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In this work we propose and demonstrate a Fresnel-lens-inspired method to focus multiple
laser-induced shock waves through time-delay superposition at arbitrary locations. While
the principle works for any geometry, we demonstrate that this method already achieves
focusing with two pairs of photoacoustic shock wave emitters located on a line centred
around the acoustic axis (z) in a quasi-two-dimensional liquid geometry. Each emitter pair
is created by focusing one laser pulse simultaneously at two spots with a spatial light
modulator at z = 0 μm with y = ±145 μm and y = ±75 μm. The delays between the
emitters necessary to vary the location of the focus from z ≈ 0 to ∼206 μm are 35 and
0 ns, respectively. We find that the location of constructive superposition is significantly
closer to the origin than what would be expected for linear waves in homogeneous media.
This is confirmed with simulations using an Euler solver that shows the importance
of finite-amplitude effects. The simulated dynamics are in reasonable agreement with
our measurements. Finally, pressure gains at various locations along the acoustic axis
are tested with the response of gaseous microbubbles acting as pressure probes. The
measurements agree with calculated pressure ratios at different positions.

Key words: shock waves, cavitation

1. Introduction

Focusing small-amplitude acoustic waves with an array of transducers is commonly
achieved through time-delay focusing and is termed ‘transmit beamforming’ (Szabo 2014).
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Figure 1. (a) Binary Fresnel zone plate. The experiment considers a two-dimensional analogue in the plane
(yz) where the emitter pairs are created on opposite sides of the z axis. (b) Examples of focusing at different
positions: simultaneous launching (Δt = 0 ns), and other cases with larger Δt resulting in overlap closer to the
origin. (c) Simplified experimental set-up. (d) Geometry of the emitters on the yz plane in the thin liquid gap.

There, time delays added to the signal on each transducer can create a spherical convergent
wave. Varying the delay allows one to move the focus of the wave and use it for acoustic
scanning in diagnostic ultrasound. Focusing of finite-amplitude waves at a fixed location
has been achieved with a single transducer bonded to a spherically shaped surface. Baac
et al. (2012) and Lee et al. (2016) used negative optical lenses covered with a light-absorbing
coating to generate high-numerical-aperture acoustic sources for the generation of shock
waves of several hundred bar. Using arbitrarily shaped surfaces allows one to modify the
focus and even the waveform. Chan, Hies & Ohl (2016) and Melde et al. (2016) demonstrated
that the waveform and location of the focus of acoustic waves can be altered with arbitrarily
shaped surfaces using three-dimensional (3-D) printing. Yet for dynamically focusing
shocks, e.g. for a photoacoustic scanner, the focus location must be variable.

Here we demonstrate time-delay focusing for transient finite-amplitude waves with a
variable focus. For this, cylindrical shock waves are generated along a line with two
pairs of sources centred around the acoustic axis. The shocks are focused at different
spatial locations on the axis by properly timing their launch. We find and explain why
the positions of constructive superposition are very different from those expected for
linear waves travelling in homogeneous media due to the nonlinear interaction between
the shocks.

Transient time-delay focusing can be understood with an analogue to a binary Fresnel
zone plate used in optics. Figure 1(a) shows one of those transmission masks, where the
geometry of annular zones that transmit light is such that there is constructive interference
at a location f on the z axis. For the experiments in two dimensions, we take a linear
cross-section of the mask (yz axis in figure 1a) so that each ring is replaced by a pair of
points where the transient excitation sources are created. However, in contrast to the optical
case, our transient analogue has no restrictions on the position of the emitters because the
constructive superposition is controlled by a time interval Δt between the sources. In a first
realization, two internal (closest to the axis) and two external sources are used. Figure 1(b)
depicts, at the top, the phase front for simultaneous launching Δt = 0 ns (plane wavefront,
focus at infinity if no diffraction); in the middle, internal shocks created a few nanoseconds
after the externals; and at the bottom, the case where the time difference is sufficient so
that the overlap occurs near the origin (close to z = 0 μm). Note that here we assumed
linear superposition of the acoustic transient waves.
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Transient time-delay focusing of shock waves

2. Experimental set-up

To prove the concept, we have built an experiment based partly on previous work
(Quinto-Su & Ando 2013) but the illumination and excitation laser sources are exchanged.
A simplified sketch of the experimental set-up is shown in figure 1(c). The acoustic
transients are generated through photoacoustics (Lyamshev 1981; Wu, Frez & Diebold
2013) and generated by focusing two independent laser pulses (laser 1, laser 2) emitted
from an Nd:YAG laser with two heads (Solo PIV, New Wave) with a wavelength of
532 nm and a pulse duration of 6 ns. Conventionally, the two pulses are exciting the laser
head collinearly, but we adjusted the outputs such that there is a finite angle between the
directions of the two beams. In this way, after expanding both beams with a telescope,
the collimated outputs are spatially separated by approximately 1 cm when they reach the
screen of the spatial light modulator (SLM, not shown). Because each laser pulse fills
half the screen of the SLM, we can control the spatial phase for each of the beams with
a single SLM. The beams are shaped by a two-dimensional (2-D) phase map obtained
with the Gershberg–Saxon algorithm (Gerchberg & Saxton 1972) focusing a single beam
at two positions simultaneously. The laser pulses reflected from the SLM are focused and
collimated with a pair of lenses before they are reflected with a dichroic mirror into the
back aperture of the microscope objective (Olympus 10×, numerical aperture 0.4).

The size of the beams at the back aperture of the microscope objective is approximately
2 mm, which results in a reduced effective numerical aperture of 0.05. Under those
conditions, the diffraction-limited spot size of a focused Gaussian beam is 2w0 ∼ 30 μm.
Here the beam profile is not Gaussian, so the size of the focused spots is larger. In the
numerical model, the size of the focused spots is an initial condition (along with initial
pressure) that is optimized (starting with the size of a Gaussian beam as a lower bound) to
fit the model to the measured individual shock dynamics.

The microscope objective focuses the beams into the container filled with an absorbing
liquid for the laser wavelength (Epson printer ink, T6643 Magenta), which is an aqueous
solution similar in viscosity and density to water. The liquid is bounded by a glass
microscope slide and a thin glass coverslip (no. 1, 0.13–0.16 mm thick). The coverslip faces
the microscope objective and the liquid gap height is approximately 80 μm, determined by
the thickness of double sticky tape. Linear absorption of the focused laser pulses leads to
stress confinement and the generation of an essentially cylindrical longitudinal wave from
each focus.

The geometry of the focused spots is shown in figure 1(d); laser 1 focuses at the two
central spots (y1 = ±75 μm) while laser 2 focuses at the two outer spots (y2 = ±145 μm).
The energy per spot is adjusted to 100 ± 2 μJ so that the shock waves have nearly identical
strength.

While measuring the pressure of the wave due to the experimental constraints is difficult,
we utilize a stable gas bubble as a pressure sensor. This probe bubble is generated with
a low-power continuous-wave (CW, 532 nm) laser heating the absorbing liquid creating a
small gas bubble (radius R0 ∼ 15–30 μm) through local gas supersaturation. The CW laser
beam is inserted into the optical path of the two laser pulses with a polarizing beamsplitter
cube and is focused into the liquid sample through the same microscope objective. The
bubble is placed on the z axis at three positions, z1 = 64 μm, z2 = 146 μm and z3 =
290 μm. The events are imaged stroboscopically with a 6 ns pulse (Orion, New Wave,
λ = 532 nm converted to 690 nm with a dye cell) and a charge-coupled device (CCD)
camera (Sensicam QE, PCO). Other experiments use a 1 μs laser pulse (637 nm, L637G1
Thorlabs) and are simultaneously imaged with a streak camera (SC-10, Optronis) and the
CCD for single-shot collapse time measurements. Both red light sources are transmitted
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through the dichroic mirror of the microscope and focused close to a knife edge (lenses
not shown) for schlieren photography.

Finally, the rather complex timing of all devices is realized with a programmable delay
generator (Berkeley Nucleonics 575-8C).

3. Simulation

When the laser pulses arrive at the liquid sample, at each focused spot an acoustic wave
is generated through stress confinement and a cavitation bubble by superheating the liquid
through linear absorption (Vogel & Venugopalan 2011). The shock wave is released once
the expansion velocity of the vapour bubble reaches the local speed of sound. The vapour
bubble dynamics is not important for the time-delay focusing because the gas–liquid
interface velocity is considerably slower than the shock wave. Thus we use a single phase
model, which is sufficient to model the acoustics of time-delay focusing.

The propagation and interaction between the shock waves is numerically modelled by
employing the Mezcal code (De Colle & Raga 2005). This solver integrates the Euler
equations with an equation of state for water on an adaptive mesh refinement grid (De
Colle et al. 2012). This resolves the shock while keeping computational costs sufficiently
low (Veysset et al. 2018). The employed equation of state (EOS) that relates thermal energy
eth and pressure p is eth = (p + γ p∞)/(γ − 1), with p∞ = 3.07 × 108 Pa and adiabatic
index γ = 7.15 (Shyue 1998). We initialize the density by using the Tait EOS ρ = ρ0[( p +
p∞)/( p0 + p∞)]1/γ , with p0 and ρ0 being the water pressure and density at atmospheric
pressure. This EOS is commonly used to model nearly incompressible flows (Tait 1888).

The simulations are conducted on a 2-D Cartesian grid with size (x, y) =
(−400, 400) μm, with 400 × 400 cells and four levels of refinement, corresponding to
a minimum spatial resolution of 0.125 μm. The domain is initialized with an ambient
pressure of 105 Pa and density of 103 kg m−3 except for the sites of shock wave emission,
where the initial conditions are selected to fit the individual dynamics of the laser-induced
shocks (p1 = 1.5 GPa, radius R1 = 30 μm, ρ1 = 1.32ρ0). Notice that the initial radius
has twice the size of a calculated diffraction-limited spot size for a Gaussian beam. This
is expected because aberrations and a non-Gaussian beam profile increase the size of the
focused spots. The initial value of the pressure is consistent with those of laser-induced
shocks with nanosecond lasers (Quinto-Su & Ando 2013) at energies of the order of
100 μJ.

4. Single pressure source

The experiments are done for the cases of individual shocks (internal/external), individual
emitter pairs (internals/externals) and two pairs with Δt = 0, 15, 25 and 35 ns. The
dynamics are imaged with the 6 ns strobe. For all experimental results involving the four
emitters (two externals, two internals), the outer shock waves are fired first at t = 0 ns,
while the inner shock waves at time t = Δt. We observe only the domain z > 0 μm.

First, we measure the individual shock dynamics as a function of time R1,2(t) (symbols
in figure 2a). The continuous line in the figure is the simulated shock where the initial
conditions (R1 and p1) were adjusted to fit the dynamics of the measured individual shocks.

We observe that the speed of propagation is essentially constant with a speed of
approximately 1700 m s−1. With distance, this will drop to the acoustic speed of
approximately 1500 m s−1, yet the slow decay is due to the effective 2-D geometry where
the shock velocity in the liquid decays as 1/r (Veysset et al. 2018), in contrast with the 3-D
case that scales as 1/r2. Figure 2(b) shows the calculated maximum pressures at different
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Figure 2. (a) Individual shock dynamics. The symbols are the measurements and the continuous line
represents the position of the simulated shock with an initial pressure of 1.5 GPa in a circle of radius 30 μm.
(b) Pressures at different positions for an individual shock (simulated).
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Figure 3. (a) Shock dynamics of the two pairs of emitters with Δt = 15 ns (external pair launched at t = 0 ns).
The first row shows strobe photographs, while the second has the results of the simulation. The scale bar is
100 μm. The size of the individual frames is 413 μm × 556 μm. Overlap starting at 70 ns. Pressure bar in MPa.
(b) Calculated maximum pressure on the axis.

radial distances. As expected, in the range of 0 to 30 μm the maximum values are constant
and equal to p1.

5. Focusing for Δt = 15 ns

In this section we discuss the particular delay of Δt = 15 ns before we explore the
dependence of the focusing for a range of delays between 0 ≤ Δt ≤ 35 ns. The dynamics
for Δt = 15 ns is shown in figure 3(a).

The external shocks are created at t = 0 ns and they reach the high-pressure region for
the internals at t = 15 ns when the internal shocks are created, energizing them. At 30 ns
(first image to the left) the shocks are expanding and the inner shocks are about to converge
at z = 0 μm. Later, at 70 ns, the inner and outer shocks are starting to overlap on the axis.
We observe this overlap for times between 70 and 90 ns. The last frame is at 110 ns, where
the shocks keep expanding. The simulation has reasonable agreement with the experiment.
In the following section we discuss the general differences.
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Figure 4. Shock dynamics of the two pairs of emitters with different delay times. The second row are the
results of the simulations. The scale bar is 100 μm. Frame size of 413 μm × 556 μm. Pressure bar in MPa.
(a) Δt = 0 ns. Overlap starting at 120 ns. (b) Δt = 35 ns. Overlap starting at 60 ns.

Figure 3(b) shows the calculated maximum pressure achieved on the axis (z > 0 μm)
over the full simulation time of 200 ns. The four shocks overlap at z = 108 μm at
68 ns, resulting in the highest pressure. We notice that near the maximum pressure there
are small oscillations that appear due to a numerical artifact. This is produced because
shock-capturing codes usually resolve a shock front with a few (three or four) cells. So, the
pressure computed in each cell is an average over a region where pressures change quickly
as the shock front propagates.

6. Focusing experiment

The results for the limiting cases of Δt = 0 and 35 ns are shown in figure 4. In each case
there is a direct comparison with the simulation.

Figure 4(a) contains the case of Δt = 0 ns, where all the emitters are injected at the
same time. This would be equivalent to creating a planar wavefront. However, we observe
that at 120 ns all the shocks have converged on the axis at z = 214 ± 20 μm.

In the simulation, as the internal and external shocks have equal energies, they expand
initially with the same speed. Thus, the internal shocks arrive at the symmetry axis first.
The interaction of the two internal shocks increases the post-shock pressure, increasing
the speed of the trailing external shocks and eventually resulting in superposition at z ∼
206 μm. As the shocks cool by adiabatic expansion, the pressure drops with z (figure 4a).

The overlap between the shocks gets closer to the axis origin as the time delay increases.
In particular, for Δt = 35 ns (figure 4b), when the internal shocks are launched (at t =

35 ns) they immediately overlap with the externals (50 ns). At 60 ns the shocks converge
on the axis with the other internal/external pair very close to the origin at z ∼ 0 μm.
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Figure 5. (a) Maximum pressures on the axis for single internal/external and pairs. (b) Maximum pressures
on the axis for different delay times. (c) Focus position as a function of delay time. Circles extracted from (b).
The continuous line is the position calculated from the dynamics of individual shocks R(t). Triangles with
horizontal error bars are the measured positions of shock overlap.

Comparing the simulations with the experiments (figures 3 and 4) there are small
discrepancies in the position and in the shape of the shocks. In the simulations the
shock fronts appear to move slightly faster than in the experiment, but qualitatively the
simulation yields similar results to the experiment even when we only consider the liquid
component and a 2-D geometry. During interaction between the shocks, it is possible that
the shock speed in the experiments decays a little faster than in the simulations. Also, in
the simulation, during the first few tens of nanoseconds as the shocks propagate there
is a negative pressure region (rarefaction) behind the shock fronts close to the source
(for example, in the first frames in figures 3 and 4. When a shock reaches the vicinity
of the other source, the tension slows down the shock, changing the shape of the shock
front. In the experiment there is no tension at the location of the sources because of the
expanding laser-induced cavitation bubbles. Overall, the results look very similar, even
with the important differences of not simulating the bubbles and the deformation of the
shock fronts in the simulation due to the negative pressure regions in the vicinity of the
sources. Also, we have to consider that in the experiment the 6 ns exposure introduces
some blurring compared with the instantaneous snapshot of the simulation.

7. Maximum pressures and position of acoustic focus

The calculated maximum pressures achieved on the axis are plotted in figure 5(a,b).
The cases of two emitter pairs and individual shocks (external/internal) are shown in
figure 5(a). As expected, in all cases the highest pressures are reached at the origin
(z = 0 μm). The highest pressures are achieved for the case of two internal shocks in
the range between 0 and 200 μm. However, the pressure decay (as a function of z) for the
two internal shocks is also the fastest. So for z > 200 μm the pressure of the two external
sources is slightly larger due to the slower decay. The individual sources both decay to
similar values for large z.

The maximum pressures for the four emitters are shown in 5(b) for delay times Δt
between 0 and 35 ns in steps of 5 ns. We observe that, for simultaneous release of internal
and external pairs (Δt = 0 ns), the internal shocks overlap first at z = 0 μm where the
maximum pressures are equal to those of the two internal sources (figure 5a); then the
pressures decrease monotonically with increasing z. At z ∼ 160 μm the external shocks
start to catch up, increasing the pressure, with a local maximum achieved at z ∼ 206 μm.
This result is dramatically different from the expected planar wavefront for simultaneous
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launching where the external shocks would stay behind the internals near the axis. This is
due to the nonlinear interaction between the shock waves, which leads to a speed increase
of the external shocks when they interact with the wake of the internal shocks. In the linear
model, on the other hand, the external and internal shock waves travel unperturbed. In the
experiment near z = 0 μm, the effect of the reflections should not be important, because
only the internal shocks contribute to the maximum pressures.

The case of Δt = 5 ns is similar, where shock focusing at large z results in a noticeable
pressure increase that is smaller than the pressure at z = 0 μm. In all the other cases
(Δt > 5 ns) the pressure increase at the acoustic focus are global maxima on the axis.

In general, for delay times Δt between 0 and 20 ns, the maximum pressures before the
acoustic focus are equal to those of the two internal shocks (figure 5a).

In the case of a delay time of 25 ns the pressure at the origin exceeds that of the two
internal sources. For a time delay of 25 ns the maximum pressure at z = 0 μm is close to
1 GPa and has only a moderate increase during superposition. For Δt = 35 ns the shocks
arrive at the origin simultaneously; the maximum pressure is larger than 1 GPa and stays
almost constant in a range between 0 and ∼80 μm, decaying to values that are higher
than or equal to the maxima achieved with the other delay times at their positions of
constructive interference.

The dependence between focal positions and delay times is plotted in figure 5(c). The
symbols (circles) are the results of the simulations (extracted from figure 5b), and the
red triangles are the measured positions of convergence in the experiment; the uncertainty
(horizontal error bars) represents the range of positions where we observe that overlap. The
continuous line is calculated assuming that the shocks travel unperturbed in homogeneous
media and considering the individual shock dynamics R(t) (figure 2a). The squared
distance from each pair to an arbitrary focus on z is d2

i = y2
i + z2, where yi is the

position of the emitters. Each excitation pair eventually converges at the z axis at time
ti(di) = R−1

i (di), where R−1
i (r) = t(r) is the inverse function of Ri(t). Considering that yi

is fixed, then we can just write the time it takes for a shock i (i = 1, 2 internal/external) to
reach z as ti(z). If the external shocks are launched first (t = 0 ns), then the internals have
to start at a later time given by Δt(z) = t2(z) − t1(z). The plot of Δt(z) is the continuous
line in figure 5(c). In the case for Δt = 0 ns, there is no overlap in the 300 μm range that
we explore,and the expected delay time for convergence at z = 0 μm is a little more than
40 ns, in contrast with the simulation and the experimental observations.

8. Pressure measurements

Measuring the pressure in a small liquid domain is a challenge. Variants of background
oriented schlieren imaging have been used to measure laser-induced shocks in a domain
of millimetres with maximum pressures of approximately 2 MPa (Hayasaka et al. 2016).
Here, we compare pressure ratios at three specific locations on the axis zi by measuring the
collapse dynamics of a microscopic gas bubble with high temporal and spatial resolution.
The shock-driven collapse of a bubble is shown in figure 6. The shock fronts reach the
bubble at around t = 70 ns; some of the wave is reflected as a rarefaction wave towards
the left (t = 90 ns) and the bubble starts to shrink. During collapse, that is, between
t = 110 ns and before t = 130 ns, the emission of a shock wave from the bubble is visible.
The bubble re-expands non-spherically, which can be explained by shock-induced jetting
of the bubble (Ohl & Ikink 2003; Supponen et al. 2018).

To determine the bubble dynamics and the collapse time with higher precision and in a
single shot, streak imaging is used. Therefore, we replace the 6 ns laser illumination with a
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Figure 6. Strobe images of shock-induced bubble collapse (Δt = 35 ns). Upon collapse, the bubble emits a
shock wave (t > 110 ns). The scale bar is 100 μm.
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Figure 7. (a) Streak image, slit centred on the axis (z). Vertical scale bar (spatial) is 100 ns, horizontal scale
bar (time) is 100 μm. (b) Blurred CCD images with the 1 μs strobe showing the positions of the sensor bubble;
z1 = 64 μm, z2 = 146 μm and z3 = 290 μm. Scale bar length is 200 μm.

pulsed laser diode that has a pulse width of 1 μs. The events are imaged by both the CCD
(blurred image) and the streak camera. Examples of those images are shown in figure 7,
where the image at the left (figure 7a) is a streak image that we use to measure the collapse
time in a single shot. The slit is the vertical direction in the streak readout image and the
horizontal direction is time. The width of the streak image is 1 μs. Figure 7(b) shows the
three positions of the jetting sensor bubble (zi = 64, 146, 290 μm).

9. Collapse times

The interaction between a bubble and a shock wave has been studied extensively with
simulations (Kapahi, Hsiao & Chahine 2015). Ignoring the shock reflection and for
sufficiently long exposure to the pressure, the bubble collapse resembles the classical 3-D
Rayleigh collapse TRC (Rayleigh 1917):

TRC = 0.915R0

√
ρ

PA
, (9.1)

where PA is the difference in pressure between the bubble interior and the surrounding
liquid, R0 is the radius of the probe bubble and ρ is the liquid density.
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Figure 8. (a–c) Plots of (Tc/R0) for different cases. One external/internal and two externals/internals at sensor
bubble positions (a) z1, (b) z2 and (c) z3. (d–f ) Plots of (Tc/R0) for all time delays. Sensor bubble at (d) z1,
(e) z2 and ( f ) z3.

In this experiment the bubbles are smaller than the height of the liquid container
(∼80 μm), so the collapse is neither 2-D nor 3-D. However, the collapse time of
these bubbles are proportional to the 3-D Rayleigh expression (Quinto-Su, Lim & Ohl
2009). Shock-induced collapses have also been shown to be proportional to the Rayleigh
expression R0

√
ρ/P (Kapahi et al. 2015). In this way, we can write the shock-induced

collapse time as

TC = αR0

√
ρ

P
= mR0. (9.2)

The proportionality constant α depends on the strength and duration of the shock and
on the details of the collapse. Bourne & Field (1992) report proportionality constants
with values between 1.17 and 0.62 for pressures in the range between 500 and 3500 MPa,
respectively.

We performed our experiments by placing the sensor bubble at the three positions zi on
the axis and measured the collapse times for different conditions: single external/internal
shock, external/internal pair and the four shocks with different time delays. For each event
we measure the initial radius and the collapse time. We plot the ratios (Tc/R0) as a function
of R0 for each event in figure 8. In this way, for each condition the ratios are centred around
the constant value m.
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i (case)
(TC/R0)i(z1)

(TC/R0)35(z1)

√
P35(z1)

Pi(z1)

(TC/R0)i(z2)

(TC/R0)35(z2)

√
P35(z2)

Pi(z2)

(TC/R0)i(z3)

(TC/R0)35(z3)

√
P35(z3)

Pi(z3)

1 ext 3.19 ± 0.41 2.48 2.14 ± 0.38 2.36 2.06 ± 0.44 1.94
1 int 2.26 ± 0.42 2.06 1.71 ± 0.33 2.12 1.76 ± 0.26 1.89
2 ext 1.96 ± 0.31 1.66 1.33 ± 0.21 1.52 1.31 ± 0.25 1.19
2 int 1.30 ± 0.22 1.24 1.14 ± 0.24 1.28 1.13 ± 0.22 1.28

Table 1. Comparison between measured (TC/R0) ratios (columns 2, 4 and 6) and calculated square root of
pressure ratios (columns 3, 5 and 7) at z1, z2 and z3. The ratios are extracted from figure 8(a–c) and the
pressure ratios are from the simulations (figure 5a,b). The cases are compared with the maximum pressures of
four emitters with Δt = 35 ns.

The symbols are the ratios (TC/R0) of the individual measurements, the continuous lines
represent the average value m and the shaded areas the standard deviations. The values of
the mean and standard deviation are written next to the symbol in the figure legend.

The first column in figure 8 has the data for the sensor bubble placed at z1, which is
the closest to the origin, while the second and third columns correspond to z2 and z3,
respectively. The first row (figure 8a–c) has the cases for a single external/internal shock
and the individual pairs interacting with the bubble. The second row (figure 8d–f ) contains
the cases for the two pairs of shocks with delays Δt with values of 0, 15, 25 and 35 ns.

Notice that smaller values of the ratios (TC/R0) are a result of higher pressures, which
decrease the collapse times. In this way the ratios increase monotonically with z as the
pressures decrease.

We can use the measurements of figure 8 to compare (TC/R0) ratios and estimate
pressure ratios at the positions of the sensor bubble:

(TC/R0)1

(TC/R0)2
∝

√
P2

P1
. (9.3)

The relation is not exactly equal to the square root of the pressure ratios because each
(TC/R0) ratio will have a different proportionality constant α. However, we expect to be
able to obtain a rough comparison between the pressures for different conditions, because
the calculated maximum pressures (figure 5a,b) have a pressure range (maximum at z1)
between 177 MPa (one external shock) and 1050 MPa (four shocks with Δt = 35 ns). This
pressure range is smaller than that reported by Bourne & Field (1992), and thus we expect
to have less variations in the constants α.

The comparison between the measured average ratios (TC/R0) (figure 8) with the
calculated square root of the pressure ratios at the same positions zi are given in tables 1
and 2. In all cases the ratios are compared with the case of Δt = 35 ns (at a given zi), which
represents some of the highest pressures along the axis. The various columns compare the
measured (TC/R0) ratios with the square root of the calculated pressures at z1 to z3.

Table 1 contains the comparisons with the cases for one internal/external and individual
internal/external pairs, that is, it compares the highest pressures Δt = 35 ns with the lowest
pressure events at all the z positions. This is where we would expect to have the highest
discrepancies in the ratios because of the large differences in pressures.

Surprisingly, most of the measurements have a reasonable agreement with the square
root of the calculated maximum pressure ratios (extracted from figure 5a,b). The cases
where the square root of the pressure ratios fall outside the reported measurement intervals
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i (ns)
(TC/R0)i(z1)

(TC/R0)35(z1)

√
P35(z1)

Pi(z1)

(TC/R0)i(z2)

(TC/R0)35(z2)

√
P35(z2)

Pi(z2)

(TC/R0)i(z3)

(TC/R0)35(z3)

√
P35(z3)

Pi(z3)

25 ns 1.14 ± 0.18 1.02 1.01 ± 0.22 0.99 0.99 ± 0.17 0.99
15 ns 1.27 ± 0.19 1.23 1.18 ± 0.21 1.01 1.00 ± 0.15 0.98
0 ns 1.29 ± 0.20 1.24 1.08 ± 0.17 1.27 1.00 ± 0.14 1.01

Table 2. Comparison between measured (TC/R0) ratios (columns 2, 4 and 6) and calculated square root of
pressure ratios (columns 3, 5 and 7) at z1, z2 and z3. The ratios are extracted from figure 8(d–f ) and the
pressure ratios are from the simulations (figures 5a,b). The cases are compared with the maximum pressures
of four emitters with Δt = 35 ns.

are for one external shock (at z1) (difference of 29 %, considering the centre of the
measured interval, and 12 %, considering the lower bound) and for one internal shock (at
z2) (difference of 19 %, considering the centre of the measured interval, and approximately
4 %, considering the upper bound). The square roots comparing the calculated pressures
for two external shocks at z1 and z2 are at the edge of the measured intervals.

Table 2 compares the cases for the four shocks at the three positions zi with the case
Δt = 35 ns. Here the difference between the maximum pressures (at Δt = 35 ns) and
the other cases with different delay times are smaller than in table 1. The case where the
square root of the pressure ratios lies outside the measured interval is that for Δt = 0 ns at
z2 with a difference of approximately 15 % considering the centre of the measured interval
and approximately 2 % considering the upper bound of the measurement.

At the closest position z1, the pressures are the highest, and for Δt in the range between 0
and 20 ns the main contribution to the highest pressure is given by the two internal shocks,
which is why the interaction between the external shocks and the internal bubbles do not
affect the measurements. In the case of larger Δt, the external shocks have passed the
internal sources when these are created and there is no interaction with the bubbles, and
have converged when reaching the sensor bubble. At z3 all the shocks have converged into
a single lower-pressure condition, and for Δt = 0 ns the sections that interacted with the
bubble do not contribute. In the case of z2, the bubble is exposed first to the internal shocks
and a little later to the external shocks. This is not represented in figure 5(a,b) because there
we plot the maximum pressure at each z. In the experiment the bubble collapses faster than
would be expected by the pressure at that point because the internal shocks reach it first
and a little later the external shocks arrive. In this way the maximum pressure at z2 for
that condition slightly underestimates the effective pressure that induces a faster collapse.
However, the ratios are still consistent with the square roots of the calculated pressures.

10. Summary and conclusion

We have shown that the nonlinear interaction between the shocks is crucial to explain
the results, where the regions of constructive interference are closer to the origin than
expected in a homogeneous medium. The results are important for designing systems that
focus high-pressure transient waves.

In our system, the highest pressures are attained for focus near the origin with
Δt = 35 ns, resulting in almost constant pressure followed by decay. The pressures are
comparable to those with precise overlap at all points on the axis. Delay times in the range
of 10–30 ns achieve the highest pressure upon convergence; while for 0–5 ns the pressure
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increase is smaller than the pressure achieved during the initial overlap of the internal
shocks.

At a delay time of 0 ns, the shocks converge at z ∼ 206 μm. In order to achieve overlap
farther away, negative delay times are needed, that is, internal shocks launching first so
that the external shocks catch up at longer z.

Our collapse time measurements are used to estimate the square root of the calculated
maximum pressure ratios for different conditions. The method yields reasonable results,
despite the fact that there are constants that change with different conditions. The pressure
ratio method is limited and does not give information about the absolute pressures that are
reached. To validate absolute pressures, we would need a two-component simulation that
takes into account shock reflection at the phase boundaries. Additionally, the interaction of
the launched shock waves with the expanding vapour bubbles will affect the acoustic field
after first focusing. Here, again, a two-component simulation is needed to account for their
contribution. Johnsen & Colonius (2006) and more recently Hawker & Ventikos (2012),
for example, have demonstrated that this kind of modelling is indeed feasible at least for
the interaction of single shock waves.

Future work will include extending these results to three dimensions, where a pair of
shocks will be replaced by a ring like in Veysset et al. (2018) in the yz plane and focusing
will be achieved in the centre of the ring and along the vertical direction.
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