
ANZIAMJ. 44(2002), 283-297

AN MlG/l QUEUEING SYSTEM WITH FIXED FEEDBACK
POLICY

BONG DAE CHOI1 and BARA KIM2

(Received 14 September, 1998)

Abstract

We consider a single server queueing system where each customer visits the queue a fixed
number of times before departure. A customer on his j th visit to the queue is defined to
be a class-./ -customer. We obtain the joint probability generating function for the number
of class-j-customers and also obtain the Laplace-Stieltjes transform for the total response
time of a customer.

1. Introduction

We consider a single server queueing system with fixed feedback policy where each
customer visits the queue a fixed number of times m before departure. Customers in
the queue, both those that are newly arrived and those that are fed back, are served
in the order in which they joined the tail of the queue. The motivation for this work
comes from the modelling of signalling system No. 7 [4,12]. We assume that customer
arrivals follow a Poisson process with intensity k. Service times are independent and
identically distributed regardless of the number of visits to the queue. Let X denote
the generic random variable representing a service time. We denote the mean of X by
x, and its Laplace-Stieltjes Transform (LST) by B*(s).

It is easy to see that the system is ergodic if and only if the offered load p = mkx
is less than 1. To guarantee the stability of the system, we assume that p < 1. A
customer on his j th visit to the queue is defined to be a class-./ -customer (1 <j <m).

Queueing systems with various feedback policies have been investigated by many
authors. Most feedback queueing systems have the Bernoulli feedback policy. In
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queueing systems with this policy, the memory less property of the number of feedbacks
of a customer makes it easy to analyze the system. Fewer results are known for
feedback queueing systems in which the feedback policy is not Bernoulli. Baskett et
al. [2] obtained the product form of the joint queue size distribution for the M/M/l
queueing system with several types of customers and general feedback policy. Simon
[9] considered an M/G/l priority queueing system with several types of customers
and general bounded feedback policy and obtained a system of linear equations for
the mean sojourn times for each class of customer type.

Adve and Nelson [1] obtained only the mean total response time for the M/G/ l
queueing system with fixed feedback policy.

In this paper, we obtain the joint probability generating function (PGF) for the
number of class-./-customers (j = 1 , . . . , m) for the M/G/l queueing system with
fixed feedback policy. We also obtain the LST of the total response time of a customer.
By differentiating the joint PGF and the LST, we obtain the first and second moments
of the number of class-,/ -customers in the system and the total response time.

2. Stationary distribution of the system size

Let Qt(t), 1 < i < m, be the number of class-/-customers in the queue at time
t and let rn / be the epoch of the beginning of the ith service of the nth arriving
customer. Denote by 7T,(/i,..., lm) the probability that there are /, class-y -customers
in the queue just after the beginning of the ith service of an arbitrary customer, that is,

mih, ...,/„,) = lim P{<2i(rn,,+) = h, • • • , em(rn,,+) = L).
n-*oo

Let n , ( z i , . . . , im) denote the joint PGF of TT,-(/I lm), that is,

i . . . . , zm) = J2 • • • £*,-(/ , , • • •' L)z\l

;,=o im=o

Let rn
('/ be the epoch of the end of the ith service completion of the «th arriving

customer and let TC\€)(1\ , . . . , lm) be the probability that there are /, class-y -customers
in the queue just before the end of the ith service completion of an arbitrary customer,
that is, */"(/ , lm) = l i m ^ P f C t r ^ - ) = / , , . . . , Qm(r%-) = lm). We
denote by U('\zx,..., zm) be the joint PGF ofn\e\h,..., lm), that is,

(,=0 lm=0
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We observe that the PGF of the number of class-1-customers who arrive newly during
a service time is B*(k — kzi) [11]. Hence, for i = \,... ,m, nje)(zi, • • •, zm) is related
t o n , ( z , , . . . , z m ) b y

n,W(z,, ...,Zm) = B*(k - kZl)Ui(Zl, ..., Zm). (1)

Next we will find a relation between n , - + i (z i , . . . , zm) and n , - (z i , . . . , zm). For
i = 1,2,... ,m — I, suppose that there are /,- class-./-customers (/' = 1,... ,m)
in the queue at rfj—. The nth arriving customer will begin his (i -f- l)th service
after all of the customers in the queue at T^) — receive service. A class-./' -customer
(j = 1,2,... ,m — 1) becomes a class-(/ + l)-customer after his service completion
and a class-m-customer departs the system permanently after his service completion.
Hence the number of class-1-customers in the queue at rn - / + 1+ is the number of new
arrivals during the total service times of l\ + • • • + lm customers, and the number
of class-,/ -customers in the queue at rn,i+i+ is /y_i (J = 2, 3 , . . . , m). From this
observation, given that there are /, class-,/' -customers at rn

(e/—, (J = 1 , . . . , m), the
joint PGF of the number of class-./ -customers in the queue at rn,,+i + (j = 1, 2 , . . . , m)
is given by

\k - kZl)t • • • [zmB*(k - kzi)]1-1 [B\k - kZl)]
L .

For i = 1 , . . . , m — 1, we have

,Zm)

Jim
;,=0 /m=0

x t
00

f ei(T,.,-+i+) . . &.(*../+•+) r> (T
(e)-} — i n (T(e)-} — i 1

I Z[ Z m W K r n , i > — *1> • • • ' Wfmt.'n,,- J — ' m l

/,=o ;m=o

x [z2B\k - Xz,)]'1 • • • [zmB*(k - kz>)]'-' [B*(k - kZl)]'"

= n{r) (z2B*(k - kzi), ZiB*(k - kzi) zmB\k - kzi), B*(k -

Substituting (1) into the above equation, we have the following relation between
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The class-1-customer joins the queue when

i" < m and departs the system if j = m

service duration of a class-/-customer

f f M t
Arrivals who will be
in front of the tagged
customer in the queue

f t t f t f
Arrivals who will be

behind the tagged

customer in the queue

A class-i-customer begins

to receive a service

tagged customer arrival

FIGURE 1. Tagged customer who arrives while a class-i-customer is being served

n i + 1 (z i , . . . , and i,..., zm):

,zm)
= B*(k-kz2B*(k-kzi))

x n,- (z2B*(k - kzi), ZiB'ik -kZl),...,zmB*(k - kzi), B*(k - kZl)). (2)

Next, we will find an equation (see (5) below) relating nx(z\ , . . . , zn) to

X - kzi),.... zmB*(k - kZl), B\k - kzx)).

i = \,... ,m. Given that a class-i-customer is being served when a tagged customer
arrives from outside, let •^ri{ll,...,lm\l[,...,l'm)be the probability that there are /,•
class-; -customers in front of the tagged customer and /j class-,/ -customers behind
the tagged customer in the system immediately after the end of the remaining service
of the customer who was being served at the arrival epoch of the tagged customer.
Immediately after the end of the remaining service, the number of class-; -customers
in front of the tagged customer is the number of class-; -customers who were in the
queue when the class-i-customer in service at the arrival epoch of the tagged customer
started service, for ; = 2 m. The number of class-1-customers in front of the
tagged customer is the number of class-1-customers who were in the queue when the
class-/-customer in service at the arrival epoch of the tagged customer started service
plus the number of new arrivals during the elapsed service time. Behind the tagged
customer, for i = 1 , . . . , m — 1, there is only one class-(j + l)-customer who just
finished service and returned to the queue and there are class-1-customers who arrived
during the remaining service time. When i = m, there are only class-1-customers
behind the tagged customer, because the class-m-customer in service departs the
system after the end of the remaining service. At an arbitrary time, given that a
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customer is being served, the joint PGF of the number of customer arrivals during the
elapsed service time and during the remaining service time is [11]

B*(k-\zi)-B*Q,-\z[)

kx(Zl - z',) '

Hence, by the above observation and Figure 1, the joint PGF*,,(zi, • • •, zm;z[,..., z'm)
of fi(lu ...,lm;l[,...,l'm)fori = l m is given by

* , ( z t , • • •, * • ; z [ , . . •, z'J = z'i+l
 B*(X " ^ " B*^ " XZ[) n , ( Z l , . . . . Z m ) , (3)

*x{z z)

where z'm+l = 1.
A tagged customer finds the server idle with probability 1 — p and a class- /-

customer (i = 1 , . . . , m) being served with probability p/m at the arrival epoch from
the outside. Suppose that there are /, class-./ -customers in front of the tagged customer
and /;' class-./ -customers behind the tagged customer in the system immediately after
the end of the remaining service of the customer who was being served at the arrival
epoch of the tagged customer. Then the tagged customer begins his first service after
h + • • • + lm customers are served. At the first visit of the tagged customer to the
server, the number of class-./ -customers in the queue is lj_x + l'} for j =2 m,
and the number of class-1-customers is l[ plus the number of new arrivals during the
h H + lm service times. Therefore the joint PGF of the number of each class of
customers in the queue at the first visit of the tagged customer to the server is given
by

, • • • , Zm)

i=i /,=o /„=<) /;=o

m oo oo oo

;=i / ,=o /m=o ;;=o i'm=o

x [z2B\k - kZi)t • • • [zmB*(k - kZl)]
u-' [B*(k - kzi)]u z[l •••:

\ - p

~ £ ^ i ( z 2 B * ( X - k Z l ) , . . . , z m B*(X-Xz,) , B*(k-Xzi),zu • • •, zm). (4)
P_

m
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Substituting (3) into the above equation, we get

[6]

P_
m

B*(k - kz2B*(k - kzi)) - B*(k - kzi)
kt(z2B*(k -

- kZl), \k - kzi), B\k - kzi)), (5)

where zm+i = 1.
So far we have obtained (2) and (5) for n.Cz],... ,zm), i = I,... ,m. We are going

to solve these equations explicitly. For the sake of simplicity, let z = (zi zm)>

= (fdz),...,fm(z))
= (Z2B*(k - kzi),..., zmB*(k - kzj, B*(k - kZi)), (6)

h(z) =
B*(k - kz2B*(k - kzi)) - B*(k -

Then (5) and (2) become

m

n,(z) = i - p + -J]z,+1/i(z)n1(/(z)), (7)

n,+i(z) = g(z)Ui(f(z)), for i = 1, 2 , . . . ,m — 1. (8)

In matrix form, (7) and (8) become

U(z) = A(z)U(f (Z)) + (I - p)eu (9)

where FI(z) = (FIi(z),..., nm(z)) r , the superscript T denoting transposition,

A(z) =

g(z) 0
0 g(z)

0
0

0
0

0
0

g(z)
0

0
0

0
g(z)

0
0

0
0

(10)

and ej is the m-dimensional column vector with all zeros except for the j th element 1.
Iterating (9) u times gives

= [ f l A (f « « ) ] n (/("+1)(Z)) + a - P)
\ J_n=O n=0 L*=0
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where / ( n ) ( ) is the n-fold composition function of/(•) , n"=o^(/(n)(z)) denotes
A(z)A(f (z)) • • • A(/(a)(z)) and the empty product means them xm identity matrix/.
The absolute value of (Wn=o Ad M (*•))) y i s bounded above by 04"% for all 1 <
i,j < m and z with |zi| < 1 , . . . , |zm| < 1, where A = A(lT), and 1 is the m-
dimensional column vector with all l's. Since A" —*• 0 as u —• oo, we have
YYn=oA(fw(z)) -*• 0 as u -*• oo, and thus we have obtained n,(z) explicitly as
follows:

n(z) = (n,u) nm(z))r = ( i - P )
n=0

pl-1 "I

\Y[A(ffflW)

Now we are ready to find the joint PGF of the number of class-./ -customers in the
system. Let A/}, 1 < j < m, be the number of class-./-customers in the system at
steady state, including the customer in service if a class-./ -customer is being served.
Let P(z) be the joint PGF of the number of class-,/ -customers in the system at steady
state, that is, P(z) = E^1 • • • z^"1]. At an arbitrary time, given that a customer is
being served, the PGF of the number of customer arrivals during the elapsed service
time is (1 - B*(k - kzi))/kx(l - zi) [11]. Hence we have

m kx(l -

i P +

1 - z i

In summary, we have the following theorem.

THEOREM 1. The joint PGF P(z) = E[zf' • • • z"1"] of the numbers N{,...,Nmof
class-l-customers, ..., class-m-customers in the system at steady state is given by

1 ~ B*{k ~ kZl) (z,n,(z) + • • • + zmnm(z)), (12)
1-z i

where Tl(z) is given by (II).

3. Stationary distribution of the total response time

The total response time of a customer is defined as the duration of the time from a
customer's arrival until his departure from the system after his mth service completion.

Given that a class-i-customer is being served when a tagged customer arrives
from outside, let 0,(f; / i , . . . ,lm;l\,... ,l'm) be the probability that there are /,- class-,/-
customers in front of the tagged customer and /j customers behind the tagged customer
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in the system after the end of the remaining service of the customer who was being
served at the arrival epoch of the tagged customer, and the remaining service time is
less than or equal to t. Define <f>*(s; z\, • • •, zm; z[,. • •, z'm) as

4 > * ( s ; z i , . . . , z m ; z [ , • • • , z ' m )
-OO OO 00 00 00

= / E-EE-E^'-'' M..~.Oe-«4-£tf..-zf.
Jo /,=o /m=o /;=o C=o

At an arbitrary time, given that a customer is being served, the joint transform
of the remaining service time, the number of customer arrivals during the elapsed
service time and during the remaining service time is needed. To do this, let X+ be
the remaining service time and A~ (A+) be the number of customer arrivals during
the elapsed (remaining) service time, respectively. Then we have from [11] that

~**+zfz'1
A+|busyl = —-

-s-kz[)

Therefore, by a derivation similar to that of (3), <!>*($; z\, •. •, zm\ z[, • •., z'm) is given
by

z m ; z \ , . . . , z ' m )

, ( z i , . . . , Z m ) , i = l , . . . , m . ( 1 3 )
B*(k - kzi) - B*(s + k - kz[).,

z= T . ; T T z 1 + i n , ( z i , . . . , Z m ) , i l , . . . , m

Let Snj be the sojourn time of the nth arriving customer from his arrival until the
beginning of his ith service. For i = \,... ,m, let W*(s;z\,..., zm) be the joint
transform of the sojourn time of a tagged customer until the beginning of his ith
service and the number of class-,/ -customers (j = 1 , . . . , m) in the queue just after
the beginning of the ith service of the tagged customer, that is,

W*(s; zu-..,zm)= lim £[«-'*-z, f t ( l l - '+ )
t . . . , z^'+)\

A customer finds the server idle with probability 1 — p and a class-j-customer being
served with probability p/m at the arrival epoch from the outside. The joint transform
of a service time and the number of customer arrivals during that service time is given
by B*(s + A. - kz\). A class-,/ -customer becomes a class-(/ + l)-customer after his
service completion for j = 1 , . . . , m — 1, and a class-m-customer departs the system
permanently. Therefore, by a derivation similar to that of (4), we have, using the
notation s = s + k — kzi,

= a - p) + £ E **(s;Z2S*(5)' • • •' z- f i*(5)- B*$y>^'' • • • - z->-
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By substituting (13) into the above equation, we have

W*(s;zt,...,zm) = (1 - f>) + ——^-77 r-r- r~7"

s),..., ZmB*(s), B*(s)). (14)

For i = 1 , . . . , m — 1, by a derivation similar to that of (2), W*+l(s; Z\, ..., zm) is
obtained from W*(s; Zi,..., zm) by

W*+l(s;zi,...,zm)

= B*(s + k- kz2B*(s)) W*(s; Z2B*(s) zmB*(s), B*(s)). (15)

Let T be the generic total response time of a customer. The total response time of a
customer is the sojourn time from his arrival until the beginning of his mth service
plus his last service time. Therefore the LST T*(s) = E[e~*r] of a total response
time T is given by T*(s) = B*(s) W*(s; 1 , . . . , 1).

In summary, we have the following theorem.

THEOREM 2. The LST T*(s) of the total response time T is given by

r(s) = B*(s)W*m(s;l,...,l), (16)

where W^(s;zi,. •., zm) is obtained by applying (14) and (15) iteratively.

4. Moments of the system size and total response time

4.1. Mean system size and mean total response time The mean number of class-
y-customers at steady state is obtained by differentiating the joint PGF P(z) and
evaluating at z = l r , that is,

E[Nj] = -£-
dZ

(17)

— 1?"By differentiating (12) with respect to Zj and evaluating at z = 1 , we have

3 = &„ + +
=lT 2x mm

(18)

where x2 = E[X2]. By differentiating (11) with respect to Zj, evaluating at z = l r

and premultiplying by 17 on both sides, we have

00 «— 1

n=0 k=0
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where F is the m x m matrix whose (i,j) entry Ftj is ^-/i(z)|z= i r , / ,(z) is given by
(6), and for any w-dimensional column vector q, V9A(z) is the m x m matrix whose
(i,j) entry is Y17=i jj^i/te)?*- By interchanging summations, the above equation
becomes

= (1 - p) (19)
Z=1T

t=o

On the other hand, let J be the m x m matrix whose (/, j) entry is 1 if i = j + 1
and 0 otherwise. Then A(z) can be expressed by

A(z) = -m

Therefore V9A(z) |z=ir is given by

g(z)J.

m m m

Noting that F = A and substituting the above equation into (19), we have

*=o

+-exe]AkJ + ( - ) ' (ejFkej)J + -(*>2
rF*<>, (20)

Since (/ - A)l = (1 - p)ei, we have (/ - A)~le{ = (1 - p)~'l. Substituting this
into (20), we have

:=lr

m

m *=0
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*=o

t
;

(21)
*=o

Since e2
r = ef (F - (p/m)I) and I7" = (1 - p)e\(/ - F)7", we have

0 0

t=o

*=0

/ 00 \

ll7"^* = (1 - p) ( E FkleIFk I (7 -
\ t=0 /

(22)

(23)

Let M = YlT=o Fkle\Fk (given explicitly in the appendix). Substituting (22) and
(23) into (21), we have

- p)-e[M{l - F)ej

m

-lTMFe: + (1 - p)-eTM(I - F)~le,. (24)
m m

By direct calculation, we have

(c - "r% = l -
, ai£J.,

1 / I--1 \ . . . .
I p p I , if i > y.

1 - p V m /
By substituting the above equation and (33) into (24), we have

P 1 + p A j c 2 m - 1
— -I p

m
) •

r—U(z)
d m-p/m) \ x

By substituting (25), (26) and (18) into (17) with c2. = (Var[X])/(i)2, we have

P P P
tn tn 2(1 -

(25)

(26)
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E[Nj] = £+r
L J m m (1 —

Bong Dae Choi and Bar a Kim

P

[12]

p/m)
(-<* + {), j=2,.. .,m.

The system size N = N{ -\ 1- Nm has the mean

2 ( 1 -

By Little's formula, the mean total response time E[T] is given by

r[T, - , -/Q(Q+p)c2./m
E\T\ = mx + mx

2(l

(27)

(28)

Note that (28) coincides with the result given by Adve and Nelson [1, (5)], except for
a slight difference which is due to a misprint in [1].

4.2. Second moments of the system size and the total response time In this
subsection, we restrict ourselves to the case of m = 2 to avoid complicated notation.
To find the second-order partial derivatives of P(zi, z2) at z = l r , we need to calculate
the second-order partial derivatives of I"Ii(zi, z2) and n2(z!, z2). To do this, we use
(9) (or equivalently, (7) and (8)). By differentiating (7) and (8) with respect to z;
(j = 1 , 2 ) and evaluating at z\ = z2 = 1, we obtain a system of four equations with
four unknowns af-n,(z)|2=17. (i,j = 1,2). By solving the system of equations, we
have

X2x~2 + p3/4 9 „ ,

Z=1T

:= l r

p/2 - p2/4 + k2x~2
z=ir ( l - p X l + P / 2 )

^ p/2 - p2/4 + k2x~2

p/2) "

By differentiating (7) and (8) twice with respect to z, and z, (i,j = 1, 2) and evaluating
at zi = z2 = 1, we obtain a system of six equations with six unknowns jp Tl, (z) \ _lT,
^ | = 1 7 . , ^ n , ( z ) | z = i r (1 = 1,2). By solving the system of equations, we

()| ^ \ § |obtain gn , (z ) | z = 1 , , ^n,(z)\ ir, § n , ( z ) | z = i r (1 = 1, 2). By differentiating (12)
twice with respect to z, and Zj (i, j =1 ,2 ) and evaluating at z\ = Zi = 1, we obtain
^ u ^)\Z=1T OJ =1 .2 ) . From these, Var [N] is given by

Var [N] = {X2x\2 + 2p-p2- |p3 - |p4 + \p5

+ X\x'2)2(6 + \p + 6p2 + | p 3 - |p4)

+ X2x\9 + 6p- *p2 - y - ±p* +

|p6)

| |p6 - |p7)

p/2)2(l - p)2(l + p2/4 - p3/8)},
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where i3 = E[X3].
Next we will calculate the variance of the total response time Var [T] of a customer.

By substituting m — 2 into (14)-(16), the LST T*(s) of the total response time T is
given by

T*(s) = (1 - p)B*(s)B* (s + k- kB*(s)) + p/2B*(s)B* (s + X - kB*(s))
B* (k - kB*(s)B* (k - kB*(s))) - B*(s + k- kB*(s))

X x (kB*(s)B* (k - kB*(s)) + s - kB*(s))

x {fi*(s)n! (B*(s)B* (s + k- kB*(s)) ,B*(s + k- kB*(s)))

+ n 2 (B*(s)B* (s + k- kB*(s)) ,B*(s + k- kB*(s)))}.

By differentiating the above equation twice with respect to s and evaluating at s = 0,
Var [T] is given by

Appendix. The calculation of M = £ ~

We have that M satisfies M = \e\ + FMF. Postmultiplying by e, on both sides,
we obtain

Me, = l + -F^p Mek, (29)m tt
Mej+l = FMej, ,j = l,...,m-l. (30)

Applying (30) recursively, we have

Mej = F'-xMeu j=l,2,...,m. (31)

Substituting (31) into (29), we have

m

where we used the Cayley-Hamilton theorem in the last equality.
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Since

*=0

Bong Dae Choi and Bara Kim

n+l))V=T _ I m

o,
1 divides /;

otherwise,

we have

, =
;=o

m

m
_ (

*=O

By a tedious calculation of cofactors, for \z\ < 1, we obtain

if i >

, i f i < .

Summing the above equation over 7 yields

Substituting the above equation into (32) with z =

^ 1 1 ) T

w e g e t

Mei - 7 T T w i T(m + 1)(1 - p)

1
m + l H ' ( l + p / w ) ( l -

x I 1 -

-(m, m — 1,..., 1)T

[14]

(32)

m / m—\ m-1

(m +
, . . . , i

m
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Substituting the above equation into (31), we obtain Mes = {MXj,..., Mm])
T:

1 - (f - Q P / I H
— —- , it i + j < m + 1;

Mu = { v, . , . (33)J ' « - • -1- l )p /m
, if J + j > m + 1.
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