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Abstract. It is shown that when viewed properly some concepts in topological
dynamics and ergodic theory are not merely analogous but equivalent. Also the
Mackey-Halmos-von Neumann theorem on ergodic processes with discrete spec-
trum is generalized and an account of the Mackey-Zimmer theory of minimal
cocycles is given in a more general setting.

0. Introduction

This paper is an attempt to link topological dynamics and ergodic theory more
closely. There are many concepts which have counterparts in both theories, e.g.,
minimality-ergodicity, equicontinuous-discrete spectrum, almost periodic ex-
tension-relatively discrete spectrum, etc. These have led to the formulation of
analogous theorems. However, they have up until now remained analogies; the
proofs involved being entirely different and neither directly deducible from the
other. This, of course, is not surprising since the methods used in one are topological
and in the other measure theoretic.

However, there is a meeting ground. Thus, let (X, u) be a ‘probability space’ and
T a group of measure preserving transformations on X. Then T acts as a group of
homeomorphisms on the Gelfand space U of L*(X, u). Now u induces a T-
invariant probability measure v on U such that L™(U, »)=L™(X, u) and since
ergodic theory is ‘really’ about the measure algebra on X and not the flow (X, T)
itself, (U, T) captures all the ergodic-theoretic essentials. Consequentially, there is
hope that some ergodic theorems could be deduced by topological means from the
flow (U, T, v). (As a simple example it is immediate that (X, T, ) is ergodic if and
only if (U, T) is topologically transitive.)

A priori there are problems with this approach. Usually the group T is provided
with a topology such that the action of T on X is measurable and this does not
entail the continuity of the map (u, t}->ut: Ux T-> U. However, as with most
problems in topological dynamics this is a mere technicality and one may assume
without loss of generality that T is discrete. (An example of how the given topology
on T may be introduced at the ‘critical’ moment is given in § 3.)

Another problem is that the space U is ‘huge’ and that (U, T) is in general not
minimal, though in the situations discussed it is topologically transitive. This is a
real drawback since there is a rather extensive theory for minimal flows which has
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as yet not been extended to the topologically transitive case. (One approach might
be through homomorphic images and universe limits. Recall that a distal, topologi-
cally transitive flow is minimal, [5]).

At this point it should also be mentioned that nowhere in this paper is it assumed
that (X, u) is a standard Borel space. This assumption seems to be made for technical
reasons, but is unnecessary for the results contained herein. (Thus, the latter are
generalizations of those in Zimmer [10] which are in turn generalizations of the
classical results.) One of the principal uses of this assumption is to produce a
disintegration of u with respect to p when there is a homomorphism of the system
(X, T,u)onto (Y, T, p). In our context this is replaced by the conditional expecta-
tion. (See § 2 for details.)

The disadvantages mentioned above are offset by some useful properties of the
space U. These include:

(i) L®(U)=C(U) and so one may always use continuous functions, thus
avoiding arguments involving sets of measure zero;

(ii) (U, n) is a hyperstone space (see [2]) which means that a subset A of U
has measure 0 if and only if it is of the first category;

(iii) U is extremely disconnected and as such has many useful topological
properties (see [2] and [6]) which are exploited throughout this paper.

As in [4] it is more convenient to look at C(X) rather than X. Also, even though
the flows involved are not minimal and there is in general no universal object, it is
still convenient to work in the category of T-subalgebras of a given algebra, U. The
basic situation is described in § 1.

The introductions to the various sections discuss the relation between the dynami-
cal and ergodic notions studied in that section. Thus, the reader might find it helpful
to read these before plunging into the ‘gory’ details.

At this point suffice it to say that § 2 deals with disjointness-independence, § 3
with equicontinuity-discrete spectrum, § 4 with the Mackey theory of minimal
cocycles and ergodic decompositions, and § 5 with the twin notions almost periodic
extension-relatively discrete spectrum.

Much of the material of this paper is considered from a different perspective in
Zimmer [10]. Indeed, the point of view presented here developed in part as an
attempt to understand Zimmer’s paper.

1. Basic Material
In this section the underlying situation discussed in this paper is described. Good
references for this material are [1] and [2].

(1.1) Standing Notation. Throughout this paper U will denote a fixed compact
Hausdorfl space, U the algebra of complex valued continuous functions on U, and
m a fixed regular supported Borel probability measure on U. It is also assumed
that given fe L™( U) there exists g € U such that f=g (a.e m).

(1.2) Remarks. (a) The pair (U, m) constitutes a hyperstone space in the terminology
of [2].
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(b) Let (X, u) be a probability space and U the Gelfand space of L™(X). Then
w induces a measure m on U such that the pair (U, m) has the properties required
in (1.1).

(c) Indeed, the space U of (1.1) may be identified with the Gelfand space of
L*(U).

(1.3) Notation. The topologies of uniform convergence and convergence in
measure on U will be denoted by 7, and 7, respectively. If of < U, then & ()
will denote its closure with respect to 7, (F,,.).

The following is well known. (See [1].)

(1.4) Tueorem. (i) 9,,< 9,
(ii) If the sequence (f,) converges to f (a e.), then it converges to fin 7,,.
(iii) If the sequence (f,) converges to f in I, then there exists a subsequence (f, )

of (f,) such that f, > f (a.e.).

(iv) Both 9, and T, are metrizable.

(1.5) Definition. The subset o of U is a subalgebra of A if it is a subspace of U
containing the constant function 1 and is closed under multiplication and complex
conjugation.

Let of = 9. Then R(«) will denote the equivalence relation on U: x=y (R(H))
if f(x)=f(y) (fe o), and || will denote the quotient space U/R ().

It is well known that |<f| is a compact Hausdorff space and that m,, = mIl is a
supported probability measure on |<|. (Here I is the canonical map of U onto
||.) When there is no danger of confusion m, will also be denoted by m.

(1.6) THEOREM. Let o be a subalgebra of U and 11: U ~ |sf| the canonical map. Then
(i) M*C(|sA]) = o; and

(i) M*L=(|st]) = of
Proof. (i) Clearly IT*C(|f]) is a uniformly closed subset of % containing o, whence
A<T*C(|)). On the other hand every element f of & induces fe () with
*(f)=f-I= f Moreover, the set B = {f|fe &} is a uniformly closed subalgebra
of C(|#|) which separates points. Thus, B = C(|sf|), whence I1*(|£]) = .

(ii) Let fe L*(|of|). Then there exists a sequence (f,) in C(|sf|) which converges
to f (a.e. mIT™"). Hence, (f, °II) converges to f<II (a.e. m) and so

M*f=folleclsy o = .

Ontheotherhandlet foIle . Then by (1.4) there exists a sequence (g,) contained
in & which converges to foII (a.e. m).

Now g, induces f, € C(|£|) with g, =f, oI forall n. Set K = {x € || : f,(x) > f(x)}
and L={ue U|g,(u)~>f(II(u))}. Then 1 (|#|\K) =€ U\ Land m( U\ L) = 0implies
that mII7'(|#|\ E) = 0. Consequently fe L™(|]).

(1.7) Remarks. Let o be a subalgebra of ¥ with of = . Then (1.6) implies that
the pair (|5z?|, m) is a hyperstone space and m is a normal or category measure on
|| (2]. Among other things this implies that a Borel subset A of || is of the first
category if and only if m(A)=m(A)=0. Moreover the space || is extremely
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disconnected, i.e. the closure of an open subset of ].;4 | is again open, hence both
open and closed.

(1.8) THEOREM. Let &, o be subalgebras of U with F = % < of = A. Then the canonical
map of || onto |F| is open.

Proof. Let N be a non-vacuous subset of || which is both open and closed. If the
interior of the closed subset [I( N} were null, II( N) would be of the first category,
whence by (1.7)

0=mg(II(N)) = my(N).

But this is impossible since m is supported.

Now let M=clsintII(N). Then M is open (1.7) and McII(N).
Since N\II"'(M) is both open and closed, and int (II(N\II"'(M))=0,
N\II"'(M)=. Hence [I(N) = M which is open. The theorem now follows from
(1.7).

(1.9) CoroLLARY. Let ¥, o be subalgebras of U with F = % c of. Then the canonical
map of || onto |%| is open.

Proof. This follows from (1.8) and the fact that

]t
N/
|

is commutative, where the arrows are the canonical maps.

2. Independence and disjointness
One of the most useful tools in ergodic theory is the theorem on the disintegration
of measures. Since in general this requires some sort of countability assumption, it
is unavailable to us. The device which replaces it is the conditional expectation
which yields a continuous disintegration in the proper context; (see (2.3)).
Consideration of conditional expectation leads naturally to the notion of indepen-
dence and its topological counterpart, disjointness; (see definition (2.8)). Theorem
(2.10) relates these two concepts.

(2.1) Definition (Conditional expectation). Let &/ be a subalgebra of 9. Then
E,:U - o is the map such that

m(fe)=mi(E«f)g) (fe¥gedd).
The existence of E, and the properties given below are standard results.

(2.2) Remarks. Let &, B be subalgebras of U with of = %. Then
(1) E, is linear.
(2) Eaf=f (fed).
(3) E Eg=E, .
(4) E4(fg)=fEu(g) (fed,gelU).
(5) Exf=0 (fe¥Uf=0).
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(2.3) THEOREM. Let o, B be subalgebras of U with < B and let A, be the map
f>(Eaf)(y): B ~C (ye|d|). Then:

(1) A, e M(B) (velsd). )

(2) supp A, < |8, ={xe|B|: xd =y} (ye|d|).

(3) The map y 3 A, :|st|> M(|B)) is continuous.

@) Jig fdm=[ia A() dm(p), (feB).
Proof. (1) This follows from (1) and (5) of (2.2) and the fact that E,(1)=1.

(2) Let I1:|%|- || be the canonical map and suppose x £ I17'(p). Then there
exists an open-closed neighbourhood N of y with x 2 [I"'(N).

Let g be the characteristic function of N and f=1-g. Then f¢ o andso f = E4(f).
Hence

M =(E)(y)=f(y)=0;

ie A, (|BNI'(N))=0.

(3) Let (y,) be a net in || which converges to y € || and let f € . Then

ML) =(Exf)(y)=lim Eyf(y,) =lim A,_(f),
since E4f is a continuous function.
(4) Set g =1 in the equation which defines E,,.

(2.4) LEMMA. Let F=%, of = s be subalgebras of U with F < o, N a non-vacuous
open-closed subset of |54, f the characteristic function of N, g = Egf, and 11:|sf| > | F]|
the canonical map. Then:

(1) g(y)=0 (y£II(N)); and

(2) g7'(0, ) is dense in TI(N).

Proof. (1) Let h be the characteristic function of the open-closed subset II( N)' of

|#|. Then
J g=J hg=J hEy(f)=J (hoI)f=0.
Ny Ed Ed (]

(2) By (1), g7'(0,) is an open-closed subset of II(N). Hence W=
II(N)\g (0, ) is again both open and closed. Since g vanishes on W,

o Lm e Im E = L/XW *l=my(N O L7 (W)).

If W were not null, then II(n)e W for some ne N. Consequently N ~II7'(W)
would be a non-vacuous open set. But then m (N ~II7'(W)) # 0. The proof is
completed.

(2.5) THEOREM. Let £ = o, B =% be subalgebras of U, F=4 B, A:|F|-> |,
w:|F|>|B| as in (2.3). Then:

(1) y> Ay X, () :|F|>R is continuous  (fe C(|s4|x|B|,R)).

(2) The map f- [ig A, x u,(f) dm(y): C(|of|x|B|, R)>R is positive and linear
and so determines a measure m,® mg on || x|A|.

(3) my®@mg(|st|x|Bl)=1 and supp m,@mg = || x 5|B|={(x, y): x|, ye
|B, xF = y%F}, the so called fibred product of || and |B| over |#|. (Notice that
F=%) (Here x¥ denotes the image of x in |#| under the canonical map.)
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Proof. (1) Let hed=C(d4]), geB=C(B|), and hxg the map (x,y)->
h(x)g(y):|of| % |B|>R. Then p(hx g) is the map y > A,(h)u,(g):|F|~>R which is
continuous by (2.3).

Since every element of C(|sf|x|4|) is the uniform limit of linear combinations
of elements of the form h x g and all the measures A, X u, are of norm 1, statement
(1) follows.

(2) This follows immediately from the definition of A,, u, (y€|%)

(3) That m,@mg(|sf|x|B])=1 is clear. Let xe|sf|, ye|B| with (x,y)g
|| X &|®B|. Choose open-closed neighbourhoods M and N of x and y respectively
such that

Mx Nn|d|x|8|=0,
and let g = Egxar, h = Egxn. Then
I(M)NIL(N)=O
where I, : || > |%| and T1,:|%B| > | %] are the canonical maps. Consequently
A X p(MXN)=L(M)u.(N)=g(2)h(z)=0  (ze|F)
by lemma (2.4). Hence m ;@ mg(M x N) =0 and so (x, y) £ supp m,® mg.

Now let (x, y)e|#|x |B|, M, N be open-closed neighbourhoods of x and y
respectively, and let [1,, I1,, g, and h be as defined above. This time I1,(x) =I1,(y)
and so I1,(M) nII,(N) is a non-vacuous open-closed subset of |%|. Consequently
by (2) of lemma (2.4), gh is a nowhere negative continuous function on |%| which
does not vanish identically. Then

md®mg,(M><N)=J ghdmg>0.
||

The proof is completed.

(2.6) TuEOREM. With the same assumptions as in (2.5)

E(fxg)=Ez(f)Es(g) (fed,geB),

where E is the expectation operator induced by the canonical map, r of (|| x & ||,
m,®@ mg) onto (|F|, mg).
Proof. It suffices to take the case f= y, and g = xp Where A and B are open-closed
subsets of || and |B| respectively.

Let J=I|d|xg|%| (fx g)geor. Then we must show that J =I|9| FGo, ¢ € #, where
F=Egz(f) and G= Ez(g).

Again we may assume ¢ = yx where N is an open-closed subset of |%|. Then

r(N) =TT (N) XTI H(N) 0 o] % 5 |B]

and (fxg)(¢°r) equals the characteristic function of C x D n|sf|x5|%B| where
C=I;"(N)nAand D=II;'(N)n B. (Here I1,, II, are the canonical maps of |.s¢|,
| 8| onto |#| respectively.) Then

/\zX/-“z(CxD) dmg(Z)=J Az(C‘),M'z(l)) dmg:(Z)
| 1|

since supp Myeg < || X %|B|, (by (3) of (2.5)).

]=mx®@(CXD)=j
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Now
A(C)=(Esxc)(z) = Eg((xn ° 1) xa)(2) = xn(2) F(2)
and
p-(D) = xn(z)G(2).

Thus J = |4 FGe. The proof is completed.

(2.7) TuEOREM. With the same notation as in (2.6), let x be the map u-
(ust, uB): U - || x|B|. Then:

(1) x(U)<|s|x5|98|; and

(2) Es(fg)=Es(f)Es(g) (fesd, geB) if and only if « is onto and mx ™' =
myRemg.

Proof. (1) This follows directly from the definitions of « and || x g |%/.

(2) Necessity. Let (x, y) € || x | B| and suppose it is not in « (U). Since the latter
is closed, there exist open-closed neighbourhoods M and N of x and y respectively
with MXx Nnk(U)=. Let g=Eg(xm) and h= Eg(xn). Then by (2) of (2.4),
g '(0, ) is dense in p(M) and h™'(0, ) is dense in g(N) where p and q are the
canonical maps of || and |B| onto |F| respectively. Since (x, y) € || % 5 |B|, this
implies that p(M) n g(N) is a non-vacuous open subset of || whence gh # 0. On
the other hand M x N nx(U) = implies that (ya o k)(xn ° k) =0 whence 0=
Es(xmxn) # gh = Ea(xm ) Es#(xn), a contradiction. Thus « is onto.

Now let A and B be open-closed subsets of |&/| and | 8| respectively. Then

my@mg(AXB)= - Eg(xa)Es(xp) dmg
JI#

= Eg(Xaxs° k) dmg
J|F

=| (xaxs°c«x)dm.
U

o

Since x(u) = || X | B|, xaxs° k =x. Wwhere L=k "'(Ax B |od|x4|B|). Hence
m,@mgz(AXB)=mx '(AX B).
The proof of necessity is complete.

Sufficiency follows from the fact that if « is onto and m,®gmg = mxk ™', then

Es(fg)= Es(f)Es(g) by (2.6) for
(for)gon)=fXglalxzla;,  (f€ A, g€ B).

(2.8) Definition. Let ¥ be a subalgebra of % and f, ge % Then f and g are
independent over ¥ if Ex(fg) = Eg(f)Ez(g). The algebras &« and B are independent
over % if f and g are independent over ¥ (fc A, ge RB).

The algebras o and B are disjoint over F if F<= N B and k(U)=|od|x 5|B|
where « is the map u - (ust, u®B): U->|sf|x|B)|.

The definitions coincide with the usual ones.

(2.9) TuEOREM. Let o, B, and F be subalgebras of U. Then:
(1) of and B are independent over ¥ if and only if s and B are independent over
97'; and
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(2) If o and R are independent over F, then A v ¥ and B v F are also independent
over .

Proof. (1) Necessity. Let fe A and g€ B. Then there exists a sequence (f,) =
which converges to f in measure. By choosing a subsequence we may suppose that
(f,) converges to f a.e. Furthermore since f is bounded, we may assume that (f,)
is uniformly bounded. Then Lebesgue’s bounded convergence theorem implies that
Ez(f,) _converges to Ez(f), whence Eg(f,,)Eg(g)—Eg(f,,g) converges to Ex(fg).
Thus & and B are 1ndependent over % (Es = E ). Another application of this
argument shows that A and & are independent over .

The converse is clear.

(2) Let qe o, fe &, and he B. Then

Eg4(gfh)= Eg(gh)f = Es(g)Es(h)f = Es(gf)Es(h).
Thus gf and h are independent over % whence so are };_, g.f; and h where g; € ,
fie# 1=i=n. Since } g,f; is a typical element of &f v %, this shows that Jv &

and 9@ are independent over #. Finally another application of this argument serves
to complete the proof.

(2.10) THEOREM. Let A, B, and F be subalgebras of U with F< A~ B. Then A
and B are independent over F if and only if A B =%, A and B are disjoint over
%, and mx ' = mz@gmg, where «: U~ |st|x || is the canonical map.
Proof. Necessity. By (2.9) o and % are mdependent over .

Since & and % are closed, < s N % = 4. Then

k(U< |d|xq|Bl< |st| x 5|8

But x(U)=|s|x 2|%| by (2.7). Now if ¥ were not equal to ¥, then there would
exist distinct elements g, g, in || with the same image in |%|. Let ae ||, be|%|
with a§=g,, b§=g,. Then (a, b)e | 4| x & |B|\| | % 4 |%| which is a contradiction.
Thus ¥ = N &.

The rest of (2.10) now follows immediately from (2.7).

3. Almost periodicity and discrete spectrum

In this section we begin the study proper of the relation between certain concepts
employed in topological dynamics and ergodic theory. The first of these to be
discussed is almost periodicity (or equicontinuity) and the corresponding ergodic
theory concept of discrete spectrum.

A flow (X, T) is equicontinuous or almost periodic if the family of maps x - xt: X »
X is equicontinuous. It turns out that this is so if and only if C(X) is the uniform
closure of the span of the (continuous) eigenfunctions on X. (A function fe C(X)
is an eigenfunction if span {tf|t € T} is finite dimensional.)

Now an ergodic ‘process’ (X, T, ) has discrete spectrum if L*(X) is spanned in
the Hilbert space sense by the L*-eigenfunctions. (fe L*(X) is an L*-eigenfunction
if span {¢f|te T} is a finite dimensional subspace of L*(X).)

The similarity of the two notions is of course striking but it becomes even more
so if we consider the latter in terms of C(X) where X is the Gelfand space of
L®(X, ). Then C(X)=L®(X) and the two notions of eigenfunction coincide.
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What should discrete spectrum mean in terms of C()? )? Of course it is not
‘reasonable’ to expect C ()~( ) to be the uniform closure of the span of its eigenfunc-
tions. The correct requirement is that it be the J,-closure of the latter. This means
that there is a compact Hausdorff process (Y, T, ») such that the flow (Y, T) is
equicontinuous and L™(X )= L™(Y).

This approach leads directly to (3.10) which is a generalization of the classical
result of Halmos & Von Neumann concerning ergodic processes with discrete
spectrum. (If certain countability assumptions are added, then the isomorphism
above is induced by an ‘isomorphism’ of X onto Y.) Moreover the proof of the
ergodic theory result is deduced directly from the corresponding one in topological
dynamics.

In the course of the proof it is shown (3.9) how one takes account of the topology
on T; (see §0.)

(3.1) Standing notation. In addition to (1.1) it is henceforth assumed that a group
T acts on U in such a way that m is T-invariant and the flow (U, T, m) is ergodic.
Unless specified otherwise T will assumed to be provided with the discrete topology.

Let f€ U and t € T. Then tf will denote that element of % such that (¢f)(x) =f(xt)
(xe U). (tf € U since the map (x, s) > xs: Ux T > U is assumed continuous.)

A subalgebra of of U is a T-subalgebra if it is invariant under T, i.e. tfe oA (te T,
fe d).

The invariance of m implies that m(¢f) =m(f) (te T, fe U).

(3.2) Remarks. (1) Let V be a non-vacuous open subset of U. Then VT is an
open-closed T-invariant subset of U and the ergodicity of m implies that its
characteristic function is constant a.e. m. Since m(V)#0, VI = U. Thus the flow
(U, T) is topologically transitive.

(2) Let & be a T-subalgebra of 4. Then & and o are also T-subalgebras of 4.
Moreover R( ) (see (1.5)) is a closed T-invariant equivalence relation on U, whence
T induces an action on || such that the canonical map U - || is a flow epimor-
phism, m is T-invariant and (|}, T, m,) is ergodic. It now follows from (1) above
that (||, T) is topologically transitive. Consequently if in addition || is metrizable,
the flow (||, T) is point transitive; i.e. there exists x € |«f| with xT = |&|.

(3) Let of be a T-subalgebra of %. Then the invariance of m implies that
Ey(tf)=tEq(f) (teT, fe A). .

(4) If the algebras ¢, B of theorem (2.3) are T-invariant, then the map A : |¢|~>
M(|@|) is a relatively invariant measure (RIM) i.e. A,, = A,t where (A, 2)(f) = A, (1),
(fe B, teT ye|d).

(3.3) Definition. Let f e U. Then f is almost periodic if fT is J,-compact.
(3.4) THEOREM. Let € be the set of almost periodic functions. Then:

(1) & is a uniformly closed T-subalgebra of U, and
(2) (18|, T) is a compact, minimal, equicontinuous flow.

Proof. The only non-standard item of (3.4) is the minimality of (€|, T). To see this
set x=y(R) if ye xT (x, y €|%|). Then the equicontinuity of T implies that R is a
closed invariant equivalence relation on ||. If |%| were not minimal, | €|/ R would
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not reduce to a point, and so would admit a non-constant continuous real valued
function f. Then f composed with the canonical map from || onto |%|/R would
a non-constant continuous invariant function contradicting the ergodicity of
(|, T, mq).

For the rest of (3.4) see [4] for example.
(3.5) Definition. Let fe 9. Then V(f) will denote the subspace of U generated by
{tf|te T} and eig (%) = {f]|dim ¥'(f) <oo}. (Thus eig (%) is just the set of eigenfunc-
tions in ..)

Let of be a T-subalgebra of % Then & has discrete spectrum if A=
clsg_ span {eig (%) N &}. (This coincides with the usual definition.)

(3.6) Remarks. Let & be the set of almost periodic functions. Then it follows from
(3.4) that the enveloping semigroup E = E(|%|, T) is a compact topological group
containing T as a dense subgroup and that (|¢|, T)=(E/H, T) for some closed
subgroup H of E. This in turn implies that & is the uniform closure of span {eig (%)}.

(3.7) THEOREM. Let of be a T-subalgebra of U with discrete spectrum and B = s €.
Then B is a uniformly closed T-subalgebra of U such that B = o and (|B], T) is a
minimal equicontinuous flow.

Proof. Since eig (%) < % ((3.6)), & = o by (3.5). Since B< &, (B, T) is a homo-
morphic image of (|€|, T) whence it is minimal and equicontinuous by (3.4).

(3.8) Definition. Let V" be a T-invariant subspace of %. Then f>tf: V>V is a
linear map (¢t T) and thus T is represented as a set of linear maps of ¥ into 7.
This allows one to define various natural toplogies on T which all coincide when
¥ is finite dimensional. In this case the topology induced on T will be denoted (7).

(3.9) THEOREM. Let o be a T-subalgebra of U with & = s and T a topology on T
such that T 2 (V' (f)) for all f€ U with dim V'(f) finite. Then the canonical map
¢: (T, T)> E(|4 ~ &|) is continuous, and if moreover I is compact, then ¢ is an
epimorphism with T/ker ¢ isomorphic to E (| ~ €|).

Proof. Let (t,) be a net in T which converges to t€ T with respect to J and let
x € U. Then to demonstrate the continuity of ¢ it suffices to show that

lim f(xt,) =f(x) (fednE). (*)

Let B ={fe o n &|(*) holds}. Then B is clearly a uniformly closed T-subalgebra
which by assumption contains {fe o N &€|dim ¥(f) finite}. Since the uniform
closures of the span of the latter is all of A " &, B=oA N &.

The rest of (3.9) is straightforward.

(3.10) CoroLLARY (von Neumann, Halmos, Mackey). Let (X, u) be a standard
Borel space, T a second countable locally compact topological group, [1: X X T> X a
Borel map which defines an ergodic action of T on X with discrete spectrum. Then there
exists a compact topological group G, a closed subgroup H of G, a representation of
T as a dense subgroup of G and a Borel isomorphism of (G/H, T, ) onto (X, T, u)
where A is Haar measure on G.
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Proof. If we take U = L™(X, u) =, then the assumptions on Il imply that the
topology on T satisfies the condition of (3.9). Consequently L*(X, T, u)=
L*(G/H, T, ) where G = E(|€|) and H is a closed subgroup of G. Theorem (3.10)
now follows from Mackey’s point realization theorem [9].

4. Bitransformation groups and cocycles

Before studying the notion of generalized discrete spectrum in this general context
it is convenient to extent the results of Mackey and Zimmer on minimal cocycles [10].
The basic result is (4.6) which is the relativized version of the theorem that a
measurable eigenfunction is continuous.
(4.1) Definition. A bitransformation group is a triple (G, X, T) where (G, X} and
(X, T) are two flows with the same phase space X and phase groups G and T
respectively such that (gx)t=g(xt), (xe X, g€ G, te T). Notice that in this case
the product Gx T acts on X via the map (x, g, t)>g 'xt: X xGxT->X.
(4.2) Standing assumptions. In addition to the assumptions made in § 3 the following
will be in force throughout this section.
(1) (G, X, T)will denote a bitransformation group such that G and X are compact
Hausdorff and G acts freely on X.
(2) The quotient transformation group (X/G, T) will be denoted (Y, T) and it
is assumed that Y is of the form |%| for some T-subalgebra % of U with = %.
(3) u will denote the Haar lift of m to X and X the Gelfand space of L™(X, u).
(4) The canonical map of X onto Y = X/G will be denoted by II.

(4.3) Remarks. (1) Let fe C(X), A the Haar measure on G, and f(x)=
o flgx) da(g), (xe X). Since f(gx)=f(x) (g€ G, xe X), it induces an element f
of C(Y). Then u(f) is defined to be m(fy).

The measure w is invariant under both G and T. It is ergodic with respect to the
action of G x T, but need not be with respect to the action of T.
(4.4) Definition. A process (Z, T, v) is a flow (Z, T) together with a T-invariant
Borel probability measure v. A homomorphism of the process ( Z, T, v) into the process
(W, T, y) is a homomorphism h of the flow (Z, T) into the flow (W, T) such that
v(A)=v(h'(A)) for all Borel subsets A of W.

(4.5) LeMMA. Let (Z, T, v) be a process with compact Hausdorff phase space Z and
supported measure v, and h a homomorphism of (Z, T, v) onto (Y, T, m) such that
the induced map h*: L™(Y)~-> L™(Z) is also onto. Then h is an isomorphism.

Proof. Let fe C(Z). Since every L™-function on Y is equal almost everywhere to
a continuous one, the assumption that h* is onto implies that there exists g€ C(Y)
with go h=f (a.e. v). Since v is supported and both f and ge h are continuous,
goh=f Thus the map of C(Y) into C(Z) induced by h is onto whence h is
one-one. The proof is completed.

(4.6) THEOREM. Letf € C(X) be such that dim span { fa | a € G} <co. Thenfe C(X).

Remarks. (1) Here (fa)(x)=f(ax) (a€ G, xeX) and C(X) is identified with a
subalgebra of C(X) via the canonical map of X onto X.
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(2) If we take T = e and X = G, then we get the classical result that a measurable
eigenfunction is continuous.

(3) Notice that dim span {tfa|a € G} <0 (te T).
The assumption of (4.6) is carried over to the following lemmas upon which its
proof is based.

(4.6.1) LEMMA. Let o be the uniformly closed T-subalgebra of c(X) generated by
{fa|lae G}u C(X). Then o is invariant under GxT and the map (a,x)-> ¢
ax: Gx|d|> || is continuous.

Proof. By definition & is invariant under T. Its invariance under G X T now follows
from the invariance of {fa|a e G}u C(X) under G.

To prove ¢ continuous it suffices to show that it is unilaterally continuous, [3].
Let (a,) be a net in G which converges to aeG, xe|d|, and B=
{he o |h(a,x)~> h(ax)}. Then it is not hard to see that & is a uniformly closed
T-invariant algebra containing {fa|a e G}u C(X). Hence B =4 and so the
map a > ax: G~ || is continuous (x € |s4|). Since x > ax:|f|-> || is continuous
(@ € G), the proof is completed.

The proof of the next lemma is standard and so will be omitted.

(4.6.2) LEMMA. Let (G, W, v) be a process with compact acting group G, compact

Hausdorff space W and Borel probability measure v. Then the canonical map I1: W >

W/ G induces a monomorphism [1*: L*( W/ G, n) - L*(W, v) with
imll*={h|h=ha (ae v)(acG))}

(Here n=vII"".)

Proof of (4.6). Let o be as in lemma (4.6.1). Then the diagram:

| - X

1]

Py

|4|/G —> Y=X/G
is commutative where II, p, II; are the canonical maps and p, is induced by p
Passing to L? yields the commutative diagram:

p*

(o)) «— L¥(X)

e

() G) < 1Y)

Now let fe L*(||/G). Then II*(f) is G-invariant. Since &< C(X), p* is an
isomorphism onto. Hence there exists a G-invariant element h of L*(X) with
p*(h)=II*(f). By lemma (4.6.2) there exists ge L*(Y) with I1¥(g)=h. Then
M*p¥(g) = p*M1¥(g) = p*h =I1*f, whence by lemma (4.6.2) p¥(g)=/f Thus pf is
onto and so by (4.5) p, is an isomorphism.

Now let z,, z, € || with p(z;) = p(z,). Then p,(Tlz;) = I1,p(z)) =1, p(z;) = py(112,)
whence IIz,=IIz,. This implies that z,=az,, for some ae G. Consequently
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ap(z,) = plaz,) = p(z,) = p(z,) = p(z,) whence a = e since G acts freely on X. Thus
z, = z, which means that p is one-one; i.e. & = C(X). The proof is completed.

(4.7) THEOREM. Let f be a T-invariant element of C(X) with dim span {fa | e G}
finite, D the T-subalgebra of C(X) generated by {fa|a € G}, ¢ : X > |D| the canonical
map, d€|D|, Z= ¢ '(d), and H={a € G|ad = d}. Then:

(1) @ is a G x T-invariant subalgebra of C(X) and ¢ is a G X T-epimorphism.

(2) Gd =|9| i.e. G acts transitively on |9)|.

(3) aZnZ#0 ifand only if a € H.

(4) Z is closed and T-invariant.

(5) (H, Z, T) is a bitransformation group.

(6) Il(z,) =II(z,) if and only if z, € Hz, (z,, z,€ Z) where I1: X - Y is the canonical
map.

Proof. (1) This follows from the definition of &.

(2) Sincetfa =fa (te T, a € G),all the elements of & are T-invariant. This implies
that T acts trivially on |9|. Hence (G, |9|) is minimal and (2) follows from the
compactness of G.

(3) Letae G,ze aZ nZ. Then z= au forsome u € Z and ad = ap(u) = ¢(au) =
¢(z)=d, whence a € H. On the other hand if a ¢ H then aze Z (z€ Z).

(4) and (5) are evident.

(6) Let z,, z,€ Z Then II(z,) =II(z,) if and only if z, = az,, for some a € G. But
then @ € H by (3).

(4.8) Definition. Let (W, T) be a flow and G a topological group. A cocycle on W
to G is a continuous function o: Wx T - G such that
o(x, ts)=o(x, t)o(xt,s) and o(x, e)=e,

(xe W, t,s5eT).

Two cocycles o, n on W to G are cohomologous if there exists a homeomorphism
¢: W= W such that

p(w)a(w, t)=n(w, )o(wt)  (we W teT).

Let o be a cocycle on (W, T) to G. Then the maps (8, a, w)> (Ba, w):GXGx W
Gx Wand (a, w, t) > (ac(w, t), wt): GX WX T-> G x W define a bitransformation
group structure on G X W which is denoted (G, G x, W, T). The projection Gx W >
W induces an isomorphism of (G X, W/G, T) onto (W, T).

(4.9) THEOREM. There exists a cocycle o on Y to G such that (G, X, T) is isomorphic
to (G, Gx,Y, T) via an isomorphism which induces the identity on Y. Any two such
cocycles are cohomologous.

Proof. Let I1: X > Y be the canonical map. Then there exists a continuous map
8:Y-> X with y=II(8(y)) (y€ Y) [6]. Define o by the equations:

a(y, )é(y,t)=8(y)t (yeY,teT)
and

o(a,y)=ad(y) (aeG,yeY).
Then it is standard that ¢ is a homeomorphism of G X Y onto X. Also

¢(B(a,y))=¢(Ba,y)=ad(y)=Be(a, y),
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and

e((e, y)t) = p(ao(y, 1), yt) = ao(y, )8(yt) = ad(y)t = ¢(a, y)t
(a, BE G, ye Y, te T) shows that ¢ is a bitransformation group isomorphism of
(Gx,Y,T)onto (X, T).

Finally [l (a, y) =II(a8(y)) I18(y) =y (a € G, y € Y) implies that ¢ induces the
identity on Y.

Now let ¥ be a cocycle on Y to G and ¢ an isomorphism of (G, G, Y, T) onto
(X, T) such that [I(£(a, y))=y (e € G, ye Y). Set o(y) = £(e, y). Then llp(y)=y
and y(y, He(yt) = (y)t(ye Y, te T).Sincello(y) =y =I18(y) (y € Y), there exists
a function f: Y > G with ¢(y) =f(y)8(y) (y€ Y). Since G acts freely on X and
@, 8 are continuous, so is f. Then

(3 07 e (1)t = @(y1) = f(y1)8(yt) = f(yt)o(y, 1) ' 8(y)1,
whence
Y 7 ) =fe(y, )™ (yeY,teT)
so that o and 8 are cohomologous. The proof is complete.

(4.10) Definition. Let H be a closed subgroup of G. Then a reduction of G to H is
a subflow (H, Z, T) of (G, X, T) such that Z is a closed subset of X and the
canonical map Il induces an isomorphism of (Z/H, T) onto (Y, T). The flow
(G, X, T) is irreducible if G cannot be reduced to any proper subgroup.

Notice that in this case, aZ ~Z # J if and only if a € H.

(4.11) LEMMA. Let v be a T-invariant probability measure on X with vI1~' = m. Then
v=yp if and only if av=v (a € G).

Proof. Necessity is clear. To prove sufﬁciency let fe C(X). Set F(a, x)=f(ax)
(e G, xe X). Then Fe C(Gx X) and so by Fubini’s theorem

I=J j F(a, x) dv(x) d/\(a)=J’ I Fla, x) d\{(a) dv(x)=1J,
G Jx xJG

where A is Haar measure on G.
Since av =y,

J'x F(a, x) dv(x)= fo(ax) dv(x) =J f(x) dv(x) (a e G)
whence I =, f(x) dv(x). The map
x—>J‘ F(a, x) d/\(a)=j flax) dA(a)

G

is continuous and invariant under G whence

J=J Jf(ax)dk(a)dvﬂ_l(x)=J Jf(ax) dA(a) dm(x)

= Lf(X) du(x).

The proof is complete.
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(4.12) TueorReM. The following are pairwise equivalent:

(1) (G, X, T) is irreducible.

(2) p is T-ergodic.

(3) M(X)={u} where M(X) is the set of T-invariant probability measures v on
X with vITI ' =m.

Proof. (1) implies (2). If u were not ergodic the G invariant subspace ¥ =
{fe Ly(X)|tf =f a.e. (te T)} of L,(X) would contain non-constant functions. Since
G is compact there would be a non-constant f in # with dim span {fa | € G} <.
By (4.7) there would then be a non-trivial reduction of G thus contradicting (1).

(2) implies (3). Let € M(X). Then {5 (av) dA(a) is a G-invariant element of
M(X). Hence u = (av) dA(a) by (4.11). Since (2) implies that u is an extreme
point of M(X) and u € cnv (Gv), u € Gv. Consequently u = ».

(3) implies (1). Let (H, Z, T) be a reduction of (G, X, T) with H # G. Let w be
the Haar lift of m to Z and set v(A) = w(An Z) for all Borel subsets A of X. Then
ve M(X) with v # u which contradicts (3).

(4.13) THeEOREM. There exists an irreducible subflow (H, Z, T) of (G, X, T) such that:
(1) {aZ|a € G} is a partition of X; and
(2) if (E, W, T) is an irreducible subflow of (G, X, T), then W=aZ and K =
aHa ™" for some a € G.

Proof. Let & be the collection of subflows (L, N, T) of (G, X, T) such that (L, N, T)
is a reduction of G to L. For (L, N,,T), (L,, N,, T)e &€ set (L,,N,, T)=<
(L,, N,, T) if Lyc L, and N, N,. Then it is straightforward that (&, <) is
inductive, whence by Zorn’s lemma there exists a minimal element (H, Z, T) in &.
Then (H, Z, T) is clearly irreducible and (1) follows from the fact that aZ " Z # &
if and only if @ € H.

(2) Let (E, W, T) be an irreducible reduction of (G, X, T). Then by (4.12) the
Haar lifts w, v of m to Z and W respectively are T-ergodic probability measures
on those spaces. Then w, ¥ may be viewed as elements of M(X) and as such remain
T-ergodic.

Now u =IG (aw) dA(a) :IG (av) dA(a) implies that Gv = G since M(X) is a
simplex [8]. Consequently there exists @ € G with av = w. Then

1=v(Z)=(a"'0)NZ)=w(aZ)
whence w(aZ n W) =1. Since W\aZ ~ W is an open T-invariant subset of W with
o(W\aZ ~ W) =0 and w is supported, W\aZ n W= and so W< aZ. A similar
argument shows that «Z = W; whence W = aZ.

Finally Be K if and only if BWN W#J and ye H if and only if yZNZ#
together with W = aZ imply that K = aHa ™. The proof is completed.

(4.14) Definition. Let o be a cocycle on Y to G. Then G(o) will denote the set of
closed subgroups {aHa'|a € G} such that (H, Z, T) is an irreducible reduction of
(G,Gx,Y, T). The cocycle o is minimal if there exists K € G(o) such that
oy, )eK (ye Y, teT).
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(4.15) THEOREM. Let o be a cocycle on Y to G. Then there exists a minimal cocycle
8 on Y to G with 6 and o cohomologous.

Proof. By (4.13) there exists an irreducible subflow (H,Z T) of the flow
(G, Gx,Y, T). As in (4.9) there exists a continuous section p: Y > Z < X, Then the
induced cocycle 8: Y x T > G defined by the equation

sy, p(y)=p(y)t (yeY,teT)
takes its values in H and p and o are cohomologous by (4.9).

(4.16) THEOREM. Let (E, T) be a flow, ¢:(X, T)>(E, T) ¢:(E, T)> (Y, T) epi-
morphisms with [1=¢@oy; (W, T) a subflow of (E, T), v. a supported, ergodic,
T-invariant measure on W with m = v~ and suppose that the set M of T-invariant
probability measures y on X with yo ' = v is non-empty. Then there exists an irreducible
subflow (H, Z, T) of (G, X, T) such that ¢(Z)= W and v = we ' where w is the Haar
lift of m to Z.

Proof. Since M is compact and convex, there exists an extreme point o of M. It is
immediate that @ is an extreme point in the set of probability measures on X. Hence
w is ergodic.

Let (K, N, T) be an irreducible subflow of (G, X, T) and p the Haar lift of m to
N. Then p and o are both T-ergodic lifts of m to X whence w = ap for some a € G
(see proof of (2) of (4.13)). Consequently w is the Haar lift of m to the irreducible
flow (H, Z, T) where Z=a(N) and H=aKa .

Now ¢(Z) is a closed T-invariant subset of Y such that

v(Y(Z) =0y~ (Y(2))=1.

Hence W< ¢(Z) since W=supp ».
On the other hand ¢ '(W) is a closed T-invariant subset of X with

oY (W) =v(W)=1.

Hence Z < ¢~} (W).
Thus W= ¢(Z) and the proof is complete.

S. Relatively discrete spectrum

In this section the results of § 3 are ‘relativized’. The idea of relativizing notions
arose in topological dynamics as a result of attempts to generalize Furstenberg’s
structure theorem for minimal distal flows. In place of almost periodic flows one
was lead to consider almost periodic extensions (X, T) of a given flow, (Y, T). The
latter are so defined that they reduce to the former when Y is the trivial one point
flow.

The fundamental result is: let (X, T) be a minimal almost periodic extension of
(Y, T) then there exists a bitransformation group (G, Z, T) and a closed subgroup
H of G such that G is compact, (Z, T) minimal, (Z/G, T)=(Y, T)and(Z/H, T)=
(X, T).

This section addresses the problem of translating this result into the ergodic theory
framework. To this end it is first necessary to come up with the ergodic theoretic
counterpart of an almost periodic extension. Zimmer [10] does this in the context
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of standard Borel spaces with the notion of relatively discrete spectrum and he
proves a result analogous to the fundamental one quoted above.

If one examines his definition one sees that it is equivalent to the following: let
¢:(X, T,u)~>(Y, T, v) be an epimorphism of ergodic flows with »=ue !, then
(X, T, u) has relatively discrete spectrum over (Y, T, v) if there exist a family (.#;)
of subspaces of L*(X) such that L*(X) is the Hilbert space sum of the .#; and each
M; is T-invariant and finitely generated as a module over ¢*(L*(Y)).

Under these conditions Zimmer [10, theorem 4.3] proves that there exists a
compact group K, a closed subgroup H of K and a minimal cocycle a: Y X T> K
such that X is essentially isomorphic as an extension of Y to K/H X,Y.

In our context the assumptions on the family () amount to requiring that its

union generate L*°(X) as a 9,,-closed, T-invariant conjugated closed algebra. The
principal result of this section ((5.36) below) is a structure theorem analogous to
Zimmer’s with X and Y replaced by compact Hausdorff spaces (X, ji)( Y, 7)
respectively such that L°(X)= L®(X), L°(Y)=L>(Y).
(5.1) Notation. Throughout this section the following notation will be in force: ¥
afixed T-invariant subalgebra of % with % = % and |#|= Y,I1: U > Y the canonical
map, f, the restriction of f to [I7'(y) (fe %, ye Y), U,={f,|fe U} (yeY), U the
disjoint union +{, |ye Y}, k: U~ Y, the canonical map.

The sup norm on % induces a norm, | |/, on %, which makes it a Banach
space (y€ Y). A topology J is defined on U by specifying that We J if given
a € W there exists fe U, and ¢ >0 with e e (f, e)={g ||[f-gll<e}l= W.

The following remarks are standard (see e.g. [7]) and so the proofs will be omitted.
(Recall that the map II is open.)

(5.2) Remarks. (1) J is a topology on 4.

(2) The inclusion map (%, | , ||,) > (%, ) is a homeomorphism into.

(3) The map (a,B)=>a+B:UXyU->U is continuous, where Ux,U=
{(a, B)lk(a) = k(B)}= Ux U.

(4) The maps (¢, a)> ca:CxX U~ U and a - ||a||: ¥ > R are continuous.

(5) The canonical map «: % - Y is both continuous and open.

(5.3) Definition. Let & < U. Then £, ={f,|fe A} < U, and & =+, < U. Let T#
Nc Y.ThenT(N, o) ={o|o: N> o is continuous and ko (y) =y (ye N)}. If fe U
then oy will denote the map y->f,: Y > U (fe %). Notice that o, (Y, %).

(5.4) THEOREM. Let N be a non-vacuous subset of Y and o e '( N, U). Then the map
x - po{(IIx)(x): II"}(N) > C is continuous.
Proof. Let y =II(x) e N and £>0. Let fe U with o(y) =f,. Choose K a neighbour-
hood of y with (K n N)< (f, £/2) and W a neighbourhood of x with II(W)< K
and |f(w)—f(x)|<e/2 (we W). Let we WAII"Y(N), u=II(w)e N, and o(u) =g,
for some g€ 4. Then ||g—f]| < &/2 implies that
[F(w) = F(x)| = |o(TIw)(w) — o (T1x)(x)|

=|gu(w) = £,(0)] = |g(w) - f(x)|

=|g(w) = f(W)|+|f(w) = f(x)]

<eg/2+e/2==¢.
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(5.5) CoroLLARY. Let N be a non-vacuous closed subset of Y, 54 a uniformly closed,
conjugate closed subalgebra of U containing %, and o€ '(N, &). Then there exists
fed with o =0y
Proof. Let F(x)=oc(lx)(x) (xeII"'(N)). Then by (5.4) F is continuous.

Now let u, ve [I"Y(N) with f(u)=f(v) (fe «). Then II(u) =II(v) = y for some
ye€ Y since ¥ < 4. Hence

F(u)=g,(u)=g(u)=g(v)=g,(v)

where g e o with o(y) = g,. Consequently F=f|N for some fe & by the Stone-
Weierstrass theorem. Thus

a;(y)(x) = f,(x) = f(x) = F(x) = o(Ilx)(x) = o(y)(x)
(y€ N, xeIl"'(y)). The proof is complete.
(5.6) Definition. The action of T on 4. It is immediate that
(a,1)»at=(t""1),: UXT>U
is a well defined action of T on % where y = k(a) and fe U with a = f,. Moreover
the map a - at: U, > %, is an isometry (ye Y, te T).
(5.7) Definition. For f, gc U and ye Y set

(flg)y=Eg(f§)(y)=J fedr, = J £, dA,,

Here A, is the measure on U induced by the linear functional h > (Egh)(y): U > C.
(The last equality follows from the fact that supp A, <I17'(y) (y € Y).)

The following remarks follow from the definitions and the results of § 2.
(5.8) Remarks. (1) The map (f,, g,) > (flg)y : U, x U, C defines an inner product
(yeY).

(2) (a|B),=(at|Bt),(a,BeU,, te T).

(3) The map y-(f|g),: Y~C is continuous (f, ge %).
(5.9) Standing assumption. Throughout the rest of this section . will denote a subset
of U such that: (i) F< M, (ii)) g+he M (g he M), (iil) fge M (fe F, ge M) (iv)
there exist g',..., g“e M such that Fg'+ - - - + Fg* =M, (v) tM = M (t € T). State-
ments (i) through (iv) say that / is a finitely generated %-module and (v) that it
is T-invariant. Such a set will be called a finitely generated T-F module.
(5.10) THEOREM. The set M, ={g,|ge M} is a subspace of U, with dim M, <k
(yeY).
Proof. That #, is a subspace of %, (y € Y) follows immediately from (i) and (iii)
of (5.9).

Now let g e 4. Then by (iv) of (5.9) g=f'g'+ - - - +f*g* forsome f',..., ff e &
Hence g, =f,g,+ -+ - +f5gheCgi+ - - +€gh(ye Y).

Henceforth r will denote max {dim 4, |y e Y}.
(5.11) THEOREM. (1) For (ye Y, te T) dim M, =dim 4 ,, and

(2) the set L={y|dim M, =r} is an open, dense, T-invariant subset of Y.
Proof. (1) Since M is T-invariant, the map a > at: % > U induces an isomorphism
of M, onto M,
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(2) Let yeL, h',...,h"eM such that h;,...,h} are independent. Then
det ((h'|')z) # 0 for all z in some neighbourhood N of y. Consequently dim 4, = r
(ze N) and so L is open. It is T-invariant by (1) whence L= Y since Y is ergodic
and L is both open and closed. (Recall that Y is extremely disconnected.)

(5.12) THEOREM. There exists an open dense subset K of Yand oy, ..., 0, T(K, M)
such that (o,(y)|o;(y)), =8, (ye Y).

Proof. Let L be as in (5.11). Then the Gram-Schmidt orthonormalization process
shows that for each ye Y there exists a neighbourhood N of y and p',...,p €
[(N, #) with (p'(2)|p’(2)),=8; (ze N). An application of Zorn’s lemma now
gives (5.12).

(5.13) THEOREM. Let K, oy, ..., 0, be asin (5.12), S=I"'(K), y:8S->C", ¢:S>R
such that ¢(x) = (o Il{x)(x), ..., o Il{x)(x)) and ¢(x)=||¢(x)| (x€ S). Then ¢ is
a constant not equal to zero.

Proof. By (5.4) ¢ is continuous, whence so is ¢. Now let x, xt€ S, y =Ilx. Then

o:(y)(1)= ¥ Al(y, oi(yt) (*)
j=1
(1=i=<r) with (A’) unitary since the map ¢: U, > U,, preserves the inner product.

Now by (5.5) there exist g',...,g"€ U such that o,(y)=g) and o;(yt)=g},
(1=i=<r). Then ¢(x)=(g'(x),..., g"(x)) and ¢(xt) =(g'(xt),..., g"(xt)) and (*)
becomes

(t¥1gi)yr = Z A{(ya t)g{vt
J

whence g'(x) =Y, A/(y, t)g’ (xt) and so ¢ (x) = |¢(x)[| = [|¥(x1)]| = ¢ (xt) since (A))
is unitary.

Thus t¢ = ¢ on S St~ Since m(S) =my(K)=1, m(Snst™') =1 whence to = ¢
(a.e. m(te T)). The ergodicity of m now implies that ¢ is a constant. This constant
cannot be zero since o,(y), ..., o,(y) is a basis for #,(y € K).

(5.14) THEOREM. With the same notation as in (5.12) there exist g*, ..., g" € U such
thatgi=o, (1<i<r, yeK).

Proof. By (5.13) there exists ¢>>0 such that ¢/(x) = (o,(IIx(x), ..., o (IIx)(x)) is a
continuous map of the dense open subset S of U into the sphere of radius c in C".
Since the latter is compact there is a continuous extension ¢ of ¢ to all of U [2].
The r components, g',..., g" of  then satisfy the relation g}, =0,(y) (I1=i=<r,
ye K).

(5.15) TueoREM. Let g',..., g", h',..., h" € U be such that (g}|g})=38;=(h,|h)
(1=i,j=<r, yeY) and span{g,|l=i<r}=M,= span{h,|l<i=<r} forall y in a
dense subset S of Y, and let $=%Fg'+ -+ +Fg’, N=Fh'+ - - - + Fh'. Then (i)
M NnZ, (i) N=2, (iii]) &L is T-invariant.

Proof. (i) Let fe M. Then £, =Y., clg, (y€ S) whence
f(x)=F c™(x)g'(x) (xeII™'(S)). (*)
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Since ¢™(x) = (fux|ghx)(x) is continuous and 1~ l(S) is dense (recall that II is
open), (*) holds for all xe U, whence fe Fg'+ - - - + Fg' =% Similarly fe .
(ii) If fe X, the argument given above shows that fe %. Similarly £ < .
(iii) Let fe &, te T. Then (¢f), =(f,)t"', (ye Y), and if ye Sn St7,

Lt =Mt =M, =2,
whence (tf), =Y, d’g} and one proceeds as before to show that tf € &.

(5.16) Remarks. (1) Theorems (5.14) and (5.15) show that there is a well defined
T-invariant, #-submodule, M of U such that # < M and there exist g, ....,8'¢€ M
with (g}|g}) = 8, and M,=spanigl,...,g}} (1=ij=<r, yeY).

(2) If o is a T-invariant, conjugate closed subalgebra of % with # < o and
A =, then M < . (To see this observe that all the results go through with %
replaced by «.)

(5.17) Definition. The goal is now to construct an almost periodic extension of Y
using the module, M. (Compare chapter 17 of [3].)

To thisend set X, ={x|x: C" > M, an isometry}, X the disjoint union, +HX,|ye Y}
and p: X - Y the canonical map.

Lette T, x€ X,. Since o > at: M -> ./tty, is an isometry the composite map xt(v) =
x(v)t (veC’) is in X,,, and the map (x, t)> xt: X x T—> X defines an action of T
on X.

Let G be the unitary group, U(r). Then the map (a, x) > ax: Gx X » X defines
a free action of G on X. Here (ax)(v)=x(a"'(v) (xe X, a€ G, veC").

Moreover the action of G commutes with that of T so that (G, X, T) is a
bitransformation group.

For gejt, veC’ let (g, v): X > C be such that

(g )(x) = (x(0) | go(x))px)-

Finally let I be the smallest topology on X making the maps (g, v) and x - f(p(x)):
X > C continuous (ge M, veC’, fe F).

(5.18) TuEOREM. (1) The topology T is Hausdorff.
(2) The map p: X - Y is continuous.
(3) The map y~“e,: Y - X is continuous, where e, is the linear map of C’ into X,
which maps the canonical basis vector e; of C" onto g (1=i=<sr).
(4) The map (a x)—) ax: G x X > X is continuous.
(5) The map (x,t) » ®xt: X x T > X is continuous.
(6) (X, 9) is compact.
Proof. (1) The set {(g, v)|ge M, ve C'}u{fep|fe &} separates points of X.
(2) The maps {f°p|fe F= C(Y)} are continuous.
(3) Let fe % Then (fo p)e o =f which is continuous.
Now let ge M, veC". Then v="Y v'e; whence

(g v)ea)¥)=(a(y)(v)|g) =Y v'(g'|g),
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Then (g, v) e ¢ is continuous and so o is continuous by the definition of 7.
(4) Let fe % Then

feopeL(a, x)=f(p(ax)) = f(p(x)).
Hence fo p o L is continuous.
Let ge M, veC". Then

(g, V)(L(a, x)) =(g, v)(ax) = (x(a™"'v) | gyx)
=Y a'(a, v)(x(€)|g,o) =X a'(, v)g] e)(x),

where a 'v=Y,;a'(a, v)e.

Thus (g, v)° L is continuous. Hence L is continuous.

(5) Let fe %, teT. Then fop(xt)=(tf°p)(x) whence fopo R, is continuous
since tf ¢ %. (Here R,(x)=xt (xe X).)

Let ge jt, veC". Then

(g, v)(xt) = ((xt)(v)[g,e) = (x(v) 1| g,,) = (x(v)|(28),)

(where y = p(x)).

Thus R, is continuous (t€ T). Hence R is continuous since T is discrete.

(6) This follows from (3), (4) and the fact that X = L(G x o(Y)).
(5.19) Notation. For the remainder of this section the following notation will be in
force: S the sphere of radius ¢ = || (x)]| (x € X) (see (5.13)), S XX the orbit space
Sx X/G where a(y, x)=(av, ax) (a€ G, ve S, xe X), and [v, x] the image of
(v, x) under the canonical map of Sx X into Sx5X.

Let T act on Sx X via the map (s, x, 1) > (5, xt): SX X X T> Sx X, Then (G,

Sx X, T) is a bitransformation group and so there is induced an action of T on
SxsX.

(5.20) THEOREM. The map u-,[h(u), oll(u)]: U-> SxsX is a homomorphism,
where h(u) =(g"'(u),..., g (u) (ue U).

Proof. Let ue U, te T and y =II(u). Since o(y)t and o(yt) are both isometries of
C’ onto M,,, there exists B € G with o(yt) e B=c(y)t; i.e. B a(yt)=a(y)t.
If B(e;)) =X -1 B;ie; then this says that 1 'g, =Y ; B¢, whence

g'(w) =2 B;ig'(ur) =7 (B™")yg’ (ur),
(1=i=r). Consequently B8~ '(h(ut), o(yt)) = (h(u), o(y)t) and so
y(ut) =[h(ut), oll(ut)] = [h(ut), o(yt)]
=[h(u), a(y)t]=[h(u), o(y)]t = y(u)t.
The proof is complete.

(5.31) Remark. As in (4.9) the section o gives rise to cocycle 8 on Y X T to G such
that the map (e, y) >, a0(y): Gx Y > X is a bitransformation group isomorphism.
(Recall 8(y, t)a(yt)=0o(y)t (ye Y, te T.) The cocycle 8 may be used to define an
action of T on Sx Y viz:

(0, )t=(8(, ) 'v,y1)  (veS,yeY,teT).
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Denote this flow by S x;Y. Now it is easy to check that the diagram

1xy

SXGXsY —— SxX

1‘0 1}(
S

SXY —— SxX

8 G

is commutative and that f is an isomorphism. Here ¢(v, a,y)=(a'(v),y)
(ve S, ae G, yeY),  is the canonical map and f(v, y)=[v, a(y)] (veS, ye Y).

(5.32) Notation. In addition to the other assumptions made in this section the
following will be in force: & will denote a T-invariant subalgebra of U with
Fcd=44 and M the set of finitely generated T-# submodules # of U with
FoMcd.

(5.33) LeMMA. Let M € M. Then there exists a compact group K, a cocycle non Y x T
to K, a closed subgroup H of K and a T-subalgebra B of s with M < B and |B|
isomorphic to K/H %Y.

Proof. As in (5.31) we shall identify G XzY with X and Sx;Y with $XsX. The
assumptions on & suffice to justify replacing U by || in (5.20). This provides a
homeomorphism y of |<f| into S x, Y.

Let sy be a fixed element of S, ¥ : G X5 Y > S X, Y be such that ¢ (a, y) = (a(s,), ¥)
(e G,yeY), ¢:SXsY > Y be such that ¢(s, y)=y, and W=im v. Then ¢, ¢ are
epimorphisms and ¢ is the projection onto Y.

Now let »=myy . Then v is an ergodic, T-invariant supported measure on W
such that m = v¢ ' (notice that ¢ © y is the canonical map of || onto Y.).

The measure » on W< SX,;Y can be lifted to a T-invariant measure on G X; Y
since the latter is a compact group extension of SX;Y.

The preceding paragraphs verify the conditions of theorem (4.16) with G X5 Y = X,
SXsY = E and the other symbols identical. Lemma (5.3) now follows from (4.16).

(5.34) Remark. With the notation as in (5.33) C(E/H Xx;Y) =R c . In general
C(E X;5Y) need not be contained in &. However by enlarging % if necessary we
may (and do) assume that C(E x,Y)< % for all such group extensions.

(5.35) LEMMA. Let (%;|ie I) be a family of T-subalgebras of U such that |€,| is a
group extension of F (i€ I). Then |\/ €| is also a group extension of .

Proof. Let G; be a compact group, §; a cocycle on Yx T to G;, II;:|%,|~ Y the
canonical map and ¢;:|%;| > G; such that ¢, xII; is an isomorphism of |€;| onto
Gixs Y (iel).

Set G=1II,G; and 8(y, 1)=(8,(y,t)|ieI). Then § is a cocycle on YT to G.
Let k;: U~ |%| (ieI) and x: U~ Y be the canonical maps and ¢: U > G X, Y be
such that ¢(u) = ((gxul|ie I), k(u)) (ue U).

Then it is immediate that ¢ is a homeomorphism, ¢(U) projects onto Y, and
that me ! is a T-invariant ergodic measure supported on ¢(U). Consequently by
the results of § 4, (U) is a compact group extension of Y.
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Since ¢(u)=¢(v) if and only if ki (u)=xk;(v) (iel), e*C(e(U))=V €. The
proof is complete.

(5.36) THEOREM. Let & be the smallest 7, closed T-subalgebra of AU containing
\{ M| M e M} Then there exists a T-subalgebra ¥, a compact group G, a closed
subgroup S of G and a cocycle p on Y x T to G such that |#|=G/Sx Y and £ = 4.

Proof. For each M € M let B( M) be as in (5.33) and €(H) the corresponding group
extension C(E x;Y). Then \/ €(A) is a group extension of Y by (5.35) and it is
immediate that

IV B(M)|=G/S x Y

for some closed subgroup S of G where |V 6(M)|=G X, Y.
Set ¥=V B(M). Then M ¥c Fc oA (Mec M) implies that £ = .
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