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REGULAR PARTITIONS OF REGULAR GRAPHS 

BY 

PETER KLEINSCHMIDT 

In the study of the combinatorial structure of edge-graphs of convex polytopes 
one may ask whether a given graph possesses a partition consisting of certain 
kinds of subgraphs. 

In this paper we describe some special partitions of 3-valent and 4-valent 
graphs. These partitions can serve as examples for a type of partially ordered 
structures, called polystromas, which have recently been considered by 
Griinbaum [3]. 

1. 3-valent graphs. A path of length 3, i.e. a path possessing 3 edges, in the 
edge-graph of a 3-polytope is called a Z-path provided any two adjacent edges 
of the path lie in one facet, but not all edges are contained in the same facet (a 
Z-path has the shape of a 'Z ') . 

If the edge-graph of a 3-polytope P is the union of Z-paths, no two of which 
have an edge in common, we say that P possesses a Z-partition (see Fig. 1). 

Figure 1 

We can prove the following 

THEOREM 1. Every simple 3-polytope possesses a Z-partition. 

Proof of Theorem 1. Let P be a simple 3-polytope. Then all vertices of P 
have valency 3. From a theorem of Peterson (see [4], p. 186) it follows that the 
edge-graph of G of F possesses a 1-factor, i.e. there is a set of pairwise disjoint 
edges in G which contain all the vertices of P. 

Consequently, the remaining edges form a set of disjoint circuits. It is well 
known that for a set of disjoint circuits on the sphere each circuit may be 
assigned an orientation so that the following is satisfied: for each region R 
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determined on the sphere by the circuits, the circuits that form the boundary of 
jR have all the same orientation with respect to JR (all clockwise, or else all 
counterclockwise). Orienting the circuits of G in this way, their edges become 
directed edges. 

Now we describe how to construct the required Z-paths. We consider an 
edge E in G with vertices v and w, which belongs to the 1-factor of G. v and w 
lie in oriented circuits Cx and C2 respectively. In Cx there is exactly one edge 
Ex with endpoint v which points to the direction of v. Similarly, in C2 there 
exists exactly one edge E2 with endpoint w which points to the direction of w. 

C2 

Figure 2 

The edges E, Ex and E2 form a Z-path (see Fig. 2) whose central edge is E. 
Taking all edges of the 1-factor as central edges of Z-paths and obtaining the 
other edges as described for E± and E2 we get a Z-partition of G. 

COROLLARY 1. If G is the edge-graph of a simple 3-poly tope, then there exists 
a 2-to-l map <p from the set of all the Z-partitions of P to the set of all the 
1-factors of G. 
The relation between having a Z-partition and having a 1-factor was hinted in 

[3]. 

Proof of Corollary 1. As in the proof of Theorem 1, every 1-factor corres
ponds to some Z-partition, and by taking a different orientation of the said 
circuits one gets another Z-partition of P. For an arbitrary Z-partition 91 of P, 
let <p(9I) be the set of all the central edges of the members of 91 (which are 
paths of length 3). 

The central edges of two different members of 91 are disjoint, because 
otherwise G would have a vertex of valency > 4 . Let G have v vertices and e 
edges, then 3i; = 2e, hence e = 3(v/2), i.e. 91 has precisely v/2 elements, 
therefore cp(9l) consists of v/2 disjoint edges, hence <p(9l) is a 1-factor of G. 
The rest is obvious. 

COROLLARY 2. Every simple 3-polytope possesses at least six different Z -
partitions. 

Proof of Corollary 2. Let P be a simple 3-polytope, and G its edge-graph. G 
has a 1-factor by a Theorem of Peterson (see [4], p. 186), and since G is 
3-connected it has at least three different 1-factors by a theorem of Beineke-
Plummer ([1], see also [5], [6] and [8]), It follows by Corollary 1 that P has at 
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least six different Z-partitions. As the tetrahedron has precisely six different 
Z-partitions, Corollary 2 is best possible. The proof of Theorem 1 can be used 
to establish the following general result. 

COROLLARY 3. If a 3-valent graph G has k different 1-factors, then G can be 
represented in at least 2k different ways as edge-disjoint union of paths of length 
3. 

In this connection, we conjecture that Petersen's Theorem can be strengthened 
to say that every edge of a bridgeless 3-valent graph G belongs to some 
1-factor of G. 

2. 4-valent graphs. If the edges of a path of length 2 in the graph of a 
3-polytope lie in one facet, we call this path a V-path. If the edges do not lie in 
a facet, we call it a C-path. In analogy to the above definitions we can define 
V-partitions and C-partitions of a graph (see Fig. 3) 

Figure 3 

We obtain the following results: 

THEOREM 2. The graph of a poly tope whose vertices are all 4-valent possesses a 
V-partition. 

THEOREM 3. The graph of a poly tope whose vertices are all 4- valent possesses 
a C-partition. 

Proof of Theorem 2. A 4-valent graph may be considered as the union of 
closed geodesic arcs (see [2], p. 239) no two of which have an edge in common. 
We may choose an arbitrary orientation for each of these arcs. Consequently, 
every vertex of the graph is contained in precisely two edges whose orienta
tions point to the common vertex. These edges form a V-path and all V-paths 
obtained in this way build up a V-partition. 

Proof of Theorem 3. As in the proof of Theorem 2 we consider the geodesic 
arcs which build up the graph. 

From a theorem of Tait ([7], p. 133) it follows that the vertices of such a 
graph can be considered as 'bridges', i.e. One of the arcs meeting a vertex 
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passes 'above' the vertex and the other 'below'. Furthermore, if a geodesic arc 
passes above one vertex it will pass below the next vertex. Consequently, the 
two edges which meet at a vertex v and belong to a geodesic arc passing above 
v form a C-path and all C-paths obtained in this way yield a C-partition. 

The proofs of Theorem 2 and Theorem 3 show that there are at least two 
distinct V- or C-partitions in each case. 

REMARKS. AS a Z-path in a simple polytope corresponds to a Z-path in its 
dual polytope, it follows from Theorem 1 that every simplicial 3-polytope 
possesses a Z-partition. 

We conjecture that every 3-polytope whose number of edges is divisible by 3 
possesses a Z-partition. 

Similarly, one might conjecture that there are analoga of Theorem 2 and 
Theorem 3 for poly topes with an even number of edges. For such an extension 
of Theorem 3 it has to be assumed that the considered graphs possess no 
3-valent vertices. 

It should be noticed that every 4-valent connected graph G having an even 
number of edges is the edge-disjoint union of paths of length two, since G is 
Eulerian. The same is true if G is a graph such that every connected 
component of G has an even number of edges and at most two vertices of odd 
valency. 

It would be interesting to find analoga of our results for 5-valent polytopes 
or polytopes with non-regular graphs. Figure 4 shows a partition of the graph 
of an icosahedron consisting of paths of length 5, with the property that no 
consecutive edges of a path lie in one facet. 

We conjecture that there is a 5-valent polytope which does not admit such a 
partition. 

Figure 4 
(edges belonging to the same Z-paths are marked by the same symbols) 
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