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1. Introduction

A great deal of attention has been paid by philosophers to the use of computers in
the modelling of human cognitive capacities and in the construction of intelligent arti-
facts. This emphasis has tended to obscure the fact that most of the high-level com-
puting power in science is deployed in what appears to be a much less exciting activi-
ty: solving equations. This apparently mundane set of applications reflects the histor-
ical origins of modem computing, in the sense that most of the early computers in
Britain and the U.S. were devices built to numerically attack mathematical problems
that were hard, if not impossible, to solve non-numerically, especially in the areas of
ballistics and fluid dynamics. The latter area was especially important for the devel-
opment of atomic weapons at Los Alamos, and it is still true that a large portion of the
supercomputing capacity of the United States is concentrated at weapons develop-
ment laboratories such as Los Alamos and Lawrence Livermore.

Computer simulations now play a central role in the development of many physical
sciences. In astronomy, in physics, in quantum chemistry, in meteorology, in geo-
physics, in oceanography, in crash analysis of automobiles, in the design of computer
chips, in the planning of the next generation of supercomputers, in the discovery of syn-
thetic pharmaceutical drugs, and in many other areas, simulations have become a stan-
dard part of scientific practice. My aim in the present paper is simply to provide a gen-
eral picture of what computer simulations are, to explain why they have become an es-
sential part of contemporary scientific methodology, and to argue that their use requires
a new conception of the relation between theoretical models and their applications.2

Why should philosophers of science be interested in this new tool? Mostly, I think,
because the way that simulations are developed and implemented forces us to reexam-
ine a lot of what we tend to take as the right way to characterize parts of mathematical-
ly-oriented methodology and theorizing. Where this reexamination takes us will be-
come clear as we go along, but before I discuss computer simulations specifically, I
want to make some general points about the role of mathematical models in physical
science. Let's begin with a claim that ought to be uncontroversial, but is not given
enough emphasis in philosophy of science. The claim is: One of the primary features
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that drives scientific progress is the development of tractable mathematics. Whenever
you have a sudden increase in useable mathematics, there will be a concomitant sudden
increase in scientific progress in the area affected. This should not really need to be
pointed out, but so much emphasis is placed on conceptual changes in science that pow-
erful instrumental changes tend to be downplayed. This kind of sudden increase in
mathematical power happened with the invention of the differential and integral calcu-
lus in the middle of the seventeenth century; it happened with the sudden explosion of
statistical methods at the end of the nineteenth century, and I claim that the ability to
implement numerical methods on computers is, in the late twentieth century, as
significant a development as those earlier inventions. But what kind of development is
it? Has it introduced a distinctively different kind of method into science, as Rohrlich
(1991), for example, claims, or is it simply a technologically enhanced extension of
methods that have long existed? If computer simulation methods are simply numerical
methods, but greatly broadened in scope by fast digital computation devices with large
memory capacity, then the second 'just much more of the same' view would be correct,
and the situation would be similar to that in mathematics, where the introduction of
computer-assisted proofs, such as were used to execute the massive combinatorial
drudgery involved in the proof of the four colour theorem, is often regarded as not hav-
ing changed the fundamental conception of what counts as a proof. My own view is
that the situation is more complex than this simple dichotomy represents, because the
introduction of computer simulation methods is not a single innovation but a multi-
faceted development. Let's begin with a couple of simple examples to show why math-
ematical intractability is an important constraint on scientific models.

2. Practical and Theoretical Unsolvability of Models

Take what is arguably the most famous law of all, Newton's Second Law. This
, can be stated in a variety of ways, but its standard characterization is that of a second

order ordinary differential equation:

F = nufiyldt2

To employ this we need to specify a particular force function. In the first instance, take

F = GMmJR2 < 2 >

as the gravitational force acting on a body near the Earth's surface (M is the mass of
the Earth, R its radius). Then

GMm/R2 = md2y/dt2 <3>

is easily solved. But the idealizations that underlie this simple mathematical model
make it hopelessly unrealistic. So let's make it a little more realistic by representing
the gravitational force as GMm/(R + y)2, where y is the distance of the body from the
Earth's surface, and by introducing a velocity-dependent drag force due to air resis-
tance. We obtain

GMml (R + y)2 - cps(dy/dt)2 - mcfiy/dfl <4>

Suppose we want to make a prediction of the position of this body at a given time,
supposing zero initial velocity and initial position y = yo. To get that prediction you
have to solve <4>. But <4> has no known analytic solution — the move from <3> to
<4> has converted a second-order, linear, homogeneous ODE into a second-order,
non-linear, homogeneous ODE, and the move from linearity to non-linearity turns
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simple mathematics into intractable mathematics. Exactly similar problems arise in
quantum mechanics from the use of Schrodinger's equation, where different specifi-
cations for the Hamiltonian in the schema

lead to wide variations in the degree of solvability of the equation. For example, the
calculations needed to make quantum mechanical, rather than classical, predictions in
chemistry about even very simple reactions, such as the formation of hydrogen
molecules when spin and vibration variables are included, are extremely difficult and
have only recently been carried out. (An explicit discussion of the differences be-
tween ab initio and semi-empirical methods in quantum chemistry is given below.)

You might say that this feature of unsolvability is a merely practical matter, and
that as philosophers we should be concerned with what is possible in principle, not
with what can be done in practice. But recent investigations into decision problems
for differential equations have demonstrated that for many algebraic differential equa-
tions [ADE's] (i.e. those of the form

P(x,y1,...,yn,ylW,...,ym («,... j , W ,..,ym^= 0

where P is a polynomial in all its variables with rational coefficients) it is undecidable
whether they have solutions. For example, Jaskowski (1954) showed that there is no
algorithm for determining whether a system of ADE's in several dependent variables
has a solution in [0,1]. Denef and Lipshitz (1984) show that it is undecidable whether
there exist analytic solutions for such ADE's in several dependent variables around a
local value of x. (Further results along these lines, with references, can be found in
Denef and Lipshitz (1989)). Obviously, we cannot take decidability as a necessary con-
dition for a theory to count as scientifically useful, otherwise we would lose most of our
useful fragments of mathematics, but these results do show that there are in principle, as
well as practical, restrictions on what we can know to be solvable in physical theories.3

There is a methodological point here that needs emphasis. While much of philos-
ophy of science is concerned with what can be done in principle, for the issue of sci-
entific progress what is important is what can be done in practice at any given stage of
scientific development. That is, because scientific progress involves a temporally or-
dered sequence of stages, one of the things that influences that progress is that what is
possible in practice at one stage was not possible in practice at an earlier stage. If one
fbcusses on what is possible in principle (i.e. possible in principle according to some
absolute standard, rather than relative to constraints that are themselves temporally
dependent) this difference cannot be represented, because the possibility-in-principle
exists at both stages of development. So although what is computable in principle is
important for, say, the issue of whether computational theories of the mind are too
limited a representation of mental processes, what is computable in practice is the
principal feature of interest for the methodologies we are considering here.

This inability to obtain specific predictions from mathematical models is a very
common phenomenon, because most non-linear ODE's and almost all PDE's have no
known analytic solution. In population biology, for example, consider the Lotka-
Volterra equations (first formulated in 1925)

dx/dt = ax + bxy

dy/dt = cy + dxy
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where x = population of prey, y = population of predators, a (>o) is the difference be-
tween natural birth and death rates for the prey, b(<o), d(>o) are constants related to
chance encounters between prey and predator, c(<o) gives the natural decline in
predators when no prey are available. With initial conditions x(o) = e, y(o) = f, there
is no known analytic solution to the equation set.

These examples could be multiplied indefinitely, but I hope the point is clear:
clean, abstract, presentations of theoretical schemas disguise the fact that the vast ma-
jority of those schemas are practically inapplicable in any direct way to even quite
simple physical systems. This is not the point that models are never applicable to real
systems: the point here is that even with radical idealizations, the problem of in-
tractability is often inescapable, i.e. in order to arrive at an analytically treatable
model of the system, the idealizations required would often destroy the structural fea-
tures that make the model a model of that system type. This problem is widespread,
and cuts across both sciences and subfields of those sciences, although it is more
prevalent in some fields than in others.

These problems put severe limits on the applicability in practice of the standard,
syntactically formulated method of hypothetico-deductivism, for most of the equa-
tions that represent the fundamental or derived theories of physics, chemistry, and so
on cannot be used in practice to make precise deductive predictions from those repre-
sentations together with the appropriate initial or boundary conditions. I should say
here that I want to remain neutral as far as possible about the relative merits of the
syntactic and semantic (or structuralist) reconstructions of theories. Although the se-
mantic approach has definite advantages, both accounts are logical reconstructions of
scientific practice. Because we are concerned here to stay as close as possible to con-
siderations that present immediate problems to actual scientific practice, the debate
over the merits of these reconstructions has only an indirect relevance to our interests.
It is worth noting, however, that the issue of practical unsolvability means that the for-
mulation of a theoretical model in some specific mathematical representation, rather
than as a set of metamathematical structures, is an inescapable concern, and that
whereas the semantic approach generally considers different linguistic formulations as
mere linguistic variants of an underlying common structure, linguistic reformulations
frequently have a direct impact on the ease of solvability of a mathematical represen-
tation, and hence this level cannot be ignored completely. In particular, I want to urge
that what is of primary interest here is the mathematical form of equation types and
not their logical form. To be specific: one could reformulate <1>, <2>, <3> and <4>
in a standard logical language by using variable-binding operators, thus forcing them
into the standard quantified conditional form that serves as the representation of laws
in the traditional syntactic approaches, but to do this would be to distort what is cru-
cial to issues of solvability, which is the original mathematical form.

It is this predominance of mathematically intractable models that is the primary rea-
son why computational physics (and similar methods in other sciences), which provides
a practical means of implementing non-analytic methods, constitutes a significant and, I
think, a permanent, addition to the mathematical methodology of science.

3. Definitions of Computer Simulation

Here, taken more or less at random, are some suggestions that have been made for
characterizing computer simulations: "Simulation is the technique by which under-
standing the behaviour of a physical system is obtained by making measurements or
observations of the behaviour of a model representing that system." (Ord-Smith
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(1975), p.3) "This is what simulation is all about, i.e. experimenting with models"
fibid.p.3)

A precise definition of simulation is difficult to obtain...the term simulation
will be used to describe the process of formulating a suitable mathematical
model of a system, the development of a computer program to solve the equa-
tions of the model and operation of the computer to determine values for sys-
tem variables . (Bennet (1974), p.2)

The mathematical/logical models which are not easily amenable to conven-
tional analytic or numeric solutions form a subset of models generally known
as simulation models. A given problem defined by a mathematical/logical
model can have a feasible solution, satisfactory solution, optimum solution or
no solution at all. Computer modelling and simulation studies are primarily
directed towards finding satisfactory solutions to practical problems.
(Neelamkavil (1987), p.l).

Simulation is a tool that is used to study the behaviour of complex systems
which are mathematically intractable. (Reddy (1987), p.162)

Because of the variety of uses to which the term 'simulation' has been put, I am reluc-
tant to try to formulate a general definition. It would be more profitable at this stage
to simply explore the methods that are used under categories 1), 2), and 3) in section 4
below. We can, however, formulate a working definition based on the last characteri-
zation, which needs to be modified in three ways. First, simulation is a set of tech-
niques, rather than a single tool. As the other quotations indicate, it would be hard to
make a case for the view that there is an underlying unity to the set, at least at the pre-
sent state of development of the field. Second, the systems that are the subject of sim-
ulations need not be complex either in structure or behaviour. As we also saw earlier,
mathematical intractability can affect differential or integral equations having a quite
simple mathematical structure, as in the case of the motion of the body falling under
the influence of gravity, subject to a velocity-dependent drag force. The behaviour of
this system is not unduly complex, merely hard to predict quantitatively without nu-
merical techniques. Third, many computer simulations turn analytically intractable
problems into ones that are computationally tractable, and we do not want to exclude
numerical methods as a part of mathematics.

We thus arrive at the following working definition which captures what is com-
mon to almost all the simulations with which I am familiar.

Working Definition. A computer simulation is any computer-implemented method
for exploring the properties of mathematical models where analytic methods are un-
available.

Some further remarks may be helpful. Although the everyday use of the term
'simulation' has connotations of deception, so that a simulation has elements of falsi-
ty, this has to be taken in a particular way for computer simulations. Inasmuch as the
simulation has abstracted from the material content of the system being simulated, has
employed various simplifications in the model, and uses only the mathematical form,
it obviously and trivially differs from the 'real thing', but in this respect, there is no
difference between simulations and any other kind of mathematical model, and it is
primarily when computer simulations are used in place of empirical experiments that
this element of falsity is important. But if the underlying mathematical model can be
realistically construed (i.e. it is not a mere heuristic device) and is well-confirmed,
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then the simulation will be as 'realistic' as any theoretical representation is. Of
course, approximations and idealizations are often used in the simulation that are ad-
ditional to those used in the underlying model, but this is a difference in degree rather
than in kind.

Next, in order for something to be a computer simulation, the whole process be-
tween data input and output must be run on a computer, whereas computational
physics can involve only some stages in that process, with the others being done 'by
hand'. Third, because computer simulations are usually oriented towards approximate
solutions rather than exact solutions, they can be viewed as optimization devices that
sometimes involve satisfying criteria. This approach underlies the variational
method mentioned earlier, it underlies the simulated annealing method frequently
used in connectionist models of perception and problem solution (see McClelland and
Rumelhart (1986), especially Chapter 6), and it underlies many other intuitive 'good
enough' criteria used in other areas.

4. Can Computer Simulation Be Identified With Numerical Methods?

What is computer simulation? The terminology is so widely used that it is hard to
find a core meaning, but here are some central uses:

1) To provide solution methods for mathematical models where analytical meth-
ods are presently unavailable.

2) To provide numerical experiments in situations where natural experimentation
is inappropriate (for practical reasons) or unattainable (for physical reasons).
Under the former lie experiments that are too costly, too uncertain in their out-
come, or too time consuming. Under the latter lie such experiments as the ro-
tation of angle of sight of galaxies, the formation of thin disks around black
holes, and so forth.

3) To generate and explore theoretical models of natural phenomena.

It may seem that use 1) is simply the use of numerical methods for solution purposes.
To examine this claim, we need some definitions. Numerical mathematics is con-
cerned with obtaining numerical values of the solutions to a given mathematical prob-
lem. Numerical methods is the part of numerical mathematics concerned with finding
an approximate, feasible, solution. Numerical analysis has as its principal task the
theoretical analysis of numerical methods and the computed solutions, with particular
emphasis on the error between the computed solution and the exact solution.

Can we identify numerical methods with computer simulations? Not directly, be-
cause there are at least two additional features that a numerical method must have if it
is to count as a computer simulation. First, the numerical method must be applied to a
specific scientific problem in order to be part of a computational simulation. Second,
the method must be computable in real time and be actually implemented on a con-
crete machine.

Beyond this, there is an important potential distinction between uses 1) and 3). In
1), the development of the model is made along traditional lines: some more or less
fundamental theory is brought to bear on the phenomenon, theory which at least in its
abstract, general, form is well understood and confirmed. Deductive consequences
are drawn out from this theory to bring the general theory into contact with the specif-
ic area under investigation, and then the computational implementation of these con-
sequences constitutes the simulation of the system. In contrast, in use 3), the develop-
ment of the models is partly empirical, partly theoretical, and partly heuristical, with
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exploration and feedback from the simulation playing an important role in this devel-
opment.

This distinction is not clearcut, and especially in use 3), elements from uses 1) and
2) often play a significant role. The difference is similar to a distinction that is often
drawn in quantum chemistry between ab initio methods and semi-empirical methods
(see e.g. R. McWeeny and B.T.Sutcliffe (1969), Chapter 9). Three kinds of treatments
can be used to predict the energy levels of molecular orbitals. Ab initio methods use
the actual Hamiltonian for the system in Schrodinger's equation. Idealizations are
made, such as a fixed nucleus, only electrostatic interactions between particles, and
non-relativistic calculations, and these idealizations are often drastic, but the goal is to
represent as many of the important features of the molecules as possible. Then using a
'trial function' it calculates the solution 'exactly'. Semiempirical methods estimate
some parameters in the orbital states that are difficult to calculate directly by empiri-
cal data or by numerical approximation, and then proceed as in the ab initio case.
Model level methods use a Hamiltonian that deliberately omits some important influ-
ences on the energy levels, such as inter-electron interactions.

The distinction here between ab initio methods and model level methods seems to
me to be quite arbitrary, since both use idealizations, and the interesting difference is
that between ab initio methods and semi-empirical methods, and this is an appropriate
place to discuss the differences between fundamental and phenomenological models..
This distinction reflects the 'bottom up' and 'top down' methods familar from other
areas of methodology, and there is a significant divergence of views about whether
models should be constructed on the basis of some underlying general theoretical con-
siderations, or whether instrumentally successful but theoretically ungrounded models •
should be used when the theoretical approach is infeasible. Both kinds are used in sim-
ulations and I see no reason to deny the appropriateness of either. I choose to focus on
fundamental models here, primarily for two reasons. The first is one of expertise, or
lack of it Phenomenological models are usually highly specific devices constructed for
the purpose of representing some specific phenomenon. A great deal of physical,
chemical, or biological knowledge goes into their assessment, justification, and use
(this is one area where 'physical intuition' is clearly an important consideration) and for
this reason, such simulations can be assessed only by those actively working with them.
The second reason for emphasizing fundamental models here is that this makes a com-
parison of simulation methodology with traditional philosophical views on theory struc-
ture and application much easier, for the latter is oriented almost exclusively towards
fundamental theory. This said, a few remarks about the relation between the two ap-
proaches in the case of ab initio and semi-empirical models might be appropriate.
(Semi-empirical models are not the same as phenomenological models, in that the for-
mer are still guided to a considerable extent by theory, but for the first reason just men-
tioned, I am not in a position to address phenomenological models in any detail.)

One important result of the availability of large-scale computational power is that
whereas many idealizations in models, or the use of semi-empirical methods, were
once forced upon chemists because the model had to result in tractable analytic math-
ematics, the idealizations made in ab initio methods now need not be determined pri-
marily by that constraint, but are set by (a) limits on computational power available,
(b) the ability to mathematically represent in the Hamiltonian complex influences on
the energy levels (c) the availablity of numerical methods to approximate the repre-
sentations in (b). This is a clear example of computational chemistry: the use of com-
puters to allow one to treat models that could not be used without them. Indeed, these
methods illustrate an interesting trade-off: These numerical methods allow one to
deal with more realistic theories, and the increased use of approximations in the math-
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ematics allows a decreased use of idealizations in the physics. This still leaves the
treatment of most molecules currently outside the scope of ab initio methods, and
given the restrictions due to (a) that are discussed below, no purely ab initio method
will ever be fully computationally feasible, but the important point is that more and
more systems that were once untreatable by fundamental approaches can now have
theoretically justified quantum mechanical methods brought to bear on them.
Compare this with methods that rely on the variation theorem. (See Eyring et al
(1944) for a development of this theorem). The theorem states "If a normalized trial
function S satisfies the relevant boundary conditions but is otherwise arbitrary, then
<S/H/S> S, Eo, where Eo is the lowest eigenvalue, the equality applying when S is an
exact solution." (Further applications of this procedure can be used to find approxi-
mations to other eigenfunctions.) Then the best wave function is obtained by varying
the parameters in a trial function until the lowest energy is obtained. Here, the com-
putational methods allow exploratory investigations that would not be possible with-
out computers, and these are different from theoretically based methods in that al-
though theory may be used as a guide to which parametric family of functions to ex-
plore (Gaussian or Slater orbitals are usually used, however, making the contribution
of theory minimal), the final result is a matter of computational trial and error rather
than explicit theoretical derivation. Moreover "A wave function that gives a good
[estimate of the] energy does not necessarily give a particularly good value for anoth-
er quantity, for example the dipole moment, whose expectation value may arise prin-
cipally from somewhat different regions of space." (McWeeny & Sutcliffe, op. cit.,
p.235). I also find these figures from McWeeny and Sutcliffe, op.cit, p.239 revealing:
Abstract developments of quantum mechanics require an infinite set of basis vectors
to represent states. For the finite basis sets that actual applications need, suppose that
m atomic orbitals are used (in the linear combination of atomic orbitals representation
of molecular orbitals — the LCAO method). Then one needs p = m(m+l)/2 distinct
• integrals to calculate one-electron Hamiltonians, and q = p(p+l)/2 distinct integrals to
calculate electron interaction terms. This gives

m = 4 10 20 40

q = 55 1540 22155 336610

This is a clear case where computational constraints, which are extra-theoretical
and here involve primarily memory capacity, place severe limitations on what can be
done at any given stage of technological development. This is different in principle, I
think, from the constraints that the older analytic methods put on model development,
because there new mathematical techniques had to be developed to allow more com-
plex models, whereas in many cases in computational science, the mathematics stays
the same, and it is technology that has to develop. The use of trial orbitals that I men-
tioned earlier in connection with the variational method seems to show that a very
crude model can give an apparently realistic representation of the system. That is, in
deciding upon the appropriate potential energy function to use in the Hamiltonian,
suppose we choose one corresponding to a Slater atomic orbital of the form

V(r) = -fn/r + [n(n-l) - l(l+l)]/2r2

where f is a parameter representing the effective field affecting the electron. Then
using these atomic orbitals as the finite basis, we have to decide where the expansion
of the state function will be truncated. Then, given various trials R, and trial orbitals
S for another electron, we have to minimize the energy

E = 2 <R/h/R> + (2<RS/g/RS> - <RS/g/SR>)
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Although there is a great deal of computation involved here, and certainly trial and
error 'experimentation', there is also a good deal of theory lying in the background to
justify the method, and even though the atomic orbitals used are pretty crude approxi-
mations, they are still guided by a physical model that has some theoretical justification.

I am thus going to treat each of uses 1), 2) and 3) above as part of computational
physics (chemistry, etc.), and to consider computer simulation as a subset of the meth-
ods of computational science. Much more needs to be said about what is special to
simulations, but I hope that the example just discussed shows that the interplay be-
tween theory, experiment, arid computation in computational science entails that it is
not to be identified with numerical methods, and a fortiori, neither should computer
simulations.

Notes

Research for this paper was supported by NSF grant DIR-8911393.1 should like
to thank Fritz Rohrlich for helpful discussions in connection with the PSA symposium.

2When examining this activity, we must be wary of one thing, which is that the
field of computer simulation methods is relatively new and as such is rapidly evolv-
ing. Techniques that are widely used now may well be of minor interest twenty years
hence, as developments in computer architecture, numerical methods, and software
routines take place. The specific details of different kinds of simulation methods, such
as finite-difference methods and Monte Carlo methods will be explored in a future
paper.and some examples of currently used simulations are given in the following
paper by Rohrlich.

3 A further source of difficulty, at least in classical mechanics, involves the imposi-
tion of nonholomorphic constraints (i.e. constraints on the motion that cannot be rep-
resented in the form

fcl rn,t) = 0

where {rj} are the spatial coordinates of the particles comprising the system). For a
discussion of these constraints, see Goldstein (1980), pp.11-14.
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