝑥 ∈ 𝒮′(T), 𝑘 ∈ Z, 𝑥̂(𝑘) denotes the kth Fourier mode of x.
◦ For 𝑘 ∈ Z, let 𝑒𝑘 be the kth Fourier basis function given by complex exponentials.
◦ For a process x, we use the notation 𝑥𝑠,𝑡 := 𝑥𝑡 − 𝑥𝑠 .
◦ We write � to mean both � and �.
◦ We write 𝑘 ∼ 𝑘 ′ if 𝑘 ∈ supp 𝜑𝑖 , 𝑘 ′ ∈ supp 𝜑 𝑗 and |𝑖 − 𝑗 | ≤ 1, and by abuse of this notation, we

write 𝑘 ∼ 2 𝑗 if 𝑘 ∈ supp 𝜑 𝑗 , where 𝜑 𝑗 is defined in equation (A.1).
◦ Let 𝜓 be a smooth radial function with compact support and 𝜓(0) = 1. We regularise a process x by

setting

𝑥 𝜖𝑡 =
∑
𝑘∈Z

𝜓(𝜖 𝑘)𝑥𝑡 (𝑘)𝑒𝑘 ,

and for convenience, we also write

𝑥 𝜖𝑡 =
∑

|𝑘 |�𝜖 −1

𝑥𝑡 (𝑘)𝑒𝑘 .

Fix 𝛾, 𝛿 ∈ (0, 1). Let (𝑧 (𝛾)𝑡 : 𝑡 ∈ [0, 𝑇]) denote the Ornstein-Uhlenbeck process defined by

𝑧
(𝛾)
𝑡 :=

∫ 𝑡

0
𝑒−(𝑡−𝑠)𝐴𝑄 (𝛾)𝑑𝑊𝑠

for some operator𝑄 (𝛾) ≈ 𝐴𝛾/2, and W is a cylindrical Brownian motion. We define 𝑧 (𝛿) in the same way,
but we use different symbols to note that 𝑧 (𝛾) and 𝑧 (𝛿) are driven by different, independent cylindrical
Brownian motions so that they are independent. It is more convenient to write 𝑧 (𝛾) and 𝑧 (𝛿) in Fourier
space: we have a family of independent, standard, complex-valued Brownian motions (𝑊 (𝑘) : 𝑘 ∈ Z)
with the real-valued constraint𝑊 (𝑘) = 𝑊 (−𝑘) such that for 𝑘 ∈ Z0,

𝑧
(𝛾)
𝑡 (𝑘) =

∫ 𝑡

0
𝑒−|𝑘 |

2 (𝑡−𝑠)𝑞𝑘𝑑𝑊𝑠 (𝑘),

where 𝑞𝑘 is the eigenvalue of Q corresponding to 𝑒𝑘 and |𝑞𝑘 | � |𝑘 |𝛾 . In particular, 𝑞0 = 0, so 𝑧 (𝛾)𝑡 (0) = 0,
which means 𝑧 (𝛾) has mean zero in space.

Remark B.1. Since we work with processes like 𝑧 (𝛾) that have mean zero in space, we ignore the 0th
Fourier mode by default: for example, in various summations involving Fourier modes.

B.1. Preliminary results

We will use Proposition 3.6, Lemma 4.1 and Lemma 4.2 from [MWX15].

Proposition B.2 [MWX15]. Let 𝑥 : [0, 𝑇] → 𝒮′(T) be a stochastic process in some finite Wiener chaos
such that

𝑘 + 𝑘 ′ ≠ 0 =⇒ E[𝑥𝑠 (𝑘) 𝑥𝑡 (𝑘 ′)] = 0.

If, for some 𝑡 ∈ [0, 𝑇], E[|𝑥𝑡 (0) |2] � 1 and for all 𝑘 ∈ Z0,

E[|𝑥𝑡 (𝑘) |2] �
1

|𝑘 |1+2𝜅 , (B.1)
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then for every 𝛽 < 𝜅, 𝑝 ≥ 2, we have

E[‖𝑥𝑡 ‖ 𝑝C𝛽 ] < ∞.

If, in addition to equation (B.1), there exists ℎ ∈ (0, 1) such that E[|𝑥𝑠,𝑡 (0) |2] � |𝑡 − 𝑠 |ℎ and

E[|𝑥𝑠,𝑡 (𝑘) |2] �
|𝑡 − 𝑠 |ℎ

|𝑘 |1+2𝜅−2ℎ (B.2)

uniformly in 0 < |𝑡 − 𝑠 | < 1 and 𝑘 ∈ Z0, then 𝜏 ∈ 𝐶𝑇 C𝛽 , and

sup
0< |𝑡−𝑠 |<1

E‖𝑥𝑠,𝑡 ‖ 𝑝C𝛽

|𝑡 − 𝑠 |
ℎ𝑝
2

< ∞.

Remark B.3. Later, when we apply Proposition B.2, checking the condition on the 0th Fourier mode is
straightforward, so we will omit details of that part.

Lemma B.4 [MWX15]. Let 𝑎, 𝑏 ∈ R satisfy 𝑎 + 𝑏 > 1 and 𝑎, 𝑏 < 1. We have uniformly for all 𝑘 ∈ Z0∑
𝑘1 ,𝑘2∈Z0
𝑘1+𝑘2=𝑘

1
|𝑘1 |𝑎

1
|𝑘2 |𝑏

�
1

|𝑘 |𝑎+𝑏−1 .

Lemma B.5 [MWX15]. Let 𝑎, 𝑏 ∈ R satisfy 𝑎 + 𝑏 > 1. We have uniformly for all 𝑘 ∈ Z0∑
𝑘1+𝑘2=𝑘,
𝑘1∼𝑘2

1
|𝑘1 |𝑎

1
|𝑘2 |𝑏

�
1

|𝑘 |𝑎+𝑏−1 .

The following proposition provides a way to bound pth moments of Hölder norms of a process via
estimates of its Littlewood-Paley blocks.

Proposition B.6. Let 𝑥 : [0, 𝑇] → 𝒮′(T) be a stochastic process in some finite Wiener chaos such that
for ℎ ≥ 0 small enough,

E
[��Δ 𝑗𝑥𝑠,𝑡 (𝑥)

��2] ≤ 𝐶 |𝑡 − 𝑠 |ℎ2− 𝑗 (2𝜅−2ℎ) .

Then for any 𝛽 < 𝜅 and 𝑝 > 1,

E

[
‖𝑥‖ 𝑝

𝐶𝑇 C𝛽

]
� 𝐶 𝑝/2.

Proof. By Gaussian hypercontractivity (e.g., [MWX15, Proposition 3.3]), for 𝑝 > 1, ℎ ≥ 0 small
enough,

E

[��Δ 𝑗𝑥𝑠,𝑡
��2𝑝
𝐿2𝑝

]
�

��E[��Δ 𝑗𝑥𝑠,𝑡 (𝑥)
��2]��𝑝

𝐿𝑝 (𝑑𝑥) � 𝐶 |𝑡 − 𝑠 |
ℎ𝑝2− 𝑗 𝑝 (2𝜅−2ℎ) .

For any 𝛽 < 𝜅, by taking h small enough and p large enough, by [MWX15, Proposition 2.7] or Besov
embedding, Proposition A.4, we have

E
[��𝑥𝑠,𝑡��𝑝C𝛽

]
� 𝐶 𝑝/2 |𝑡 − 𝑠 |

ℎ𝑝
2 .
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By a variant of the Kolmogorov continuity theorem or the standard Garsia-Rodemich-Rumsey lemma
([GRRR70]), we obtain

E

[
‖𝑥‖ 𝑝

𝐶𝑇 C𝛽

]
� 𝐶 𝑝/2. �

B.2. Regularity and convergence of z

The following result, as in [GIP15, Lemma 4.4], follows from a straightforward computation, which
will be useful later.

Lemma B.7. The spatial Fourier transform 𝑧 (𝛾) of 𝑧 (𝛾) is a complex-valued, centred Gaussian process
with covariance

E

[
𝑧
(𝛾)
𝑡 (𝑘) 𝑧 (𝛾)𝑡′ (𝑘 ′)

]
�

{
1𝑘=𝑘′ |𝑘 |−2+2𝛾 (𝑒−|𝑘 |2 |𝑡′−𝑡 | − 𝑒−|𝑘 |2 (𝑡′+𝑡) ), 𝑘 ≠ 0
0 𝑘 = 0,

where 𝑘, 𝑘 ′ ∈ Z, 𝑡, 𝑡 ′ ∈ [0, 𝑇]. In particular, we have

E

[����𝑧 (𝛾)𝑡 (𝑘)
����2] � 1

|𝑘 |2−2𝛾 , (B.3)

E

[
𝑧
(𝛾)
𝑡 (𝑘) 𝑧 (𝛾)𝑡′ (𝑘)

]
�

1
|𝑡 − 𝑡 ′|𝜌

1
|𝑘 |2−2𝛾+2𝜌 , (B.4)

E

[����𝑧 (𝛾)𝑠,𝑡 (𝑘)
����2] � |𝑡 − 𝑠 |ℎ

|𝑘 |2−2𝛾−2ℎ (B.5)

for all 𝑠, 𝑡, 𝑡 ′ ∈ [0, 𝑇], 𝜌, ℎ ∈ [0, 1] and 𝑘 ∈ Z0.

Using Proposition B.2 with the previous lemma, we have the following result.

Proposition B.8. For any 𝛽 < 1
2 − 𝛾, we have 𝑧 (𝛾) ∈ 𝐶𝑇 C𝛽 .

One may also adapt the argument by changing a few parameters in [CC18, Section 4.1] to prove the
following approximation result.

Proposition B.9. For any 𝛽 < 1
2 − 𝛾 and any 𝑝 > 1, we have

lim
𝜖→0
E

[���𝑧 (𝛾) , 𝜖 − 𝑧 (𝛾)���𝑝
𝐶𝑇 C𝛽

]
= 0.

B.3. Construction of 𝐵(𝑧 (𝛾) ) and 𝐽 (𝑧 (𝛾) )

If 𝛾 < 1
2 , 𝑧 (𝛾) is a function-valued process, so (𝑧 (𝛾) )2 and 𝐽 (𝑧 (𝛾) ) are well-defined classically, then

𝐵(𝑧 (𝛾) ) ∈ 𝐶𝑇 C𝛽 for any 𝛽 < − 1
2 − 𝛾.

If 1
2 ≤ 𝛾, 𝑧 (𝛾) is distribution-valued and (𝑧 (𝛾) )2 is not classically well-defined, we introduce a

renormalisation procedure. For the regularised process 𝑧 (𝛾) , 𝜖 , define the renormalised product

(𝑧 (𝛾) , 𝜖 )�2
𝑡 := (𝑧 (𝛾) , 𝜖 )2

𝑡 − E[(𝑧 (𝛾) , 𝜖 )2
𝑡 ] .
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Lemma B.10. For any 𝑠, 𝑡, 𝑡 ′ ∈ [0, 𝑇], we have

E

[���"(𝑧𝜖 )�2
𝑡 (𝑘)

���2] � ∑
𝑘1+𝑘2=𝑘,

|𝑘1 |, |𝑘2 |�𝜖 −1

1
|𝑘1 |2−2𝛾 |𝑘2 |2−2𝛾 , (B.6)

E

["(𝑧𝜖 )�2
𝑡 (𝑘) "(𝑧𝜖 )�2

𝑡′ (𝑘)
]
�

1
|𝑡 − 𝑡 ′|𝜌

∑
𝑘1+𝑘2=𝑘,

|𝑘1 |, |𝑘2 |�𝜖 −1

1
|𝑘1 |2−2𝛾+𝜌 |𝑘2 |2−2𝛾+𝜌 , (B.7)

E

[���"(𝑧𝜖 )�2
𝑠,𝑡 (𝑘)

���2] � |𝑡 − 𝑠 |ℎ
∑

𝑘1+𝑘2=𝑘,
|𝑘1 |, |𝑘2 |�𝜖 −1

1
|𝑘1 |2−2𝛾−ℎ |𝑘2 |2−2𝛾−ℎ (B.8)

for any 𝑘 ∈ Z0, and 𝜌, ℎ ∈ [0, 1].

Proof. For convenience, we write 𝑧 = 𝑧 (𝛾) . Because of the renormalisation, (𝑧𝜖 )�2
𝑡 belongs to the second

homogeneous Wiener chaos. For 𝑘 ∈ Z0, 𝑡 > 0, by the Itô formula,

"(𝑧𝜖 )�2
𝑡 (𝑘) = 2

∑
𝑘1+𝑘2=𝑘,

|𝑘1 |, |𝑘2 |�𝜖 −1

∫ 𝑡

0

∫ 𝑠

0
𝑒−|𝑘1 |2 (𝑡−𝑠)−|𝑘2 |2 (𝑡−𝑟 )𝑞𝑘1𝑞𝑘2𝑑𝑊𝑟 (𝑘2) 𝑑𝑊𝑠 (𝑘1),

so we have

E

[���"(𝑧𝜖 )�2
𝑡 (𝑘)

���2] � ∑
𝑘1+𝑘2=𝑘,

|𝑘1 |, |𝑘2 |�𝜖 −1

1
|𝑘1 |−2𝛾 |𝑘2 |−2𝛾

∫ 𝑡

0

∫ 𝑠

0
𝑒−2 |𝑘1 |2 (𝑡−𝑠)−2 |𝑘2 |2 (𝑡−𝑟 ) 𝑑𝑟 𝑑𝑠,

and equations (B.6) and (B.7) hold. On the other hand,

E

[���"(𝑧𝜖 )�2
𝑠,𝑡 (𝑘)

���2] � ∑
𝑘1+𝑘2=𝑘,

|𝑘1 |, |𝑘2 |�𝜖 −1

1
|𝑘1 |−2𝛾 |𝑘2 |−2𝛾

(∫ 𝑡

𝑠

∫ 𝑠1

0
𝑒−2 |𝑘1 |2 (𝑡−𝑠1)−2 |𝑘2 |2 (𝑡−𝑠2) 𝑑𝑠2 𝑑𝑠1

+
∫ 𝑠

0

∫ 𝑠1

0

(
𝑒−|𝑘1 |2 (𝑡−𝑠1)−|𝑘2 |2 (𝑡−𝑠2) − 𝑒−|𝑘1 |2 (𝑠−𝑠1)−|𝑘2 |2 (𝑠−𝑠2)

)2
𝑑𝑠2 𝑑𝑠1

)
=

∑
𝑘1+𝑘2=𝑘,

|𝑘1 |, |𝑘2 |�𝜖 −1

(I + II)
|𝑘1 |−2𝛾 |𝑘2 |−2𝛾 ,

where using both the bound 𝑒−𝑟 ≤ 1 and 1 − 𝑒−𝑟𝑡 � 𝑟𝑡 for 𝑟 ≥ 0 and computing integrals of the form∫
𝑒−𝑟 𝑑𝑟 , for any ℎ ∈ [0, 1],

I �
1

|𝑘2 |2

∫ 𝑡

𝑠
𝑒−2 |𝑘1 |2 (𝑡−𝑠1) 𝑑𝑠1 �

1
|𝑘2 |2

(
1

|𝑘1 |2
∧ |𝑡 − 𝑠 |

)
≤ |𝑡 − 𝑠 |ℎ

|𝑘1 |2−2ℎ |𝑘2 |2
,

II =
∫ 𝑠

0

∫ 𝑠1

0

(
𝑒−( |𝑘1 |2+|𝑘2 |2) (𝑡−𝑠) − 1

)2
𝑒−2 |𝑘1 |2 (𝑠−𝑠1)−2 |𝑘2 |2 (𝑠−𝑠2) 𝑑𝑠2 𝑑𝑠1

�
1

|𝑘2 |2

(
1

|𝑘1 |2
∧ |𝑡 − 𝑠 |

)
≤ |𝑡 − 𝑠 |ℎ

|𝑘1 |2−2ℎ |𝑘2 |2
,

so equation (B.8) holds by exchanging the role of 𝑘1 and 𝑘2. �
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For 𝛾 < 3
4 , we can show that the renormalised product (𝑧 (𝛾) , 𝜖 )�2 converges to a limiting process

(𝑧 (𝛾) )�2 with the desired regularity.

Proposition B.11. If 1
2 ≤ 𝛾 < 3

4 , then there exists a process (𝑧 (𝛾) )�2 such that

E

[���%(𝑧 (𝛾) )�2
𝑡 (𝑘)

���2] � 1
|𝑘 |3−4𝛾−𝜂 (B.9)

for any 𝑘 ∈ Z0, 0 ≤ 𝑡 ≤ 𝑇 and small enough 𝜂 > 0, and

lim
𝜖→0
E

[���(𝑧 (𝛾) , 𝜖 )�2 − (𝑧 (𝛾) )�2
���𝑝
𝐶𝑇 C𝛽

]
= 0

for any 𝛽 < 1 − 2𝛾 and 𝑝 > 1.

Proof. When 𝛾 > 1
2 , by equation (B.6) and Lemma B.4, it holds uniformly in 𝜖 that

E

[���"(𝑧𝜖 )�2
𝑡 (𝑘)

���2] � ∑
𝑘1+𝑘2=𝑘

1
|𝑘1 |2−2𝛾

1
|𝑘2 |2−2𝛾 �

1
|𝑘 |3−4𝛾 . (B.10)

When 𝛾 = 1
2 , in order to apply Lemma B.4, we give up an arbitrary small amount of decay in 𝑘1 and 𝑘2

of equation (B.10) to obtain equation (B.9).
Similarly, using equation (B.8) and Lemma B.4, for ℎ ≥ 0 small enough,

E
[��Δ 𝑗 (𝑧𝜖 )�2

𝑠,𝑡 (𝑥)
��2] � ∑

𝑘∼2 𝑗

E

[���"(𝑧𝜖 )�2
𝑠,𝑡 (𝑘)

���2] � ∑
𝑘∼2 𝑗

|𝑡 − 𝑠 |ℎ

|𝑘 |3−4𝛾−2ℎ � |𝑡 − 𝑠 |ℎ2− 𝑗 (2−4𝛾−2ℎ) ,

which implies, by Proposition B.6,

sup
𝜖
E

[���(𝑧 (𝛾) , 𝜖 )�2
���𝑝
𝐶𝑇 C𝛽

]
< ∞

for any 𝛽 < 1 − 2𝛾 and 𝑝 > 1. We can obtain the same estimate for (𝑧𝜖 )�2 − (𝑧𝜖 ′ )�2, since the terms
involving 𝜓(𝜖 𝑘), 𝜓(𝜖 ′𝑘 ′) are uniformly bounded, and other terms are the same. As 𝜖, 𝜖 ′ → 0, in the kth
Fourier mode, we have a factor like

𝜓(𝜖 𝑘1)𝜓(𝜖 𝑘2) − 𝜓(𝜖 ′𝑘1)𝜓(𝜖 ′𝑘2) −→ 0.

By dominated convergence, ((𝑧 (𝛾) , 𝜖 )�2)𝜖 is a Cauchy sequence in 𝐿 𝑝 (Ω, 𝐶𝑇 C𝛽), where Ω denotes the
underlying probability space. We denote the limit by (𝑧 (𝛾) )�2, and the result follows. �

However, if 𝛾 ≥ 3
4 , (𝑧 (𝛾) )�2 is no longer a well-defined process but a space-time distribution so that

(𝑧 (𝛾) )�2
𝑡 has no meaning at a fixed time 𝑡 > 0. This can be recognised from the fact that the summation

in equation (B.10) diverges. In this case, we instead consider the regularised process

𝐽 (𝑧 (𝛾) , 𝜖 )�𝑡 :=
∫ 𝑡

0
𝑒−(𝑡−𝑠)𝐴𝜕𝑥 (𝑧 (𝛾) , 𝜖 )�2 𝑑𝑠,

for which we can show that, with the help of temporal regularity provided by the heat kernel, 𝐽 (𝑧 (𝛾) , 𝜖 )�
converges to a well-defined process 𝐽 (𝑧 (𝛾) )� with the desired regularity.
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Proposition B.12. If 1
2 ≤ 𝛾 < 1, there exists a process 𝐽 (𝑧)� such that

E

[��� %𝐽 (𝑧 (𝛾) )�𝑡 (𝑘)���2] � 1
|𝑘 |5−4𝛾 , (B.11)

E

[��� %𝐽 (𝑧 (𝛾) )�𝑠,𝑡 (𝑘)���2] � |𝑡 − 𝑠 |ℎ

|𝑘 |5−4𝛾−2ℎ (B.12)

for any 𝑘 ∈ Z0, ℎ ∈ [0, 1] and 𝑠, 𝑡 ∈ [0, 𝑇], and

lim
𝜖→0
E

[���𝐽 (𝑧 (𝛾) , 𝜖 )� − 𝐽 (𝑧 (𝛾) )����𝑝
𝐶𝑇 C𝛽

]
= 0

for any 𝛽 < 2 − 2𝛾 and 𝑝 > 1.

Proof. We focus on the case 3
4 ≤ 𝛾 < 1, since the other case is already done. Take 𝜌 ∈ (0, 1) satisfying

2𝛾 − 3
2 < 𝜌 < 𝛾 −

1
2 , and by equation (B.7) and Lemma B.4,

E

["(𝑧𝜖 )�2
𝑠 (𝑘)"(𝑧𝜖 )�2

𝑠′ (𝑘)
]
�

1
|𝑠 − 𝑠′|𝜌

∑
𝑘1+𝑘2=𝑘

1
|𝑘1 |2−2𝛾+𝜌

1
|𝑘2 |2−2𝛾+𝜌 �

1
|𝑠 − 𝑠′|𝜌

1
|𝑘 |3−4𝛾+2𝜌 ,

which implies

E

[��� "𝐽 (𝑧𝜖 )�𝑡 (𝑘)���2] = ∫ 𝑡

0

∫ 𝑡

0
|𝑘 |2𝑒−|𝑘 |2 (𝑡−𝑠)−|𝑘 |2 (𝑡−𝑠′)E

["(𝑧𝜖 )�2
𝑠 (𝑘)"(𝑧𝜖 )�2

𝑠′ (𝑘)
]
𝑑𝑠′ 𝑑𝑠

�
∫ 𝑡

0

∫ 𝑡

0
|𝑘 |2𝑒−|𝑘 |2 (𝑡−𝑠)−|𝑘 |2 (𝑡−𝑠′) 1

|𝑠 − 𝑠′|𝜌
1

|𝑘 |3−4𝛾+2𝜌 𝑑𝑠
′ 𝑑𝑠

�
1

|𝑘 |5−4𝛾 .

On the other hand, by taking 𝜌 ∈ (0, 1) as above, using the bound

𝑒−|𝑘 |
2 (𝑡−𝑠1)−|𝑘 |2 (𝑡−𝑠2)

|𝑠1 − 𝑠2 |𝜌 |𝑘 |2𝜌
� 1,

with similar computations for equation (B.8), we have

E

[��� %𝐽 (𝑧 (𝛾) )�𝑠,𝑡 (𝑘)���2] � |𝑘 |2

|𝑘 |3−4𝛾

(∫ 𝑡

𝑠

∫ 𝑡

𝑠

𝑒−|𝑘 |
2 (𝑡−𝑠1)−|𝑘 |2 (𝑡−𝑠2)

|𝑠1 − 𝑠2 |𝜌 |𝑘 |2𝜌
𝑑𝑠2 𝑑𝑠1

+
∫ 𝑠

0

∫ 𝑠

0
(𝑒−|𝑘 |2 (𝑡−𝑠) − 1)2 𝑒

−|𝑘 |2 (𝑠−𝑠1)−|𝑘 |2 (𝑠−𝑠2)

|𝑠1 − 𝑠2 |𝜌 |𝑘 |2𝜌
𝑑𝑠2 𝑑𝑠1

)

�
1

|𝑘 |1−4𝛾

(
1
|𝑘 |4

∧ |𝑡 − 𝑠 |
|𝑘 |2

)
≤ |𝑡 − 𝑠 |ℎ

|𝑘 |5−4𝛾−2ℎ

for ℎ ∈ [0, 1]. With the above estimate, the last statement follows from the same argument as in
Proposition B.11. �

Remark B.13 (Renormalisation is not needed for the nonlinearity of Burgers). Since 𝜕𝑥 : C𝛽 → C𝛽−1

is continuous and annihilates quantities that are constant in space, we note that

𝜕𝑥 (𝑧 (𝛾) )�2 = lim
𝜖→0

𝜕𝑥 (𝑧 (𝛾) , 𝜖 )�2 = lim
𝜖→0

𝜕𝑥 (𝑧 (𝛾) , 𝜖 )2 = 𝐵(𝑧 (𝛾) ).
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Also, by the Fourier expansion of 𝐵(𝑧 (𝛾) , 𝜖 ), we see that the 0th mode is zero, so the renormalisation
procedure is not actually needed for 𝐵(𝑧 (𝛾) ). By the same reasoning, we can interpret 𝐽 (𝑧 (𝛾) ) = 𝐽 (𝑧 (𝛾) )�.

B.4. Construction of 𝐵(𝐽 (𝑧 (𝛾) ), 𝑧 (𝛾) )

If 𝛾 < 1
2 , then 𝐵(𝐽 (𝑧 (𝛾) ), 𝑧 (𝛾) ) is classically well-defined. Then 𝐵(𝐽 (𝑧 (𝛾) ), 𝑧 (𝛾) ) ∈ 𝐶𝑇 C𝛽 for any

𝛽 < (( 3
2 − 𝛾) ∧ ( 1

2 − 𝛾) ∧ (2 − 2𝛾)) − 1 = − 1
2 − 𝛾, according to Remark A.9.

If 1
2 ≤ 𝛾 < 1, we show the existence of the resonant product 𝐽 (𝑧 (𝛾) ) ◦ 𝑧 (𝛾) .

Proposition B.14. Suppose 1
2 ≤ 𝛾 < 1. Let 𝜗 = 𝐽 (𝑧 (𝛾) ), 𝑧 = 𝑧 (𝛾) . We have for any 𝑘 ∈ Z0

E

[���"𝜗𝑡 ◦ 𝑧𝑡 (𝑘)���2] � 1
|𝑘 |6−6𝛾 ,

and 𝜗 ◦ 𝑧 ∈ 𝐶𝑇 C𝛽 for any 𝛽 < 5
2 − 3𝛾.

Proof. Our approach is the same as [MWX15, Page 29–31], and to see the argument more clearly, the
reader is encouraged to write down the corresponding diagrams of our case.

For convenience, write 𝑃𝑡 (𝑘) = 𝑒−|𝑘 |
2𝑡1𝑡≥0. By the Wiener chaos decomposition (see [MWX15] for

a simple strategy using diagrams),

"𝜗𝑡 ◦ 𝑧𝑡 (𝑘) = 𝐼 (3)𝑡 (𝑘) + 2 × 𝐼 (1)𝑡 (𝑘),

where 𝐼 (3) belongs to the third Wiener chaos and 𝐼 (1) belongs to the first Wiener chaos and they are
given by

𝐼 (3)𝑡 (𝑘) = 6
∑

𝑘1+𝑘2=𝑘4 ,
𝑘3+𝑘4=𝑘,
𝑘3∼𝑘4

∫ 𝑡

0

∫ 𝑠3

0

∫ 𝑠2

0

∫ 𝑡

0
𝑃𝑠4−𝑠1 (𝑘1)𝑃𝑠4−𝑠2 (𝑘2)𝑃𝑡−𝑠3 (𝑘3)𝑃𝑡−𝑠4 (𝑘4)

× 𝑖𝑘4 𝑞𝑘1𝑞𝑘2𝑞𝑘3 𝑑𝑠4 𝑑𝑊𝑠1 (𝑘1) 𝑑𝑊𝑠2 (𝑘2) 𝑑𝑊𝑠3 (𝑘3),

𝐼 (1)𝑡 (𝑘) =
∑

𝑘1+𝑘2=𝑘4 ,
𝑘3+𝑘4=𝑘,
𝑘3∼𝑘4 ,
𝑘1+𝑘3=0

∫ 𝑡

0

∫ 𝑡

0

∫ 𝑠4

0
𝑃𝑠4−𝑠1 (𝑘1)𝑃𝑠4−𝑠2 (𝑘2)𝑃𝑡−𝑠1 (𝑘3)𝑃𝑡−𝑠4 (𝑘4)

× 𝑖𝑘4 𝑞𝑘1𝑞𝑘2𝑞𝑘3 𝑑𝑠1 𝑑𝑠4 𝑑𝑊𝑠2 (𝑘2).

Consider E[|𝐼 (3)𝑡 (𝑘) |2], and expand out the integrals. We see that the inner integral has almost the same
expression as E[|𝜗𝑡 (𝑘 ′) |2], which can be bounded by 1

|𝑘′ |5−4𝛾 . With this bound, the remaining outer
integral has almost the same expression as E[|𝑧𝑡 (𝑘 ′′) |2], which can be bounded by 1

|𝑘′′ |2−2𝛾 . Hence, we
have by Lemma B.5,

E

[���𝐼 (3)𝑡 (𝑘)
���2] � ∑

𝑘′+𝑘′′=𝑘,
𝑘′∼𝑘′′

1
|𝑘 ′ |5−4𝛾

1
|𝑘 ′′ |2−2𝛾 �

1
|𝑘 |6−6𝛾 .

Now consider E[|𝐼 (1)𝑡 (𝑘) |2], and expand out the integrals. The inner integral becomes the left-hand side
of the following expression, almost the same as E[|𝑧𝑡 (𝑘) |2]:∫ ∞

0
𝑃𝑠−𝑟 (𝑘)𝑃𝑠′−𝑟 (−𝑘)𝑞2

𝑘 𝑑𝑟 �
1

|𝑘 |2−2𝛾 .
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With this bound, the next outer integral has the following expression∑
𝑘′+𝑘′′=𝑘,
𝑘′∼𝑘′′

∫ ∞

0
𝑖𝑘 ′𝑃𝑡−𝑠 (𝑘 ′)

∫ ∞

0
𝑃𝑡−𝑟 (𝑘 ′′)𝑃𝑠−𝑟 (−𝑘 ′′)𝑞2

𝑘′′ 𝑑𝑟, (B.13)

whose size is bounded by, using Lemma B.5 again,∑
𝑘′+𝑘′′=𝑘,
𝑘′∼𝑘′′

1
|𝑘 ′ |

1
|𝑘 ′′ |2−2𝛾 �

1
|𝑘 |2−2𝛾 .

The remaining outer integral also has the form given by equation (B.13). We arrive at the result

E

[���𝐼 (1)𝑡 (𝑘)
���2] � (

1
|𝑘 |2−2𝛾

)3
=

1
|𝑘 |6−6𝛾 .

For the remaining statement, we note that

𝜗𝑡 ◦ 𝑧𝑡 − 𝜗𝑠 ◦ 𝑧𝑠 = 𝜗𝑡 ◦ 𝑧𝑠,𝑡 + 𝜗𝑠,𝑡 ◦ 𝑧𝑠 .

We can show equation (B.2) of Proposition B.2, by replacing similar bounds used above in equation
(B.3) and equation (B.11) with equation (B.5) and equation (B.12). �

Hence, if 1
2 ≤ 𝛾 < 1, 𝐵(𝐽 (𝑧 (𝛾) ), 𝑧 (𝛾) ) ∈ 𝐶𝑇 C𝛽 for any 𝛽 < ((2−2𝛾)∧( 1

2 −𝛾)∧( 5
3 −3𝛾))−1 = − 1

2 −𝛾,
according to Remark A.9.

B.5. Construction of 𝐵(𝐽 (𝑧 (𝛾) ))

Since 𝛾 < 1, 𝐽 (𝑧 (𝛾) ) ∈ 𝐶𝑇 C𝛽 for some 𝛽 > 0. Hence, 𝐵(𝐽 (𝑧 (𝛾) )) is classically well-defined. By
Remark A.9, if 𝛾 < 1

2 , then 𝐵(𝐽 (𝑧 (𝛾) )) ∈ 𝐶𝑇 C𝛽 for any 𝛽 < 1
2 − 𝛾, and if 1

2 ≤ 𝛾 < 1, then
𝐵(𝐽 (𝑧 (𝛾) )) ∈ 𝐶𝑇 C𝛽 for any 𝛽 < 1 − 2𝛾.

B.6. Construction of 𝐵(𝑧 (𝛾) , 𝑧 (𝛿) ) and 𝐽 (𝑧 (𝛾) , 𝑧 (𝛿) )

Recall that 𝑧 (𝛾) and 𝑧 (𝛿) are independent. Then for 𝛾 + 𝛿 < 3
2 , it suffices to show the existence of the

resonant product 𝑧 (𝛾) ◦ 𝑧 (𝛿) .

Proposition B.15. Suppose 𝛾 + 𝛿 < 3
2 . Then we have, for any 𝑘 ∈ Z0,

E

[���� %
𝑧
(𝛾)
𝑡 ◦ 𝑧 (𝛿)𝑡 (𝑘)

����2] � 1
|𝑘 |3−2𝛾−2𝛿 ,

and 𝑧 (𝛾) ◦ 𝑧 (𝛿) ∈ 𝐶𝑇 C𝛽 for any 𝛽 < 1 − 𝛾 − 𝛿.

Proof. By the definition of 𝑧 (𝛾)𝑡 ◦ 𝑧 (𝛿)𝑡 , independence and equation (B.3), we have for any 𝑘 ∈ Z0

E

[���� %
𝑧
(𝛾)
𝑡 ◦ 𝑧 (𝛿)𝑡 (𝑘)

����2] � ∑
𝑘1+𝑘2=𝑘,
𝑘1∼𝑘2

E

[����𝑧 (𝛾)𝑡 (𝑘1)
����2]E[����𝑧 (𝛿)𝑡 (𝑘2)

����2]

�
∑

𝑘1+𝑘2=𝑘,
𝑘1∼𝑘2

1
|𝑘1 |2−2𝛾

1
|𝑘2 |2−2𝛿 �

1
|𝑘 |3−2𝛾−2𝛿 , (B.14)
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where we used Lemma B.5 since 𝛾 + 𝛿 < 3
2 . Note that

𝑧
(𝛾)
𝑡 ◦ 𝑧 (𝛿)𝑡 − 𝑧 (𝛾)𝑠 ◦ 𝑧 (𝛿)𝑠 = 𝑧 (𝛾)𝑡 ◦ 𝑧 (𝛿)𝑠,𝑡 + 𝑧 (𝛾)𝑠,𝑡 ◦ 𝑧 (𝛿)𝑠 .

We can show equation (B.2) of Proposition B.2 in the same way as equation (B.14) by using equation
(B.5) instead. Then the result follows from Proposition B.2. �

Thus, when 𝛾 + 𝛿 < 3
2 , 𝐵(𝑧 (𝛾) , 𝑧 (𝛿) ) ∈ 𝐶𝑇 C𝛽 for any 𝛽 < (( 1

2 − 𝛾) ∧ ( 1
2 − 𝛿) ∧ (1 − 𝛾 − 𝛿)) − 1,

according to Remark A.9.
When 3

2 ≤ 𝛾 + 𝛿 < 2, we encounter the same situation as (𝑧 (𝛾) )�2 that 𝑧 (𝛾) 𝑧 (𝛿) is not a well-defined
process but a space-time distribution, so we work on defining the process 𝐽 (𝑧 (𝛾) , 𝑧 (𝛿) ) as we did for
𝐽 (𝑧 (𝛾) ).

Proposition B.16. Suppose 3
2 ≤ 𝛾 + 𝛿 < 2. Let 𝑧 = 𝑧 (𝛾) , 𝑧 = 𝑧 (𝛿) . Then we have for any 𝑘 ∈ Z0,

E

[���%𝐽 (𝑧, 𝑧)𝑡 (𝑘)���2] � 1
|𝑘 |5−2𝛾−2𝛿 ,

and 𝐽 (𝑧, 𝑧) ∈ 𝐶𝑇 C𝛽 for any 𝛽 < 2 − 𝛾 − 𝛿.

Proof. Let 𝑘 ∈ Z0. By independence and equation (B.4), for any 𝜌1, 𝜌2 ≥ 0,

E

[&(𝑧𝑧)𝑠 (𝑘) &(𝑧𝑧)𝑠′ (𝑘)] =
∑

𝑘1+𝑘2=𝑘

E

[
𝑧𝑠 (𝑘1)𝑧𝑠′ (𝑘1)

]
E

[ ̂̃𝑧𝑠 (𝑘2)̂̃𝑧𝑠′ (𝑘2)
]

�
1

|𝑠 − 𝑠′|𝜌1+𝜌2

∑
𝑘1+𝑘2=𝑘

1
|𝑘1 |2−2𝛾+2𝜌1

1
|𝑘2 |2−2𝛿+2𝜌2

.

Recall that 𝛾, 𝛿 < 1. By taking 𝜌1, 𝜌2 ≥ 0 such that

𝜌1 < 𝛾 −
1
2
, 𝜌2 < 𝛿 −

1
2
, 𝜌1 + 𝜌2 > 𝛾 + 𝛿 −

3
2
,

we can use Lemma B.4 to obtain

E

[&(𝑧𝑧)𝑠 (𝑘) &(𝑧𝑧)𝑠′ (𝑘)] � 1
|𝑠 − 𝑠′|𝜌

1
|𝑘 |3−2𝛾−2𝛿+2𝜌 ,

where 𝜌 = 𝜌1 + 𝜌2 ∈ [0, 1] . Then

E

[���%𝐽 (𝑧, 𝑧)𝑡 (𝑘)���2] � ∫ 𝑡

0

∫ 𝑡

0
|𝑘 |2𝑒−|𝑘 |2 (𝑡−𝑠)−|𝑘 |2 (𝑡−𝑠′)E

[&(𝑧𝑧)𝑠 (𝑘) &(𝑧𝑧)𝑠′ (𝑘)] 𝑑𝑠 𝑑𝑠′
�

∫ 𝑡

0

∫ 𝑡

0
|𝑘 |2𝑒−|𝑘 |2 (𝑡−𝑠)−|𝑘 |2 (𝑡−𝑠′) 1

|𝑠 − 𝑠′|𝜌
1

|𝑘 |3−2𝛾−2𝛿+2𝜌 𝑑𝑠 𝑑𝑠
′

�
1

|𝑘 |5−2𝛾−2𝛿 .

By the same computation in Proposition B.12, for any ℎ ∈ [0, 1],

E

[��� %𝐽 (𝑧, 𝑧)𝑠,𝑡 (𝑘)���2] � |𝑡 − 𝑠 |ℎ

|𝑘 |5−2𝛾−2𝛿−2ℎ .

The result follows from Proposition B.2. �
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B.7. Construction of 𝐵(𝐽 (𝑧 (𝛾) ), 𝑧 (𝛿) )

If 𝛾 < 1
2 , then 𝐵(𝐽 (𝑧 (𝛾) ), 𝑧 (𝛿) ) is classically well-defined. Then 𝐵(𝐽 (𝑧 (𝛾) ), 𝑧 (𝛿) ) ∈ 𝐶𝑇 C𝛽 for any

𝛽 < (( 3
2 − 𝛾) ∧ ( 1

2 − 𝛿) ∧ (2 − 𝛾 − 𝛿)) − 1, according to Remark A.9.
If 1

2 ≤ 𝛾 < 1, we need to show the existence of the resonant product 𝐽 (𝑧 (𝛾) ) ◦ 𝑧 (𝛿) .

Proposition B.17. Suppose 1
2 ≤ 𝛾 < 1. Let 𝜗 = 𝐽 (𝑧 (𝛾) ), 𝑧 = 𝑧 (𝛿) . We have for any 𝑘 ∈ Z0,

E

[���"𝜗𝑡 ◦ 𝑧𝑡 (𝑘)���2] � 1
|𝑘 |6−4𝛾−2𝛿 ,

and 𝜗 ◦ 𝑧 ∈ 𝐶𝑇 C𝛽 for any 𝛽 < 5
2 − 2𝛾 − 𝛿.

Proof. By the definition of 𝜗𝑡 ◦ 𝑧𝑡 , independence, equation (B.3) and equation (B.11), we have for any
𝑘 ∈ Z0,

E

[���"𝜗𝑡 ◦ 𝑧𝑡 (𝑘)���2] � ∑
𝑘1+𝑘2=𝑘,
𝑘1∼𝑘2

E

[���𝜗𝑡 (𝑘1)
���2]E[

|𝑧𝑡 (𝑘2) |2
]

�
∑

𝑘1+𝑘2=𝑘,
𝑘1∼𝑘2

1
|𝑘1 |5−4𝛾

1
|𝑘2 |2−2𝛿 �

1
|𝑘 |6−4𝛾−2𝛿 ,

where we used Lemma B.5, since 𝛾, 𝛿 < 1. Similar to Proposition B.15, we can show equation (B.2) of
Proposition B.2 by using equations (B.5) and (B.12). Then the result follows from Proposition B.2. �

Thus, when 1
2 ≤ 𝛾 < 1, 𝐵(𝐽 (𝑧 (𝛾) ), 𝑧 (𝛿) ) ∈ 𝐶𝑇 C𝛽 for any 𝛽 < ((2−2𝛾) ∧ ( 1

2 − 𝛿) ∧ ( 5
2 −2𝛾− 𝛿)) −1,

according to Remark A.9.

C. Existence and regularity of solutions

We now prove a local existence theorem by a fixed-point argument for the type of equations needed
in this note. This result is quite standard, and we sketch the argument both for completeness and to
highlight the structure of these equations. We will consider the following integral equation

𝑣𝑡 = 𝑒
−𝑡 𝐴𝑣0 + 𝑐1𝐽 (𝑣)𝑡 + 𝑐2𝐽 (𝑔, 𝑣)𝑡 + 𝐺𝑡

def
= Φ(𝑣)𝑡 , (C.1)

where 𝑐𝑖 ∈ R; and for some 𝑇 > 0, we have 𝐺 ∈ 𝐶𝑇 C𝜎 , 𝑔 ∈ 𝐶𝑇 C𝛾 and 𝑣0 ∈ C𝜎 for some 𝛾 and 𝜎. We
will assume that

𝛾 + 1 > 𝜎 > 0 and 𝜎 + 𝛾 > 0. (C.2)

Now for 𝑣 (1) , 𝑣 (2) ∈ 𝐶𝑡C𝜎 for some 𝑡 ∈ (0, 𝑇], we have for 𝑠 ∈ (0, 𝑡] that

Φ(𝑣 (1) )𝑠 −Φ(𝑣 (2) )𝑠 = 𝑐2𝐽 (𝑔, 𝑣 (1) − 𝑣 (2) )𝑠 + 𝑐1𝐽 (𝑣 (1) + 𝑣 (2) , 𝑣 (1) − 𝑣 (2) )𝑠 . (C.3)

Because of our assumptions on 𝜎 and 𝛾, we have that

‖𝐽 (𝑣 (2) , 𝑣 (1) − 𝑣 (2) )‖𝐶𝑠C𝜎+1 �𝑠
(
‖𝑣 (1) ‖𝐶𝑠C𝜎 + ‖𝑣 (2) ‖𝐶𝑠C𝜎

)
‖𝑣 (1) − 𝑣 (2) ‖𝐶𝑠C𝜎 ,

‖𝐽 (𝑔, 𝑣 (1) − 𝑣 (2) )‖𝐶𝑠C𝛾+1 �𝑠 ‖𝑔‖𝐶𝑠C𝛾 ‖𝑣 (1) − 𝑣 (2) ‖𝐶𝑠C𝜎 ,

where the dependent constant s in each inequality goes to zero as 𝑠 → 0. Hence, there exists a 𝐾𝑠 so
that 𝐾𝑠 → 0 as 𝑠 → 0 and

‖Φ(𝑣 (1) ) −Φ(𝑣 (2) )‖𝐶𝑠C𝜎 ≤ 𝐾𝑠 (‖𝑣 (1) ‖𝐶𝑠C𝜎 + ‖𝑣 (2) ‖𝐶𝑠C𝜎 + ‖𝑔‖𝐶𝑠C𝛾 )‖𝑣 (1) − 𝑣 (2) ‖𝐶𝑠C𝜎 .
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Hence, fixing any 𝑅 > 0 so that ‖𝑣0‖C𝜎 + ‖𝐺‖𝐶𝑇 C𝜎 < 𝑅 and ‖𝑔‖𝐶𝑇 C𝛾 < 𝑅, there exists 𝑠 > 0 such
that Φ is a contraction on {𝑣 ∈ 𝐶𝑠C𝜎 : ‖𝑣‖𝐶𝑠C𝜎 ≤ 𝑅}. This implies that there exists a fixed point with
𝑣𝑡 = Φ(𝑣)𝑡 for all 𝑡 ∈ [0, 𝑠]. Since 𝑐1𝐽 (𝑣) + 𝑐2𝐽 (𝑔, 𝑣) ∈ 𝐶𝑠C𝜎 is well-defined classically for 𝑣 ∈ 𝐶𝑠C𝜎 ,
given our assumptions in equation (C.2), we have proven the following result.

Proposition C.1 (Local existence and regularity). In the above setting with 𝛾+1 > 𝜎 > 0 and 𝛾+𝜎 > 0,
the integral equation (C.1) has a unique local solution v with 𝑣 ∈ 𝐶𝑠C𝜎 for some 𝑠 > 0. In particular,
if the regularity of the additive forcing 𝐺𝑡 is set by the stochastic convolution in the equation, then
equation (C.1) has canonical regularity in the sense of Definition 4.8.

Remark C.2. By repeatedly applying the above result, we can extend the existence to a maximal time
𝜏 such that ‖𝑣𝑡 ‖C𝜎 → ∞ as 𝑡 → 𝜏 when 𝜏 < ∞. By setting 𝑣𝑡 = for all 𝑡 ≥ 𝜏 when 𝜏 < ∞, we see
that 𝑣 ∈ 𝐶𝑇 C

𝜎
for all 𝑇 > 0. (See Section 4.1 for the definition of 𝐶𝑇 C

𝜎
and related discussions.)

The previous Proposition C.1 can be seamlessly extended to less regular initial conditions. Assume

𝛾 > − 1
2 , 𝜎 > 0 and 𝜎 + 𝛾 > 0, (C.4)

set 𝜌 = 𝜎 ∧ (𝛾 + 1), and consider 𝑣0 ∈ C𝜎0 , with

𝜎0 > −1, 𝜌 − 𝜎0 ∈ (0, 2). (C.5)

Set 𝜃 = 1
2 (𝜌 − 𝜎0), and for 𝑇 > 0, define the space

X 𝜎0 ,𝜌
𝑇 = {𝑢 ∈ 𝐶𝑇 C𝜎0 : sup

𝑡 ∈[0,𝑇 ]
𝑡 𝜃 ‖𝑢(𝑡)‖C𝜌 < ∞},

with norm

‖𝑢‖X 𝜎0 ,𝜌
𝑇

def
= ‖𝑢‖𝐶𝑇 C𝜎0 + sup

𝑡 ∈[0,𝑇 ]
𝑡 𝜃 ‖𝑢(𝑡)‖C𝜌 .

With the above choice of 𝜎0 and under the conditions given by equations (C.4) and (C.5), we have that

‖𝑡 ↦→ 𝑒−𝑡 𝐴𝑣0‖X 𝜎0 ,𝜌
𝑇
� ‖𝑣0‖C𝜎0 ,

‖𝐽 (𝑣 (1) , 𝑣 (2) )‖X 𝜎0 ,𝜌
𝑇
� 𝐾𝑇 ‖𝑣 (1) ‖X 𝜎0 ,𝜌

𝑇
‖𝑣 (2) ‖X 𝜎0 ,𝜌

𝑇
,

‖𝐽 (𝑔, 𝑣)‖X 𝜎0 ,𝜌
𝑇
� 𝐾𝑇 ‖𝑔‖𝐶𝑇 C𝛾 ‖𝑣‖X 𝜎0 ,𝜌

𝑇
,

‖𝐺‖X 𝜎0 ,𝜌
𝑇
� ‖𝐺‖𝐶𝑇 C𝜎 ,

with 𝐾𝑇 ↓ 0 as 𝑇 ↓ 0. With these inequalities at hand, the same proof outlined above for Proposition C.1
can be adapted to this setting, yielding the following result.

Proposition C.3. Consider 𝛾, 𝜎 as in equation (C.4), 𝜌 = 𝜎∧ (𝛾 + 1), and 𝜎0 as in equation (C.5), and
let 𝑣0 ∈ C𝜎0 . Then the integral equation (C.1) has a unique local solution v in X 𝜎0 ,𝜌

𝑠 for some 𝑠 > 0.

The restriction on 𝜌 can be dropped by parabolic regularisation, yielding the following result.

Corollary C.4. Consider 𝛾, 𝜎 as in equation (C.4), 𝜌 = 𝜎 ∧ (𝛾 + 1) and 𝜎0 such that −1 < 𝜎0 < 𝜌. If
𝑣0 ∈ C𝜎0 , then the integral equation (C.1) has a unique local solution v in 𝐶𝑠C𝜎0 for some 𝑠 > 0 such
that 𝑣 ∈ 𝐶 ([𝜖, 𝑠]; C𝜌) for all 𝜖 > 0.

In particular, if𝜎 ≤ 𝛾+1 and the regularity of the additive forcing G is set by a stochastic convolution
in the equation, then equation (C.1) has canonical regularity in the sense of Definition 4.8 on every
closed interval included in (0, 𝑠].
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