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Abstract. All subshifts of finite type are known to appear as basic parts of the
non-wandering sets of Smale diffeomorphisms in dimensions three or more. This
paper concerns the symmetries of subshifts of finite type; that is, the homeomorph-
isms of the shift space which commute with the shift. The group of symmetries is
known to be very large for aperiodic shifts. For certain (structually stable) Smale
diffeomorphisms of the sphere of dimension five or more, we show each symmetry
can be extended to a homeomorphism of the sphere commuting with the
diffeomorphism on the whole sphere.

0. Introduction
Let A be a finite, irreducible, zero-one matrix and let crA: XA -» XA be the correspond-
ing subshift of finite type [F]. Recall from [F] that a Smale diffeomorphism is one
which satisfies the transversality condition on its hyperbolic, zero-dimensional chain
recurrent set. A well-known theorem of Williams-Smale [Wi] says that there is a
Smale diffeomorphism FA:S3^S3 so that crA is topologically conjugate to the
restriction of FA to the basic set of index one occurring as part of the spectral
decomposition. Let Aut (o-A) denote the group of symmetries, or automorphisms, of
o-A; that is, the group of homeomorphisms of XA which commute with crA. Here is
the corresponding global realization results for these symmetries.

THEOREM. Assume 5 < q and let 3 s e < q — 2. Then there is a Smale diffeomorphism
FA:Sq->Sq with a basic set ile of index e (along with other basic sets of index 0,
e — l, q) together with a topological conjugacy between aA and FA|fle 50 that given
any symmetry g in Aut (crA), there is a homeomorphism G:Sq->Sq satisfying
(A) G commutes with FA on all of Sq, and
(B) G|ftc = g under the identification between Aut (FA\ile) and Aut (aA).

The motivation and the idea for the proof of this geometric result came by analogy
from algebraic AT-theory and pseudo-isotopy theory. The proof uses Williams' notion
of strong shift equivalence [Wi, F], the contractible simplicial complex PA of topo-
logical Markov partitions for crA [W], and structural stability for Smale diffeomorph-
isms [R, Ro]. We would like to thank C. Pugh for useful discussions about the
stability theorem. The group Aut (o-A) is often rather large. For example, Aut (a2)
for the Bernoulli 2-shift o-2 has been known [H] for some time to contain every
finite group and to have elements of infinite order not a power of <r2. Recently,
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Boyle-Lind have shown it contains the free non-abelian group on infinitely many
generators. Therefore, the group of homeomorphisms of Sq commuting with a certain
F2 is large when 5 ^ q. This is to be contrasted with results of Palis-Yoccoz [P]
which show that most diffeomorphisms F with a hyperbolic non-wandering set on
which strong transversality holds have a centralizer consisting only of the powers
Fk in the group of diffeomorphisms. Incidentally, at the present time not much is
known about the structure and other algebraic or homological properties of Aut (cr2).
For some information see [BK, BLR, W]. An open and long standing conjecture is
that Aut (o-2) is generated by <r2 and elements of finite order.

Here is a rough idea of the proof. Let P be an m x m zero-one matrix and let Q
be an n x n zero-one matrix. Suppose there is an m x n zero-one matrix R and an
n x m zero-one matrix S so that P = RS and Q = SR. As in [Wi] this determines a
specific conjugacy cR: {XP, o>) -> (XQ, aQ) sending x = {xt} in XP to cR(x) = {cR(x),}
in XQ where cR(x), is the unique k such that R(xit k)S(k, xi+l) = P(x,, xi+1) = 1.
Similarly for cs. In fact, cscR = o> and cRcs = CTQ SO that cRaP = (TQCR and Cgo-Q = o-pCs.
We call cR and cs elementary symbolic conjugacies. On the topological side, let Sq{m)
be the standard q- sphere equipped with a fixed handle decomposition with one
handle of index zero, m handles of index e, m cancelling handles of index e - 1 ,
and one handle of index q. Similarly for S"{n). One then constructs a Smale
diffeomorphism CR:S"(m)-*Sq(n) which is fitted both on the handles of index e
and the handles of index e - 1 according to the geometric intersection matrix R.
Again, similarly for Cs. This is done in such a way that the composition DP =
CSCR: Sq(m)-> S"(m) is also a Smale diffeomorphism fitted on the e-handles and
(e-l)-handles according to the matrix P = RS and DQ = CRCs:S

q(n)^Sq(n) is
fitted according to Q = SR Observe that CRDP = DQCR and DpCs = CSDQ, and
therefore CR and Cs are smooth conjugacies between DP and DQ. We call these
elementary smooth conjugacies. Now consider a Smale diffeomorphism FP:Sq(m)^
Sq(m) which is fitted on the e-handles and (e-l)-handles by the matrix P. In
general, of course, FP •£ DP. However, under the assumption that 3 ^ e s q — 2 we
are able to carefully construct FP, CR, and Cs in such a way that there is a
one-parameter family of Smale diffeomorphisms FP(t), each of which is fitted on
the e-handles and (e-l)-handles by the matrix P, so that FP(0) = FP, FP(l) is
equal to DP on a neighborhood of the e-skeleton, and both FP(l) and DP have the
point at infinity as a source. Methods of stability theory [PS, R, Ro] can then be
used to produce a topological (not smooth) conjugacy between FP and DP. We call
this a stability conjugacy. Similarly, there is a stability conjugacy between DQ and
FQ, SO that we then get a topological conjugacy between FP and FQ. The main
theorem is proved by first showing that any symmetry g in Aut (aA) can be obtained
as the composition of a chain of elementary symbolic conjugacies and powers of
shifts, and then by showing this can be mirrored compatibly with a corresponding
chain of elementary smooth conjugacies, stability conjugacies, and powers of certain
intermediate FP for different matrices P. The chain starts with the original FA which
is fixed and eventually comes back to it. The composition of the various conjugacies
and powers of FP in the chain give the required homeomorphism G.
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The main theorem may well be valid on S4 also, but our argument seems to
require 4 < q. There is probably a counterexample on S3.

In § 1 we discuss elementary symbolic conjugacies, and in § 2 we discuss /?-model
difleomorphisms of which the elementary smooth conjugacies CR are a special case.
/?-models are obtained by the 'cobra construction' illustrated in (2.6). In § 3 we
prove the main theorem.

1. Symbolic conjugacies
The following result was essentially proved in [Wi].

PROPOSITION 1.1. Any conjugacyf: (XA, aA) -* (XB, crB) is the composition of elemen-
tary symbolic conjugacies, their inverses, and shift powers.

Let A be an m x m zero-one matrix. For the subshift of finite type aA: XA -> XA,
we let PA be the contractible space of Markov partitions for aA on XA. See [W].
We will use the following reformulation of the usual definition [F, p. 100] of a
topological Markov partition for aA. If x = {xk} and y = {yk} are in XA and xo = y0,
let [x,y] in XA be defined by [x,y]k = xk for fc<0 and [x,y]k=yk for fc>0. A
rectangle is a compact open subset Z of XA such that x,yeZ imply x0 = y0 and
[x, y]eZ.A Markov partition for a = crA on XA is a finite covering (/ = { ( / , , . . . , Um}
of XA by rectangles Ut such that

if a, p eUi and *(0)eUj, then [crtfa, 0]), cr(/3)]e I/, (1.2)

if aeC/j,o-(a)eC/;,andi3eL^, then[a, (7"'([ff(a), 0])]e Ut (1.3)

These conditions correspond respectively to the two properties aWs(a, l/j)<=
WV(x) , I/j,) and aW(a, U,) = W(o-(a), I/,) which are usually given to define a
Markov partition. See [F, p. 100].

The standard Markov partition for crA is UA = {C/f} where Uf consists of all
those x = {xk} with xo-se{l,2,..., m}. If £/ = {£/;} and V = {V;} are in PA, let
[/ n V = { Ut{n Vf} where Ut n V},* 0 . If m, n > 0 and U e PA, let U(-m, n) = aA U n
• • •no-^ t / . See [F,W].

If x, y € AT̂  satisfy x0 = y0, then

An induction argument proves that for k > 0 we have

[cr([<r*([x, y]), ak(y)]), crk+l(y)] = ^ + 1

> o--k([x, y])])] = o"-(fc+l)([ ])

Now consider a Markov partition V = {V, , . . . , Vn}ePA and as in [F] let B =
M( V) be defined by B(k, /) = 1 iff Vk n o-"1 V, # 0 . A well known fact [F, W, Wi]
is that there is a conjugacy of shifts

i = iv: (XA, aA) ^ (XB, trB)

defined by

i(x)k=j mcrk
A(x)eVj. (1.6)
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LEMMA 1.7. / / W = {Wl,..., Wq} i» in PA and refines V, then i(W) =

Proof. Let a = aA and let x,ye VJ. We first verify the general formula

i([x,y]) = [i(x),i(y)]. (1.8)

The proof is by induction.

Step 1. For fc>0, i([x,y])k = i(y)k.

This is true for k = 0 because V; is a rectangle so that [x, y] e VJ and hence
i([x,y])0=j = i(y)o- Assume the result is true for k. This means ark([x,y])e Vs and
o-k(y)e Vs. Assume o-k+1{y)e V,. We must show <rk+1([x,y])e V,. Apply (1.2) with
a = o-k([x,y]), i = s, j= t and /3 = o-k{y) to conclude that

[o-([o-k([x,y]),<Tk(y)]),ak+l(y)]eV,.

From (1.5) we obtain o-k+l([x,y])e V,.

Step 2. For fc>0, i([x, ;>>])_,< = *(*)_*.

This is true for fc = 0 because Vj is a rectangle. Assume it is true for k. This means
o-~k([x,y])eVs and a-"*(x)e Vs. Assume cr~((c+1)(x)e V,. We must show
a-(k+i\[x, yj) e V,. Apply (1.3) with a = cr-(k+"(x), i = f,; = s, and jB = c7-k([x, y])
to obtain

y])] e V,.

From (1.5) we have o-Hk+i)([x,y])e V,.
To continue the proof of (1.7), it follows directly from (1.8) that each i( Wr) is a

rectangle because each Wr lies in some Vj. We must verify (1.2) and (1.3) for i( W).
Let x,yei{Wr) and crB(y)e i(Ws). Write X=I(JC') and y = i ( / ) for x',y'eWr.
Observe that trA(y')e Ws. Then from (1.8) we have

WB([x, y]), aB(y)] = [o-B([i(x')

because W is a Markov partition. The formula (1.3) is verified similarly. •
Let V,WePA satisfy UA < V < W. Let B = M( V) and C = M(W). Let iv: XA -*

XB be as in (1.6). Then W'=iv(W)ePB according to (1.7). Let C'=M(iv(W))
and observe C and C" are conjugate via the permutation matrix P taking Ws to
'v( WJ), i.e. C' = P<=- P~x. This gives an elementary symbolic conjugacy cR : Xc -* Xc.
where R - P1 and 5 = PC. Let iw: XA -» X c and iw-: XB -» Xc. be as in (1.6).

LEMMA 1.9. cRiw = iV-'V-
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Proof. Let xeXA. Then

c~Riwiv(x)n = s

itt<rB(iv(x))eiv(W,)

iSivlan
B{iv(x))eW.

iftcrA(i-v
liv(x))eWs

\Str"A(x)eW,

iff iw(x)n = s.

Proof of 1.1. We first observe that it suffices to prove (1.1) for an arbitrary / of the
form f=iv. For consider f:(XA, o-A)^(XB, aB). Choose a refinement W =
UB{-n,n) of UB to be small enough so that V=f'lUB(-n, n) is in PA. Let
M = M (V) and N = M(W). Then it is easy to check there is a commutative diagram

where p is induced by the bijection F: V,-*f(Vj) between rectangles in V and
rectangles in W. As above we have N = FMF~l, and p = cR for R = F'1 and S = FM.

Recall from [W] that for two Markov partitions U, Ve PA with U< V the length
/(I/, V) is defined to be the minimum value m + n such that U <V< U(—m, n).
We will prove (1.1) inductively verifying the following statement for each integer
fc>0:

(Ek) For any zero-one matrix A if /(UA, V)< k, then (1.1) holds.

The statement (£0) holds because A and B = M (V) are conjugate by a permutation.
See above. Next we verify (£,). Assume UA< V< UA(0,1). The argument in the
other case is similar. Let R and S be as in (3.1) of [W] such that A = RS and B = SR.
We will show iv = cR. Since both these homeomorphisms intertwine o-A and aB, it
suffices to show

iv(x)0= cR(x)0

for each x = {*„} e XA. Let i = x0 and j = x,. Write each V̂  as a disjoint union

Then i'v(x)o is the unique Vk containing t/.ncr^'L^. On the other hand, cR(x)0 is
the unqiue Vk such that R(i, k)S(k,j) = 1. The condition R(i, k) = l means Vk <= t/j
and the condition S(k,j) = l means Vfcno-;t

1(U,)''t 0- Hence Vk contains
^Uj. Thus /v(x)o = cR(x)o.
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Now assume (Ek) is true and suppose /(UA, V)<k+l = m + n where n s l . The
case m s 1 is similar. Consider the diagram of refinements

UA

(0,1)

UA(-m,n)< Vno--A\U)
(-m,n~l)

where U -*(-M) V means U<V< U(-p, q). By induction we know (1.1) holds for
Vr\<TAl(U)-> UA(-m, n) and V-* Vno-~^{U). One verifies directly by induction
(1.1) holds for UA^ UA(-m, n). Hence by (1.9), (1.1) holds for UA^ V. •

2. Topological conjugacies
In this section we discuss the topological counterparts CR and Cs of the elementary
symbolic conjugacies. The construction of CR and Cs uses certain model fitted
diffeomorphisms of S". See (2.7), (2.13), and (2.15).

Let m > l and fix an integer e satisfying 2 < e < g - l . Let Sq{m) denote the
g-sphere Sq = Rq u {oo} equipped with a fixed handlebody decomposition consisting
of a single handle H0 = D°xDq of index zero, m handles He_,(i) s Del x D'~c+1

of index e - 1 , m handles He(i) = Dex Dq~e of index e which cancel the correspond-
ing handles of index e - 1 , and finally a single handle Hq = DqxD° of index q.
More precisely, construct Sq{m) as follows.

A k-block B<=Rk is a product B = Itx I2x- • x Ik of intervals i ,c/? where
7 = 1, . . . ,fc A fc-block with a layer of fat is a fc-block B together with another
k-block B' containing B. The fat of B is the closure of B' - B. If B <= Rk and C c R1

are blocks with fat, then B x C c Rk+I is a block with fat also. The fat of B x C is

((fatofB)xC)u(Bx(fatofC)).

We will write Rq in the form

Any block B <= Re"2 x /?2 x /?«"c c /?« is of the form ExIxF where £ is an (e -1)
block in Re~2 x RxOxO, Fisaq-e block in 0 x 0 x Rqxe and / = [a, b] is a 'vertical'
interval in 0 x 0 x R x 0. The slices ExyxF for yzl will be called the horizontal
levels with ExaxF the bottom level and ExbxF the top /ei>e/. If / is the union
/ = /! n 72 of two nonnegative intervals meeting in the right end point of 7] and the
left end point of I2, then B is the union of two sub-blocks E x /, x F and ExI2xF
called the top and bottom of B respectively. Such a two tiered block will be called
a head.

Write Rq = Re'2xR2x Rqe and fix an m-plate A = Am <= R2 = 0 x K2 x 0. Namely,
choose a 2-block containing the origin equipped with a set of m heads g( l ) , . . . ,g(w»)
arranged along the top boundary as in the diagram:
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8(D

/(I)

- . ,

8(2)

1(2)

s(2)

g(m)

•'->

• origin

(2.1)

FIGURE 1

Each head g(i) is regarded as the union of a top block t(i) and a bottom block
s(i). Moreover, each top will be viewed as the product of a 'horizontal' interval in
0 x R x 0 x 0 and a 'vertical' interval in 0 x (0 x R) x 0.

Let D* = [-e, e]k and when e = 1 just write Dk. Define the thick m-plate Pm to be

Fix a number 0</3<l and let

ho = Closure of Pm - ( U MO ) ,
L \lsism /J

H(i) = MO

Define the handles of 59(m) to be

Ho = Closure of P m x D " - c - ( U H(0 ) ,
L \l<ism /J

e_,(i) = [D%~2 x (horizontal of t(i))] x [(vertical of <(/))] x D«"e],

H, = Closure of [(Rq - Pm x D«-c) u (oo)]. (2.2)

Observe that H(i) = He_,(i)u He(i) and Ho=hoxDq~e.
The /i = MO are heads and we will use certain subheads sh of the h constructed

as follows: In 0 x R2 x 0 choose a sub-block with fat sg of g = g(i) as in the diagram:
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top of Am

fat

spine

(2.3)

FIGURE 2

and choose a small block B<= flc~2 with a thin layer of fat so that both B and its
fat are contained in Int Def2. Then set

sh = Bxsg (2.4)

The first part of this section very carefully constructs certain Smale diffeomorph-
isms F: Sq(m)-> Sq(n) which are fitted both on the (e-l)-handles and e-handles
according to an arbitrary nonnegative integer m x n matrix R. The main properties
required of this construction are stated precisely in (2.7) and (2.16). We proceed in
three steps.

Step I. Interval models

The horizontal model
Let /, J be two closed intervals in R. Consider an imbedding / : 7-»IR satisfying

(i) / c Int (/(/))
(ii) / ' (x )>Ofora l lxe /

(iii) There is a A > 1 and a n e R such that if x e I and f{x) e J, then f{x) = \x + fi.
For simplicity we will usually write f:I-*J even though / ( / ) is not contained in /.
Such an / will be called an h-model. The following properties hold for /i-models.
(a) L e t / : 7 ^ 7 and g:J->K be fo-models, and let r=f~\J). Then gf:I'-*K is

an A-model.
(b) Any two /i-models f, g: /-»J are isotopic through /i-models I-*J.
The proof of (a) is clear. Here is the proof of (b). Let [a, b] =f~1(J) and [c, d] =
g~1(J). Either b-a^d — c or vice-versa. Say b-a<d-c. Let a,:/-»/, O s j < l ,
be an isotopy such that ao= 1, «i([a, b])<= [c, d], and a, is a translation on [a, b].
In particular, a',(x) = 1 for xe [a, b]. Define /, =/°a7 t . This is an /i-model I-* K
so that/,"'(/) = [r,s]<=[c,d] with r-s = b-a. Now let A = (d -c ) / ( r - s ) and
fi = c - Ar. Let /3,: / -» / for 0 < f s 1 be an isotopy of /30 = 1 so that B',(x) > 0 for all
xel and Bt(x) = ((l-t) + t\)x+tti for xe[r,s] . Note that B,([r, s])c[c, d] and
0i(O, *]) = [c,d]. Define g, = g°B,. These are also /i-models / - » / and g7'(/) =
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[r, s]. Finally, (1 - t)f} + tg} for 0< (< 1 is an isotopy through /i-models from/] and

The vertical model. Let 7, 7 be two closed intervals in R and write each as the union
of two closed subintervals meeting at the end points: 7 = 7,u72 and J , u / 2 . A
v-modelf: I -* J is a smooth imbedding / : 7 -» R satisfying
(i) f:Ix-*Jx is an /i-model

(a'i) There is a /u. < 1 and a i> G IR such that f(x) = fix+ v for x e J2.
The following properties hold:
(a) Let/: / -* 7 and g: J-> K be ^-models. Let /* = / " ' ( / ) , Jf = / , n /*, and Jf = /2.

Then g/: I*-* K is a u-model.
(b) Any two u-models f,g:I-*J are isotopic through t>-models / -> /.
As above (a) is clear. To see (b) use isotopies a, and /3, as above but satisfying
a, \J2 = P, | /2 = 1 to deform/ and g through u-models until they satisfy f~x{Jt) =
g~'(/,). Then take the linear isotopy (1 - t)f+ tg from / to g.

Now we combine these interval models to obtain models for maps between heads
X = IxJ and Y=KxL where J = J,x • • • x j e _ , and K = /C,x • • • xK, . , are
'horizontal' (e-l)-blocks and the 'vertical' intervals 7 and L are disjoint unions
J = JtuJ2 and L = LjuL2 as for a u-model. We define a modelf:X-* V to be a
smooth imbedding of X into Re of the form / = ( / , , . . . ,fe) where fe:J-*L is a
u-model and/r:/ r-» Kr is an /i-model for r- 1 , . . . , e — l. A picture of/looks like:

FIGURE 3

If / : X H» y is a model, we let X* = 7* x 7* where /* = If x • • • x /*_, and the 7*
and J* are determined as above for /i-models and u-models. X* is a sub-head of
X. The preceding material on /i-models and u-models gives

LEMMA 2.5. (A) Let f:X-+Ybe a model. Then f is expanding hyperbolic on the
bottoms and is also hyperbolic on the tops, expanding on the horizontal levels and
contracting vertically.
(B) Let f:X -> Y and g:Y -> Z be models. Then gf: X*^Z is a model.
(C) Any two models from X to Y are isotopic through such models.
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Step II. The cobra construction

Let R = {ry} be an arbitrary mxn matrix with non-negative integer entries. We will
define the notion of an I?-model imbedding

which has the origin as a sink and is fitted on the (e-l)-handles and e-handles
according to matrix It Such models will exist when 2< e< g —1.

The diagram below illustrates the procedure for m = n = 2, e = 2, q = 3 and
r = (? o)- We first construct an imbedding t/»: P2-» P2x D1 such that the composition
of if and the projection P2x Dl -* P2 looks like

MD
§

I8
1
li.

sMD |

1

• origin

1

%

sh(2)

M2)

*

Ml)

FIGURE 4

https://doi.org/10.1017/S0143385700004582 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004582


Realizing symmetries of a shift 469

This is like a cobra with two heads. Write i/> = (/, g) where/: P2^*P2 and g:P2-> D1.
Then extend t/f to an embedding of all of P2 x D1 by letting i//(x, y) = (/(x), g(x) + Ay)
where 0<A« 1.

Let JR = (r,j) be an m x n matrix with non-negative coefficients. The various parts
of Sq(n) will be distinguished from the corresponding parts of Sq(m) by a superscript
prime.

Definition 2.7. An R-model is a smooth imbedding

ij, = iljR:PmxDq~e-»Int(Pn x D«"e)

satisfying the following conditions:
(a) On a neighborhood of Ho = hox Dq~e, \fi has the form

(b) Everything outside a small neighborhood of UJ-i "A"'(W'(j)) is mapped into
Int / / ; by t/r.

(c) The set U"=i ^~l(H'(j)) is contained in a disjoint union U o */><. x Dq~' where
sha runs through a finite set of sub-heads with fat of the h(i). Moreover, on
each sha x Dq~e, t// has the form

<l»(x, y) = (fa(x), Aay + /xJ

where 0< \a <5, fia = Int Dq~e, and/a : sha -> h'(j) is a model imbedding taking
the fat of sha into /i0.

(d) For a fixed pair of indices (i,j) we have

f number of a with sha x Dq~e c= H(
{

[Observe from (b) and (c) that for a given a there is at most one j for which
/„(*/»„ x D ' " e ) n tf'(;)* 0-

OBSERVATION 2.8. / / ^iR:Pm xDq~e^lnt (Pn x Dq~e) and 4>s:PnxDq'e-»
Int(PrxDq~e) are R and S models respectively. Then the composition tl/stj/R:Pmx
Dqe ^ Int (Pr x Dq'e) is an RS-model.

Now we discuss the framing invariant for an R- model under the assumption that
<7>4. Suppose shax Dq~e<= H(i). A spine for shaxDq~e is an arc ca ascending
from the bottom of the block H(i) up to the bottom of shaxDq~e so that the
projection onto the vertical coordinate (in 0 x 0 x R x 0) has no critical points. See
(2.3) for an example. Thus each horizontal slice Re~2x Rxyx Rq~e is transverse
to ca. Note that the horizontal slice is equipped with a canonical (q-l)-frame.
Suppose 4> satisfies the conditions:

(a) i/rca-»Int (Pn xD'~c)-*0x0x/?x0 has no critical points.
(b) For each zeca there is a neighborhood Uz of z in the horizontal slice such that

<p takes Uz dirleomorphically onto a neighborhood of i/»(z) in the horizontal
slice through i/f(z). (2.9)

Then at each zeca the derivative of i/r restricted to the horizontal slice at z takes
the canonical framing to another framing of the horizontal slice at iA(z). This
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new framing varies smoothly with z. Moreover, near the top or bottom of ca

the frame lies in the contractible subspace of frames obtained from the canonical
one by multiplying each frame vector by a positive number. This data therefore
determines the framing invariant

fr(^cJe7T1(GL+(q-l ,R)) = Z/2 (2.10)
for ip on the spine ca.

In general an R-model ip will not satisfy (2.9). However, when q>4, i// will be
isotopic (through /^-models) to an i?-model satisfying (2.8). Recall the standard
consequence of transversality that there are no knots or braids in Rq for q>4. See
[B, Hi]. Use this fact to deform (p until (a) of (2.9) holds. Then as in the uniqueness
part of the Tubular Neighborhood Theorem [Hi] further deform i/» to obtain (b).
This can all be done keeping iff fixed on a neighborhood of Hou [UQ

 SK x Dq~e].
Since there are also no braids in Rq when ^>4 , if the above deformation is done
in a different way to obtain another R-model satisfying (2.9), then this new map is
isotopic through R-models to the first one through R-models satisfying (2.9). Hence
the framings fr(i/>, ca) are well defined for an R-model which do not necessarily
satisfy (2.9).

Definition 2.11. We say tj/ has trivial framing (on the spines ca) if fr (t/>, ca) = 0 for
every ca.

LEMMA 2.12. If if/ has trivial framing on one choice of spines, it has trivial framing
for any other choice of spines. Moreover, the framing invariant only depends on the
isotopy class of \ji in the space of R-models.

Proof. Any two choices of spines are isotopic through a one-parameter family of
spines when q a- 4. This gives rise to a homotopy between the two sets of framing
invariants.

Definition 2.13. A special R-model is an R-model with a trivial framing.

PROPOSITION 2.14. (A) If 2<e<q-l, then there are R-models satisfying (2.9) with
trivial framing. In particular, special R-models exist for q>4.
(B) The composition of a special R-model and a special S-model is a special RS-model.
(C) If 3 s e < q - 2 , then any two special R-models are isotopic through special R-
models.
Proof of (A). See diagram (2.6) for the idea. For each pair of indices (i,j) correspond-
ing to the entry r,-, of the matrix R, let b(i,j)<= h(i) be a subhead (without fat) as
in (2.3). Do this so that all the b(i,j) are disjoint. Inside each b(i,j) construct a
collection {sha} of exactly r{j subheads with fat as in (2.3). Choose points p,, in the
bottom of h'j. Inside the interior of Dq~e choose a family of disjoint disks {t(i,j)},
and the inside the interior of each t(i,j) choose a collection {za} of exactly /•,-, points.

First we construct an imbedding /:Pm-»Int (Pn xD ' " ' ) . Choose a very small
0<fi« 1 and let K-.Pm^H'obe K(X) = fix. Choose r,-, points {xa Jin the top of K(sha)
and then choose 'parallel' disjoint arcs da ascending up from the points xa through
Int (Pn x Dq~e) to the points p^ x za in the bottom of H'(j) = h'(j) x Dqe. Fix an
index a. Then pull the subhead sha up along da and map it by a model imbedding
to h'{j) x za c Re x za. This should be done by an isotopy which keeps things fixed
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outside the fat of sha and in such a way that at each time sha is mapped into a
level Rexz, zeDq~e, by an imbedding which preserves axes. This insures the
framing invariant will be zero along da. Perform the preceding construction for all
the da for various pairs (i,j) in such a way to get the imbedding/ which takes the
fat of each sha into H'o. Finally, choose 0 < A « 1 to be small enough so that

defined by

satisfies the requiredis an imbedding. It is clear from the construction that
properties.

Proof of B. It has already been remarked in (2.8) that the composition of an .R-model
with an S-model is an .RS-model. So it remains to show the composition has trivial
farming. We will first show that the composition of two models tfiR:Sq(m)^>Sq(n)
and <fe:S«(n)-»S«(t) satisfying (2.9) also satisfies (2.9).

Let {sh'p} be the subheads of the various h'(j) in Pn used to construct t̂ s- Let
{cp} be the corresponding collections of spines. Similarly for {sha} and {ca} used
to obtain t/»R. Then \j/R maps ca into Int H'o so that (a) of (2.9) holds as in the
diagram below which shows a 2-dimensional cross section (i.e. projection in 0 x R20)
of the special case where h(i) has only subhead sha and h'(j) has only one subhead

FIGURE 5
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Connect the top of <]/R{ca) to the bottom of c'p by an ascending arc dap as in the
diagram. Property (c) of (2.7) then implies that the arc ca * ijJR\dal3) * <pR

l(c'p) is a
spine for the subhead \pR

l{sh'p x Dq~e) used to get <ARS = <PS<PR- More generally,
there may be several sha in an ft, and several shp in the h'(j). In this case, fix
sha c h'a and for each sh'p c h'{j) select a parallel copy of ca close to ca ; then repeat
the above construction. Do this in such a way that all the spines are disjoint.

We must now check that (2.9) holds for ips>l>R on each spine like
ca * <i>~R\dap) * IJJ-R\C'P).

Part (a). Applying tl>styR gives i/<si//R(ca) * il/s(dal3) * IMCJJ). Since ips satisfies (a) of
(2.7) and since the ascending arc </>R(ca) * da/3 is contained in H'o, it follows that on
applying i/>s one gets an arc ascending up to the bottom of i//s(c^). Since (j/s satisfies
(a) of (2.9), we then continue this by the ascending arc ips(c'p).

Part (b). This follows on ca * il/R
l(dafS) because ifiR(ca) * daP lies in H'o and i/»s

satisfies (a) of (2.7) there. It holds on ty~R{dap) because i/»R satisfies (c) of (2.7) and
</»s satisfies (b) of (2.9) on c'p.

Next we compute the framing fr for *1>S>PR on ca * *pR\daSi) * il/R\c'^). It is given
by the formula

Then we see that fr(i/fR, ca) and fr(i/»s, c'p) are zero by hypothesis; fr ((/»s, *pR{ca)) = 0
because < M O c H'o and t//s satisfies (a) of (2.7); fr (ife, da/}) = 0 because dafi c H'o
and tl/s satisfies (a) of (2.7); and, finally, fr (<£R, i//R\dali)) and fr(i/»R, ^~R{daP)) are
zero because >l>~R{dafi) * ^R\c'p) lies in sha x Dq~e where \pR satisfies (c) of (2.7).

Proof of (C). Let i/f and <j> both be ^-models.

Step 1. Both i/» and <f> satisfy (a) of (2.7) for perhaps different sets of parameters.
By smoothly shrinking these parameters to a common set of smaller ones we deform
•/> and <f> keeping everything unchanged outside a small neighborhood of Ho until
ip and <\> become equal on another smaller neighborhood of Ho.

Step 2. Let {sha} and {ska} respectively denote the subheads of the heads h< used
to construct t/> and <j> as in (c) of (2.7). We want to deform i/» and <j> through
/^-models to new & and <f> such that
(1) sha = ska for each a.
This will require 3 ^ e.

Fix a pair of indices (i,j) and let {sha} denote the subcollection of the rtj subheads
of ht satisfying (d) of (2.7) for t/>. Similarly for {ska} and </>. In fact, for this step let
sha denote both sha together with its layer of fat. Ditto for ska. Write sha = IaxJa

and ska = KaxLa as in (2.5). Now choose small subheads I'axJ'a of stia and
K'a x L'a of ska such that the horizontal intervals of the I'a and K'a have the same
length and the vertical intervals of J'a and L'a have the same length. Note that by
the construction (2.3) all the top intervals of the interval intervals J'a and L'a have
the same length automatically. Let 6,: Pm -* Pm be an isotopy of the identity satisfying
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(2) d, preserves each horizontal level and maps each linear interval of I'a into the
corresponding axis of Re~2 x R x R x 0 by an affine imbedding with derivative
at least one,
0, is the identity outside a small neighborhood of the sha(3)

(4) e1(i'axra) = iaxj'a.
Construct a similar isotopy I \ : Pm -> Pm expanding K'axL'a out to KaxL'a. Then
the required deformations to new tp and $ are t/», = i/>(0, x id) and <f>, = <f>(T, x id).
The new subheads are sha = l'axja and ska = K'axLa. Next let 6,:Pm-*Pm be
another isotopy satisfying.
(5) 6, preserves each vertical line and for each a there is an imbedding / , : J'a -*

Ox Ox R xO such that / , is fixed on the top interval of J'a, f',> 1 on the lower
interval and is affine on it except in a very small neighborhood of the top end
point, and fi(J'a) = Ja so that on I'a x J'a we have 6, = id xf, and 0,(7^ x J'a) =
I'axJa.

(6) 6, is fixed outside of a small neighborhood of the sha.
Construct a similar isotopy T, expanding K'a x L'a to KaxLa. Then tne deformations
to new i/» and <f> are ip, = if>(d, x id) and <j> = <f>(T, x id) and the new subheads are
sho = I'axJ'a and ska = K'axL'a for t/» and 0 respectively.

We now bring in the hypothesis that 3 s e which implies the horizontal levels of
Pm = De~2 x Am have dimension at least two as in the diagram below showing the
top level of a head h(i) together with various subheads sha and ska.

other subheads

sh,

t o p o f h ( i )

side boundary of h(i)

FIGURE 6

The size of sha and ska can be as small as desired. In particular, make them small
enough so that the diameter is less than, say, half the distance between any two of
them and half the distance between any one of them and the side boundary of h(i).
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Also make the diameter of the sha smaller than half the distance between any sfia

and any other sha and half the distance between any ska and any other ska. We
can then construct an isotopy 0,: Pm -> Pm satisfying
(7) 0, preserves horizontal levels, has support contained in h(i), and leaves fixed

the subheads sha not belonging to the collection {sha}.
(8) 6, restricted to sha is a translation in the horizontal direction and 6i(sha) = ska

for each a.
Finally, we then have the isotopy <f>, = <f>(&, x id) of </> = <f>0 to a new <f> — <j>x so that
(1) holds for the sha and ska. Repeat the procedure until (1) holds for all indices a.

It is clear that the isotopies in the above procedure are deformations of if/ and <£
through R- models.

Step 3. For this part we return to the usual notation where sha denotes the subhead
itself and not both the subhead and its layer of fat. From Step 2 it can be assumed
the subheads sha are the same for both tfi and <f>. We now show «/» and $ can be
deformed through #-models to new if/ and <j> satisfying
(9) <f,\shaxDq-' = 4>\shaxDq-
for each a, and it is here that we use the hypothesis e-^q—2. The isotopy will keep
t/f and <fi fixed on Ho where they agree by Step 1.

For each j = 1 , . . . , n let k'(j) be a slightly larger e-block containing h'(j) in its
interior. Choose the k(j) to be disjoint. We claim that it is possible to deform i/>
and <f> so that
(10) ^(shaxD"-e) and <f>(sha x Dq'e) are contained in Int (k'(j)x D"'e)

for each a
and
(11) il/(Pm x D"-') and <t>(Pm x D"-e) only intersect each k'(j) x Dqe in its interior

and along the bottom horizontal level.
The image of this situation composed with the projection -tr:Pnx Dq~e -» Pn is
illustrated by the diagram in Figure 7 below.
To obtain (10) just shrink the model imbeddings in the horizontal and vertical
directions. Then for (11) push down vertically along the sides of k'(j) x Dq~e until
the image under iff and <p comes into k'{j) x Dqe only through the bottom level.

As in (c) of (2.7) write

<M*, y) = (f*(x), Ka

<f>(x, y) = (ga(x), Aa>> + va),

for (x, y) e sha x Dqe where /*„, va e Int ( D * c ) . Then use (2.5) to further deform

ip and <f> in a small neighborhood of sha x Dq~e until

(12) fa = ga on sha.

Next use a general position argument to further move </» and <f> slightly so that
(13) all the fia are different, all the va are different, and no fia is equal to any va.
Let 8 denote the minimum of the distance between any two points fia and/ or va

and also the distance between any /xa or va and the boundary of Dq~e. Deform ip
and <f> isotopically through R- models which keep everything fixed outside a small
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, x D " '•)

FIGURE 7

neighborhood of the sha x Dq e so as to shrink the parameters Ka and ka to a
common value
(14) Ka = \a = 5/300
The image of each s/io x Dq'e under i/> is of the form X o x M a x Ba where Xa is an
(e-l)-block, Ba c Int D9~e is a (<?-e)-block and Ma = PaKj Qa is a vertical inter-
val. By (12) we can write the image of sha x Dq'e similarly as X a x M . x Ca. From
(13) and (24) we know all the (g-e)-blocks Ba and Ca are disjoint and of the
same size.

Now fix an index a and an index/ Write k'(j) = ExI where E is an (e -1)-block
in Re~2 x R x0x 0 and / = [a, c] is a vertical interval in 0 x 0 x R x0. Let M = Ma,

B = Ba, and C = Ca,fi = fia, and v = va. Write M = [b, d] with a<b<d<c. Write
I = PuQ where P = [a, b] and Q = [b, c]. Since e < g - 2 and all the blocks Ba and
Ca have diameter no bigger than, say, 8/50, there is an isotopy.0:Px D"~e-* D"~e

such that

(15) 6, has support in Int Dq~e and does not move any Ba or Ca except B and C,
(16) 6, is a translation on B,
(17) 0, = id for f near a and 0, = 0b for t near b, 0b(B) = C, and 0fc(/O = va.

Use this to define a oiffeomorphism 0 of Exlx Dq~e by the formula

(18) e(x, t,. f(
l(x,t, O(b,y)), bs

Define an isotopy 6S from the identity on ExlxDq~

(19) 6s(x, t,y)

to 0 by the formula
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for Os s < 1. Next define an isotopy fa of tfi on Pm x Dq e by the formula

k'(j) x D"-')
(20) *,(z) =

for z € (sha x D«"e) n

otherwise.

Then (9) is satisfied for the particular index a we have just fixed. Continue to do
this procedure for other sha until (9) holds for all of them. At each stage things are
not moved on those sha x Dq~e where (9) already holds.

Step 4. At this point we have deformed if/ and <$> until they agree on a neighborhood
of Hou ( U o sha x D"~e). The last part in proving (C) of (2.14) is to show i/r can
be deformed to be equal to <f> on the region

Closure of { Pm x Dqe - H0-\J (sha x D"~')\.
I a J

The deformation in this step will not move anything near Hou(U<» SK x Dq~e).
Let {ca} be the collection of spines used to define fr((/», ca). In view of (2.12) we
can also use {ca} to define fr (<f>, ca). Since 5^q (and hence 4 < q) and since there
are no knots in Rq for 4 < <jf, we can deform «/> through R-models until ^\ca = 4>\ca

on each ca. Moreover, since fr (iff, ca) = fr (<f>, ca) = 0, we can further deform i/» until
it agrees with <f> on a neighborhood of the ca. Let 1/ be a neighborhood of

on which tf is equal to <t>. Observe as in the diagram below that X has a closed
neighborhood V inside U so that Pm x D"~e is diffeomorphic to V u (dVxI).

FIGURE 8

Hence we can choose an isotopy 0,:PmxDq * -» Pm x D<?xe which is fixed on V and
such that 6x(Pm x Dq~') <= [/. Then the final deformations of i/> and <f> are i/rfl, and 00,.

This completes the proof of (C) of (2.14).
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Step III. Extending to Sq. As usual let R = {r^} be an arbitrary m x n non-negative
integer matrix.

Definition 2.15. A diffeomorphism ip = il/R:Sq(m)^Sq(n) is an R-model provided
it satisfies
(a) <M0) = 0, i/Kod) = oo.
(b) ifi is already an K-model from Pm x Dqe into Int (Pn x Dq~e).
(c) there is a neighborhood £/«,<= Int Hq of infinity and a number /x > 1 such that

H'q c Int i/»( t/oo) and for x € [/«, we have || Txi/t\\ s /i.
We similarly define the notion of an R-model satisfying (2.9) with trivial framing

and a special R-model.
The global version of (2.14) is

PROPOSITION 2.16. (A) / / 2< e < <j-1, f/ien tfiere are R-models satisfying (2.9) witfi
trivial framing. In particular, special R-models exist for q>3.
(B) The composition of a special R-model and a special S-model is a special RS-model.
(C) Let 3 < e < g — 2 a n d /ef i/» a n d <£ be two special R-models. Then there is an isotopy
(/», of ifi through special R-models such that ^, | P m x Dqe = (/> | P m x D « " c .

Proo/ o/ A. We are identifying Sq with Rq u oo by stereographic projection. Let
0 < A « l and let 8K:Sq-*Sq come from multiplication by A on Rq. This takes
Pm x D*"c into a neighborhood of the origin in Int (Pn x D9"*). Then as in (A) of
(2.14) let ij/,:PnxDq~e-> Pn x D 9 " c be an isotopy realizing the cobra construction
so that t/j = i/>, ° 0A satisfies (2.9) with trivial framing.

Proof of (B). Conditions (a), (b), (c) of (2.15) are clearly preserved under composi-
tion, and the trivial framing property was verified in (B) of (2.14).

Proof of (C). By (C) of (2.14) there is an isotopy ^, between ip\PmxDq~e and
4>\Pmy.Dq~e. Use the isotopy extension theorem to obtain an isotopy 6,:59(w)-»
Sq(n) having support in Int (Pn x D"~e) so that on Pm x Dqe we have t/», = 6, ° •/>.
The required deformation of i^: Sq(m) -» S9(«) is therefore tf), = d,° ip.

3. Proof of the Main Theorem
Throughout this section assume A is an irreducible, zero-one matrix. Let F =
FA:Sq(m)^Sq(m) be a fixed choice of a special <4-model as in § 2. It is a fitted
Smale diffeomorphism as in [F, § 4] with a non-wandering set Cl = il(F) the disjoint
union

= no(F) u n._,(F) u n.(F) u

where each n t ( F ) is a basic set of index k, O,0(F) = {0}, Clq{F) = {oo}, and F restricted
to both fle_,(F) and ft«.(F) is conjugate to aA. We shall concentrate attention on
ftf. There is a similar statement for Of_,. In this section, change notation slightly
and let the collection of m handles of index e be denoted by K(i) for 1 < i < m.

The basic set ile(F) is the intersection

n«(F)= Pl F"k( U
-oo<fc<oo \l<i<n
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and the standard formula [F] for the topological conjugacy

between <rA on XA and F on O,e(F) is given on x = {xt} e XA by

XF(X)= n F"(K{x,)). (3.1)
— oo</<oo

We will sometimes use the notation x(F) for XF- A key point here is that A is a
zero-one matrix. This implies that K(i)n F±1K(j") has at most one component for
each pair (i, j). Hence as in [F], the D'^-coordinate of a point in (~}Oslsn F'(K(x,))
converges to a single value as n -> oo because F is contracting in the Dq~e factor.
Similarly, the Re-coordinate of a point in O0si^n F~'(K(x,)) converges to a single
value because F"1 is contracting in the Re factor.

Let P, Q, R, S be zero-one matrices with P = RS and Q = SR. Assume P and Q
are irreducible. Let cR : XP -» XQ and cs: XQ -> XP be the elementary symbolic con-
jugacies between a> and o-Q as defined in the introduction. Let CR : Sq(m) -> Sq(m)
be an i?-model and Cs: S

q(n)-> S"(m) be an S-model. Let DP= CsCR:Sq(m)^
Sq(m) and DQ= CRCs:S

q(n)->Sq(n). Then as discussed in the introduction, CR

and Cs are what we call elementary smooth conjugacies between the P-model DP

and the (?-model DQ.

LEMMA 3.2. There is a commutative diagram

• XQ

Proof. As usual, the handles in Sq{n) will be distinguished from those of Sq(m) by
a superscript 'prime'. Let xeXP, y = cR(x)eXo, u = x(Do)(y)sQ,e(Do), z =
x(DP)(x) € Cle(DP), and v = CR(z) e ile(Do). Observe that u is characterized as the
unique point such that DQ(U) e K'(yj) for ally 6 Z. To prove v = u we must therefore
verify v satisfies this condition. However, the homeomorphisms in the diagram of
(3.2) commute with the appropriate shifts, the Dp, or the DQ, and therefore it suffices
to show both u and v lie in K'(yo)- The definition of x(DP) implies ze K(x0) and
DP(z)e X(x,). Since DP = CSCR the image of z under CR must lie in one of the
K'(j) which it X(x,) under Cs. However, CSCR is an /?S-model as observed in
(2.8) and so j must satisfy R(xo,j)S(j, *,) = P(x0, x,) = 1. Since R, S, and P are
zero-one matrices, there is exactly one such j and from the definition of cR we must

PROPOSITION 3.3. Let F, G: Sq(m)^> Sq{m) be special A-models and assume 3 s e<
q - 2 . Then there is a topological conjugacy 6 = 0(F, G): Sq(m)-> Sq(m) such that the

https://doi.org/10.1017/S0143385700004582 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004582


Realizing symmetries of a shift 479

diagram

is commutative.
Definition 3.4. The homeomorphism 6 will be called a stability conjugacy.

Before completing (3.3) we need several lemmas.

LEMMA 3.5. Let e>0. Then there is a 8>0 such that if F, G:S"(m)-»• S"(m) are
A-models which are S-close in the C°-topology, then

is s-close to the inclusion Cle(F)^ Sq(m) in the C°-topology.

Proof. It suffices to show xa and XF are near each other whenever G is sufficiently
close to F. Let

S = masx|G(x)-F(x)|

be the C°-distance between G and F. Let {shF} and {sh°} denote for F and G
respectively the subheads appearing in the definition (2.7) of a model. If 5 is small
enough, then the {A°, ̂ i°) will be close to the {\F, IIF). Choose 8 so small that
Int (shF) n Int (sh°) # 0 for each a. Now suppose X <= (shFush°) x D"'e <= K(j)
is contained in (shFvsh°)xD where D^lnt Dq~e, D a (q-e)-disc of diameter
p. Let A =maxa {\F,X°}. Since A is a zero-one matrix each intersection K(i)n
F±1(K(j)) has at most one component. Similarly for G. It then follows from (c) of
(2.7) that for each i there is a (q-e)-disc B<=lntDq~e of diameter 5 + Ap such
that each of F(X) nK(i) and G(X) nK(i) is contained in h(i) x B. Let /? = diameter
Dq~e. An induction arguement then shows that the intersections

K(x0) n F(X(x,)) n • • • n F"(A:(xn))

and

&.\XQ) r\ ij\ii.\Xi)) p\ • • • r\ (j \i\-(xn)),

are contained in the product of an e-block and a {q - e)-disc D of diameter at most

+ A"/3.

Letting n go to infinity, we see that for any point xeXA the distance between the
Rq~e coordinates of XF(X) and Xa(x) is at most 5/(1 - A). There is a similar argument
for the Re-coordinates of points in the intersections

and

K(x0) n G-\K(Xl)) n---n G-"(K(xn)).

LEMMA 3.6. Let F, G:S"(m)^ S"(m) be A-models. If Fand G are sufficiently close
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in the C2-topology, then there is a topological conjugacy 8 = 8(F, G): Sq(m)^> S"(m)
from F to G which is close to the identity and such that the diagram

is commutative.

Proof. If F and G are sufficiently close then the stability theorem [R, Ro] says there
is a topological conjugacy 6 from F to G which is very close to the identity. Hence
from (3.5) we see that 0~" ° Xa ° X~F '^e(F)-»fte(F) can be made arbitrarily close
to the identity. Since crA is expansive it follows that 8X ° \a ° A>' is equal to the
identity if this approximation is good enough.

L e t F, G : S " ( m ) ^ S q ( m ) b e A - m o d e l s s u c h t h a t F \ P m x D q ~ e = G \ P m x D q e a s
in the conclusion (C) of (2.16).

LEMMA 3.7. There is a topological conjugacy 8 = 8(F, G): Sq{m) -*• Sq(m) from F to
G which is the identity on Cl(F) = fi(G).

Proof. The argument is the same as [PS, (4.2)]. Define

0(x) = lim G-"F"{x)
n~*oo

for x^oo and 0(oo) = oo. If X5*oo, then for n sufficiently large F"(x)e
Int (Pm x Dq~e) and 6(y) = G~"F"(y) for y in a neighborhood of x. In particular,
6 is a diffeomorphism of Sq{m)-{oo} to itself and since 0(oo) = oo, it must be
continuous at oo.

Proof of Proposition 3.3. Let F, be the isotopy from F= Fo to F, as in (2.16). Break
up the interval from t = 0 to f = 1 into steps small enough to apply (3.6) to a finite
number of successive A- models F, and then take the composition of the various 8
to get a topological conjugacy as required between F and F,. Then apply (3.7) to
F, and G and take the composition again to get the final 8 as required between F
and G.

Proof of the Main Theorem. This follows immediately from (1.1), (3.2), and (3.3)
which show precisely how to mirror a composition of elementary symbolic con-
jugacies and shift powers with a composition of elementary smooth conjugacies,
stability conjugacies, and powers of the intermediate DP.

The key point is how to realize the composition of two elementary symbolic
conjugacies: suppose we have three irreducible zero-one matrices A, B, C. Assume
there are zero-one matrices, R, S, P, Q satisfying

A = RS, SR = B = PQ, C = QP.

Construct the special models CR, Cs, CP, Co, and let DA = CSCR, D'B = CRCS,
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"B = CQCP, DC = CPCQ. Then there is the commutative diagram

XA ; * XB • Xc

Thus even though we will usually have D'B ^ D"B, a stability conjugacy 0 can be
used to bridge the gap.
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