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Abstract

Higgins [‘The Mitsch order on a semigroup’, Semigroup Forum 49 (1994), 261–266] showed that the
natural partial orders on a semigroup and its regular subsemigroups coincide. This is why we are
interested in the study of the natural partial order on nonregular semigroups. Of particular interest are
the nonregular semigroups of linear transformations with lower bounds on the nullity or the co-rank.
In this paper, we determine when they exist, characterise the natural partial order on these nonregular
semigroups and consider questions of compatibility, minimality and maximality. In addition, we provide
many examples associated with our results.
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1. Introduction
In 1952, Wagner [14] introduced the natural partial order on inverse semigroups,
and then in 1980 this relation was independently extended by Hartwig [3] and
Nambooripad [10] to the class of regular semigroups. Later, in 1986, Mitsch [9]
generalised the notion of the natural partial order ≤ to any semigroup S in the
following fashion: for any elements a and b in S,

a ≤ b if and only if a = xb = by and a = ay for some x, y ∈ S 1,

where S 1 is the semigroup S with an identity 1 adjoined if S has no identity, otherwise
S 1 is S . Additionally, we define a < b to mean a ≤ b and a , b.

The concept of the natural partial order on semigroups has been studied over
decades. Many research articles considered various semigroups endowed with the
natural partial order; for example, see [1, 5, 7, 13]. Moreover, the compatibility,
minimality and maximality were also investigated. In 1994, Higgins proved the
following result.
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Proposition 1.1 [4]. Let S be a semigroup containing T as its subsemigroup and let
x, y be elements in T . Then x ≤ y on T implies x ≤ y on S . In addition, the converse is
true if T is regular.

Therefore, the natural partial order on a regular semigroup can be derived from the
natural partial order on any semigroup containing it. However, this is not the case for
nonregular semigroups (see [1]). For this reason, we direct our attention to certain
nonregular semigroups or, more precisely, nonregular semigroups contained in the
semigroup of all linear transformations, one of the most well-known and important
semigroups.

Throughout this paper, we let V be a vector space and L(V) be the set of all linear
transformations on V . Then L(V) is a regular semigroup under composition. The
kernel and image of α in L(V) are respectively denoted by ker α and im α. The
dimension of V is represented by dim V . For any subset A of V , the subspace spanned
by A is denoted by 〈A〉. As usual, 0 and 1 are respectively the zero map and the identity
map on V .

For a cardinal number κ with κ ≤ dim V , let

K(V, κ) = {α ∈ L(V) | dim(kerα) ≥ κ},
CI(V, κ) = {α ∈ L(V) | dim(V/ imα) ≥ κ}.

Observe that 0 belongs to K(V, κ) ∩ CI(V, κ). Further, if dim V is finite, then K(V, κ)
and CI(V, κ) are equal to each other. Otherwise, as proved by Chaopraknoi and
Kemprasit [2], K(V, κ) and CI(V, ι) are distinct whenever κ, ι are cardinal numbers such
that κ , 0 and κ, ι ≤ dim V . In particular, when V is an infinite-dimensional vector
space, the semigroups K(V,ℵ0) and CI(V,ℵ0) are not regular (see [6, 8] for details).
Furthermore, we can prove that both K(V, κ) and CI(V, κ) are regular if and only if
dim V is finite or κ = 0. Therefore, the natural partial orders on K(V, κ) and CI(V, κ)
when dim V is infinite and 0 < κ ≤ dim V are of interest.

2. Preliminaries

In this paper, every linear transformation acts on the right-hand side of vectors. For
α ∈ L(V) defined by xiα = u and y jα = v j for all i ∈ I, j ∈ J, we write

α =

(
{xi}i∈I y j

u v j

)
j∈J
,

where {xi}i∈I ∪ {y j} j∈J is a basis of V and I, J are index sets. Other linear
transformations will also be represented in this way.

Proposition 2.1 [12]. Let α ∈ L(V) and let B1 be a basis of ker α and B a basis of V
containing B1. Then:

(i) for each v1, v2 ∈ B \ B1, v1 = v2 if and only if v1α = v2α;
(ii) (B \ B1)α is a basis of imα.
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Now we give a characterisation for K(V, κ) and CI(V, κ) to be regular.

Theorem 2.2. Let S (V, κ) be either K(V, κ) or CI(V, κ). Then S (V, κ) is regular if and
only if dim V is finite or κ = 0.

Proof. Suppose that dim V is infinite and κ > 0. Let B be a basis of V . There is a
partition {B1, B2} of B such that |B| = |B1| = |B2|. Let φ : B2 → B be a bijection. Define
α, β ∈ L(V), as in [6, Theorem 6.3.13], by

α =

(
B1 v
0 vφ

)
v∈B2

and vβ = vφ−1 for all v ∈ B.

Since dim(ker α) = |B1| = |B| ≥ κ and dim(V/ im β) = |B \ B2| = |B1| ≥ κ, we have α ∈
K(V, κ) and β ∈ CI(V, κ). Let γ ∈ L(V) be such that α = αγα. Then γα = 1, since α is
onto. This implies that γ is one-to-one and hence γ < K(V, κ), whence K(V, κ) is not
regular. Next let λ ∈ L(V) be such that β = βλβ. Since β is one-to-one, βλ = 1. Then λ
is onto, so λ < CI(V, κ). Therefore, CI(V, κ) is not regular.

For the converse, it is clear that K(V,0) = L(V) = CI(V,0), which is regular. Assume
that dim V is finite. Then K(V, κ) = CI(V, κ). Let α ∈ S (V, κ) and let B1 be a
basis of ker α. Extend it to a basis B of V . Then, by Proposition 2.1(ii), (B \ B1)α
is a basis of imα. Let C1 = (B \ B1)α and let C be a basis of V containing C1. Define
γ ∈ L(V) by

γ =

(
C \C1 vα

0 v

)
v∈B\B1

.

Thus, dim(ker γ) = dim V − dim(im γ) = |B| − |B \ B1| = |B1| ≥ κ, so γ ∈ S (V, κ).
Clearly, α = αγα. Hence, S (V, κ) is regular. �

For any α, β ∈ L(V), let

E(α, β) = {v ∈ V | vα = vβ},

a subspace of V contained in Vαβ−1. It is called the equaliser of α and β. The following
results about the equaliser are very useful for our paper.

Proposition 2.3. Let α, β ∈ L(V) be such that kerβ ⊆ kerα and let A1,A2,A3 be disjoint
linearly independent sets such that A1, A1 ∪ A2, A1 ∪ A2 ∪ A3 are bases of ker β, kerα,
V, respectively. If vα = vβ for all v ∈ A3, then Vαβ−1 = E(α, β).

Proof. Let v ∈ Vαβ−1. Then vβ = v′α for some v′ ∈ V . We write

v =
∑

i

aixi +
∑

j

b jy j +
∑

k

ckzk and v′ =
∑

i

a′i xi +
∑

j

b′jy j +
∑

k

c′kzk

for some xi ∈ A1, y j ∈ A2, zk ∈ A3 and some scalars ai, a′i , b j, b′j, ck, c′k, where i ∈ I,
j ∈ J, k ∈ K and I, J,K are finite index sets. Then

vβ =
∑

j

b jy jβ +
∑

k

ckzkβ and v′α =
∑

k

c′kzkα =
∑

k

c′kzkβ.
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Notice that (A2 ∪ A3)β is linearly independent by Proposition 2.1(ii). Since vβ = v′α,
b j = 0 for all j ∈ J. Hence, vα =

∑
k ckzkα =

∑
k ckzkβ = vβ, so v ∈ E(α, β). Therefore,

Vαβ−1 = E(α, β). �

Observe that for each α, β ∈ L(V), Vαβ−1 = E(α, β) implies ker β ⊆ kerα. The next
lemma is extracted from [13, proof of Theorem 2.5].

Lemma 2.4. Let α, β ∈ L(V) be such that imα ⊆ im β and Vαβ−1 = E(α, β). Then

α =

(
{xi}i∈I ∪ {y j} j∈J zk

0 uk

)
k∈K

and β =

(
{xi}i∈I y j zk

0 y jβ uk

)
j∈J,k∈K

,

where {xi}i∈I , {xi}i∈I ∪ {y j} j∈J , {uk}k∈K and {xi}i∈I ∪ {y j} j∈J ∪ {zk}k∈K are bases of ker β,
kerα, imα and V, respectively.

In addition, one can see the following result.

Lemma 2.5. Let α, β ∈ L(V) be such that Vαβ−1 = E(α, β).

(i) If imα = im β, then α = β.
(ii) If imα ⊆ im β and kerα = ker β, then α = β.

For the remainder of this paper, unless stated otherwise, we assume that V is an
infinite-dimensional vector space and that κ is a nonzero cardinal number not greater
than dim V . Note that both K(V, κ) and CI(V, κ) do not contain the identity. Thus,
K(V, κ) is not equal to K(V, κ)1, and similarly for CI(V, κ).

3. The natural partial order
In this section, we characterise the natural partial order on K(V, κ) and CI(V, κ). We

first state a significant property of (L(V),≤).

Theorem 3.1 [13]. Let α, β ∈ L(V). Then α ≤ β on L(V) if and only if imα ⊆ im β and
Vαβ−1 = E(α, β).

The following example shows that (K(V, κ),≤) cannot be obtained from (L(V),≤).

Example 3.2. Let κ > 1 and let B be a basis of V . Then there is a partition {B1, B2} of
B such that |B| = |B1| = |B2|. Let u ∈ B2. Thus, there exists a bijection φ : B2 \ {u} →
B \ {u}. Define α, β ∈ K(V, κ) by

α =

(
B1 ∪ {u} v

0 vφ

)
v∈B2\{u}

and β =

(
B1 v u
0 vφ u

)
v∈B2\{u}

.

Obviously, im α ⊆ im β. Substituting A1 = B1, A2 = {u} and A3 = B2 \ {u} in
Proposition 2.3, we have Vαβ−1 = E(α, β). Therefore, by Theorem 3.1, α ≤ β on L(V).
Let µ ∈ L(V) be such that α = βµ. Observe that 0 = uα = uβµ = uµ. Let v ∈ B2 \ {u}. It
follows that vφ = vα = vβµ = vφµ. Since (B2 \ {u})φ = B \ {u},

µ =

(
u v
0 v

)
v∈B\{u}

.

Hence, dim(ker µ) = 1 < κ, so µ < K(V, κ)1. Therefore, α � β on K(V, κ).
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Theorem 3.3. Let α, β ∈ K(V, κ). Then α ≤ β on K(V, κ) if and only if:

(i) α = β; or
(ii) imα ⊆ im β, Vαβ−1 = E(α, β) and α ∈ CI(V, κ).

Proof. Assume that α < β on K(V, κ). Then α < β on L(V) and therefore imα ⊆ im β
and Vαβ−1 = E(α, β) by Theorem 3.1. Next we show that α ∈ CI(V, κ). Since α < β
on K(V, κ), α = αµ for some µ ∈ K(V, κ). Let B1 be a basis of imα and B2 a basis of
ker µ. If there exists v ∈ B1 ∩ B2, then v = uα = uαµ = vµ = 0 for some u ∈ V , which
is a contradiction. Hence, B1 ∩ B2 = ∅. We claim that B1 ∪ B2 is linearly independent.
Suppose that ∑

i

aivi +
∑

j

b jw j = 0

for some vi ∈ B1, w j ∈ B2 and suitable scalars ai, b j, where i ∈ I, j ∈ J and I, J are finite
index sets. Notice that for each i ∈ I, vi = uiα for some ui ∈ V . Thus,

0 =
∑

i

aivi +
∑

j

b jw j =
∑

i

aiuiα +
∑

j

b jw j,

so
0 =

(∑
i

aiuiα +
∑

j

b jw j

)
µ =

∑
i

aiuiα + 0 =
∑

i

aivi.

Hence, ai = 0 = b j for all i ∈ I, j ∈ J, and we have the claim. Now extend B1 ∪ B2 to a
basis B of V . Since µ ∈ K(V, κ), dim(V/ imα) = |B \ B1| ≥ |B2| ≥ κ. Hence, α ∈ CI(V, κ),
as desired.

Conversely, suppose that the condition (ii) holds. By Lemma 2.4,

α =

(
{xi}i∈I ∪ {y j} j∈J zk

0 uk

)
k∈K

and β =

(
{xi}i∈I y j zk

0 y jβ uk

)
j∈J,k∈K

,

where {xi}i∈I , {xi}i∈I ∪ {y j} j∈J , {uk}k∈K and {xi}i∈I ∪ {y j} j∈J ∪ {zk}k∈K are bases of ker β,
kerα, imα and V , respectively. Extend the linearly independent set {y jβ} j∈J ∪ {uk}k∈K
to a basis of V by joining {wl}l∈L. Define λ, µ ∈ L(V) by

λ =

(
{xi}i∈I ∪ {y j} j∈J zk

0 zk

)
k∈K

and µ =

(
{y jβ} j∈J ∪ {wl}l∈L uk

0 uk

)
k∈K

.

Then dim(ker λ) = dim(ker α). Also, dim(ker µ) = dim(V/ im α) ≥ κ, as α ∈ CI(V, κ).
Hence, λ, µ ∈ K(V, κ). Since α = λβ = βµ and α = αµ, we have α ≤ β on K(V, κ). �

The next example gives a reason why the partially ordered set (CI(V, κ),≤) will be
determined.

Example 3.4. Let κ > 1 and {B1, B2} be a partition of a basis B of V with |B| =
|B1| = |B2|. Choose u ∈ B1 and let φ : B \ {u} → B2 be a bijection. Define distinct
α, β ∈ CI(V, κ) by

α =

(
u v
0 vφ

)
v∈B\{u}

and β =

(
u v
u vφ

)
v∈B\{u}

.
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Then im α ⊆ im β. Furthermore, Vαβ−1 = E(α, β) by choosing A1 = ∅, A2 = {u} and
A3 = B \ {u} in Proposition 2.3. Hence, α ≤ β on L(V) by Theorem 3.1. Suppose that
α = λβ for some λ ∈ L(V) \ {1}. Let v ∈ B \ {u}. Thus, vβ = vφ = vα = vλβ. Since β is
one-to-one, vλ = v. Hence, dim(V/ im λ) ≤ 1 < κ. Therefore, λ < CI(V, κ), so α � β on
CI(V, κ).

Theorem 3.5. Let α, β ∈ CI(V, κ). Then α ≤ β on CI(V, κ) if and only if:

(i) α = β; or
(ii) imα ⊆ im β, Vαβ−1 = E(α, β) and α ∈ K(V, κ).

Proof. Assume that α < β on CI(V, κ). From Theorem 3.1, it remains to show that
α ∈ K(V, κ). Let λ ∈ CI(V, κ) be such that α = λβ. It follows from Lemma 2.4 that

α =

(
{xi}i∈I ∪ {y j} j∈J zk

0 uk

)
k∈K

and β =

(
{xi}i∈I y j zk

0 y jβ uk

)
j∈J,k∈K

,

where {xi}i∈I , {xi}i∈I ∪ {y j} j∈J , {uk}k∈K and {xi}i∈I ∪ {y j} j∈J ∪ {zk}k∈K are bases of ker β,
kerα, imα and V , respectively. We claim that for each k ∈ K, zk + vk ∈ im λ for some
vk, a linear combination of the xi. Let k0 ∈ K. We write

zk0λ =
∑

i

aixi +
∑

j

b jy j +
∑

k

ckzk

for some scalars ai, b j, ck, where i ∈ I′ ⊆ I, j ∈ J′ ⊆ J, k ∈ K′ ⊆ K and I′, J′, K′ are
finite. Then

uk0 = zk0α = zk0λβ =
∑

j

b jy jβ +
∑

k

ckuk,

so ck0 = 1, b j = 0 and ck = 0 for all j ∈ J′ and k ∈ K′ \ {k0}. Thus, zk0λ =
∑

i aixi + zk0

and the claim is proven. It is easy to see that {xi}i∈I ∪ {y j} j∈J ∪ {zk + vk}k∈K is a basis
of V . Since λ ∈ CI(V, κ) and {zk + vk}k∈K ⊆ im λ,

dim(kerα) = |{xi}i∈I ∪ {y j} j∈J | ≥ dim(V/ im λ) ≥ κ.

Hence, α ∈ K(V, κ), as desired.
On the other hand, suppose that the condition (ii) holds. Then, by Lemma 2.4,

α =

(
{xi}i∈I ∪ {y j} j∈J zk

0 uk

)
k∈K

and β =

(
{xi}i∈I y j zk

0 y jβ uk

)
j∈J,k∈K

,

where {xi}i∈I , {xi}i∈I ∪ {y j} j∈J , {uk}k∈K and {xi}i∈I ∪ {y j} j∈J ∪ {zk}k∈K are bases of ker β,
kerα, imα and V , respectively. Notice that {y jβ} j∈J ∪ {uk}k∈K is linearly independent.
Extend this to a basis {y jβ} j∈J ∪ {uk}k∈K ∪ {wl}l∈L of V . Define λ, µ ∈ L(V), as in
Theorem 3.3, by

λ =

(
{xi}i∈I ∪ {y j} j∈J zk

0 zk

)
k∈K

, µ =

(
{y jβ} j∈J ∪ {wl}l∈L uk

0 uk

)
k∈K

.

Then dim(V/ imλ) = dim(kerα) ≥ κ, since α ∈ K(V, κ). As imµ ⊆ imβ and β ∈CI(V, κ),
dim(V/ imµ) ≥ dim(V/ im β) ≥ κ; it follows that λ, µ ∈ CI(V, κ). Since α = λβ = βµ and
α = αµ, we have α ≤ β on CI(V, κ). �
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By Theorems 3.3 and 3.5, we have the following result.

Corollary 3.6. Let α, β ∈ K(V, κ) ∩ CI(V, κ). Then α ≤ β on K(V, κ) ∩ CI(V, κ) if and
only if imα ⊆ im β and Vαβ−1 = E(α, β).

Corollary 3.7.

(i) For each α, β ∈ K(V, κ), α < β on K(V, κ) if and only if α < β on L(V) and
α ∈ CI(V, κ).

(ii) For each α, β ∈ CI(V, κ), α < β on CI(V, κ) if and only if α < β on L(V) and
α ∈ K(V, κ).

We use the condition (ii) in Theorems 3.3 and 3.5 to pursue another example in
which we can show that the natural partial orders on K(V, κ) and CI(V, κ) are totally
different.

Example 3.8. Let {B1, B2, B3} be a partition of a basis of V such that |B1| = |B2| = |B3| =

dim V and B1, B2, B3 are disjoint.
(i) Let φ : B2 → B1 ∪ B2 be a bijection. Define α, β ∈ K(V, κ) by

α =

(
B1 ∪ B2 v

0 v

)
v∈B3

and β =

(
B1 w v
0 wφ v

)
w∈B2,v∈B3

.

Then α ∈ CI(V, κ) and im α ⊆ im β. Choosing A1 = B1, A2 = B2, A3 = B3 and
applying Proposition 2.3, we have Vαβ−1 = E(α, β). Therefore, α ≤ β on K(V, κ) by
Theorem 3.3. Since β is onto, β < CI(V, κ).

(ii) Let ϕ : B1 → B2 and φ : B2 ∪ B3 → B3 be bijections. Define α, β ∈ L(V) by

α =

(
B1 v
0 vφ

)
v∈B2∪B3

and β =

(
w v

wϕ vφ

)
w∈B1,v∈B2∪B3

.

Then α, β ∈ CI(V, κ), α ∈ K(V, κ) and im α ⊆ im β. Substituting A1 = ∅, A2 = B1 and
A3 = B2 ∪ B3 in Proposition 2.3, we get Vαβ−1 = E(α, β). Hence, α ≤ β on CI(V, κ) by
Theorem 3.5. As β is one-to-one, β < K(V, κ).

4. The left and the right compatibility

For a semigroup S with a partial order ρ, an element c ∈ S is said to be left (right)
compatible with respect to ρ on S or, in short, on (S , ρ), if for any elements a, b ∈ S ,
aρb implies caρcb (acρbc). Moreover, c is said to be compatible on (S , ρ) if c is left
and right compatible on (S , ρ). In what follows, we describe the compatible elements
of (K(V, κ),≤) and (CI(V, κ),≤).

Theorem 4.1 [13]. Let γ ∈ L(V) be nonzero. Then:

(i) γ is left compatible on (L(V),≤) if and only if γ is an epimorphism;
(ii) γ is right compatible on (L(V),≤) if and only if γ is a monomorphism.
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The following facts are helpful.

Lemma 4.2 [11].

(i) K(V, κ) is a right ideal of L(V).
(ii) CI(V, κ) is a left ideal of L(V).

Recall that for each α, β ∈ L(V), if Vαβ−1 = E(α, β), then ker β ⊆ kerα.

Theorem 4.3. Let γ ∈ K(V, κ) be nonzero. Then:

(i) γ is left compatible on (K(V, κ),≤) if and only if γ is an epimorphism;
(ii) γ is not right compatible on (K(V, κ),≤).

Proof. (i) Assume that γ is not an epimorphism. Let B1 be a basis of ker γ and B a
basis of V containing B1. Then (B \ B1)γ is a basis of im γ and we let C1 = (B \ B1)γ.
Extend C1 to a basis C of V . Let u ∈ C \ C1 and w ∈ C1. Thus, w = w0γ for some
w0 ∈ B \ B1. Define α, β ∈ K(V, κ) ∩CI(V, κ) by

α =

(
{u,w} C \ {u,w}

w 0

)
and β =

(
u w C \ {u,w}
w u 0

)
.

It follows that imα ⊆ imβ, and Vαβ−1 = E(α, β) by letting A1 = C \ {u,w}, A2 = {u −w}
and A3 = {u} in Proposition 2.3. Hence, by Theorem 3.3, α ≤ β on K(V, κ). By
Proposition 2.1(i), we have vγ , w for all v ∈ B \ (B1 ∪ {w0}), as w0γ = w. For each
v ∈ B \ (B1 ∪ {w0}), vγ ∈C1 \ {w} ⊆C \ {u,w}, so vγα = 0 = vγβ. Since w = wα = w0γα
and u = wβ = w0γβ,

γα =

(
w0 B \ {w0}

w 0

)
and γβ =

(
w0 B \ {w0}

u 0

)
.

Then im γα * im γβ and so, by Theorem 3.3, we get γα � γβ on K(V, κ).
Conversely, suppose that γ is an epimorphism. By Theorem 4.1(i), γ is left

compatible on (L(V),≤). Let α, β ∈ K(V, κ) be such that α < β on K(V, κ). Then α < β
on L(V), and α ∈ CI(V, κ) by Theorem 3.3. Hence, γα ≤ γβ on L(V), and γα ∈ CI(V, κ)
since CI(V, κ) is a left ideal of L(V). Therefore, by Theorem 3.3, γα ≤ γβ on K(V, κ).

(ii) Let B1 be a basis of ker γ contained in a basis B of V . Let u ∈ B1 and w ∈ B \ B1.
Define α, β ∈ K(V, κ) ∩CI(V, κ) by

α =

(
{u,w} B \ {u,w}

w 0

)
and β =

(
u w B \ {u,w}
w u 0

)
.

By a similar argument to (i), α ≤ β on K(V, κ). Since

αγ =

(
{u,w} B \ {u,w}

wγ 0

)
and βγ =

(
u B \ {u}

wγ 0

)
,

ker βγ * kerαγ. Hence, V(αγ)(βγ)−1 , E(αγ, βγ). Therefore, αγ � βγ on K(V, κ) by
Theorem 3.3. �

We investigate the left and the right compatible elements in (CI(V, κ), ≤) in the
following theorem.
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Theorem 4.4. Let γ ∈ CI(V, κ) be nonzero. Then:

(i) γ is not left compatible on (CI(V, κ),≤);
(ii) γ is right compatible on (CI(V, κ),≤) if and only if γ is a monomorphism.

Proof. (i) Clearly, γ is not an epimorphism. Similar to the proof of the necessity of
Theorem 4.3(i), by Theorem 3.5, we have that γ is not left compatible on (CI(V, κ),≤).

(ii) Suppose that γ is not a monomorphism. Similar to the proof of Theorem 4.3(ii),
by Theorem 3.5, γ is not right compatible on (CI(V, κ),≤).

The sufficiency can be proved as in the converse proof of Theorem 4.3(i), applying
Theorem 3.5 and Lemma 4.2(i). �

Remark 4.5. Observing Theorems 4.3 and 4.4 and their proofs, we get the following
results.

(i) The zero map is the unique compatible element in (K(V, κ),≤) ((CI(V, κ),≤)).
(ii) For each subsemigroup S of L(V) containing K(V, κ) ∩CI(V, κ), if γ is left (right)

compatible on (S ,≤), then γ is an epimorphism (a monomorphism).
(iii) Referring to α and β in the proof of the necessity of Theorem 4.3(i), if we choose

A1 = C \ {u,w}, A2 = {u − w} and A3 = {w}, then A1 ∪ A2 ∪ A3 is also a basis of
V but wα = w , u = wβ. Hence, the converse of Proposition 2.3 is not true.

5. Minimal and maximal elements

In the rest of this paper, we describe minimal and maximal elements in K(V, κ) and
CI(V, κ). Since 0 is the minimum element in (L(V),≤), it is interesting to find the
minimal nonzero elements in subsemigroups of (L(V),≤).

Theorem 5.1 [13]. Let α ∈ L(V). Then:

(i) α is a minimal nonzero element in (L(V),≤) if and only if rankα = 1;
(ii) α is maximal in (L(V),≤) if and only if α is a monomorphism or an epimorphism.

Theorem 5.2. Let S (V, κ) be K(V, κ) or CI(V, κ) and let α ∈ S (V, κ). Then α is a minimal
nonzero element in (S (V, κ),≤) if and only if rankα = 1.

Proof. Assume that α is a minimal nonzero element in (S (V, κ),≤). Let B1 be a basis
of ker α. As is usual, we extend this to a basis B of V . Let u ∈ B \ B1. Define
β ∈ K(V, κ) ∩CI(V, κ) by

β =

(
B \ {u} u

0 uα

)
.

Then imβ ⊆ imα. We have Vβα−1 = E(β,α) by taking A1 = B1, A2 = B \ (B1 ∪ {u}) and
A3 = {u} in Proposition 2.3. Therefore, by the assumption and Theorems 3.3 and 3.5,
β = α. Hence, rankα = 1.

The converse is clear by Theorem 5.1(i). �

The next corollary follows from Theorems 5.1(i) and 5.2.
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Corollary 5.3. Let S (V, κ) be K(V, κ) or CI(V, κ) and let α ∈ S (V, κ). Then α is a
minimal nonzero element in (S (V, κ),≤) if and only if α is a minimal nonzero element
in (L(V),≤).

From Theorems 3.3 and 3.5, we have the following result.

Lemma 5.4.

(i) For each α ∈ K(V, κ) \CI(V, κ), α is maximal in (K(V, κ),≤).
(ii) For each α ∈ CI(V, κ) \ K(V, κ), α is maximal in (CI(V, κ),≤).

However, we can have elements in K(V, κ) ∩ CI(V, κ) which are maximal in
(K(V, κ),≤) or in (CI(V, κ),≤).
Example 5.5. Let κ be a natural number and let B = B1 ∪ B2 be a basis of V , where
{B1, B2} is a partition of B such that |B| = |B1| = |B2|. Choose B0 ⊆ B such that |B0| = κ.
Let φ be a bijection from B \ B0 onto B2.

(i) Define α ∈ L(V) by

α =

(
B0 v
0 vφ

)
v∈B\B0

.

Observe that dim(ker α) = |B0| = κ and dim(V/ im α) = |B1| > κ, so α ∈ K(V, κ) ∩
CI(V, κ). To show that α is maximal in (K(V, κ),≤), we assume that α ≤ β on K(V, κ)
for some β ∈ K(V, κ). Then, by Theorem 3.3, im α ⊆ im β and Vαβ−1 = E(α, β).
Moreover, ker β ⊆ ker α. Hence, κ ≤ dim(ker β) ≤ dim(ker α) = κ. This implies that
dim(ker β) = dim(ker α) = κ. Since κ is finite, ker α = ker β. Therefore, α = β by
Lemma 2.5(ii).

(ii) Define α ∈ L(V) by

α =

(
B1 v
0 vφ−1

)
v∈B2

.

Since dim(ker α) > κ and dim(V/ im α) = κ, α ∈ K(V, κ) ∩ CI(V, κ). To see that α
is a maximal element in (CI(V, κ), ≤), we assume that α ≤ β on CI(V, κ) for some
β ∈ CI(V, κ). Then, by Theorem 3.5, im α ⊆ im β and Vαβ−1 = E(α, β). Notice that
κ ≤ dim(V/ imβ) ≤ dim(V/ imα) = κ, so dim(V/ imβ) = dim(V/ imα) = κ. As κ is finite
and imα ⊆ im β, imα = im β. By Lemma 2.5(i), we get α = β.

The next lemma is a generalisation of Example 5.5, and we omit the proof as it is
similar to the example.

Lemma 5.6.

(i) Any element α in K(V, κ) with dim(ker α) = κ < ∞ is a maximal element in
(K(V, κ),≤).

(ii) Any element α in CI(V, κ) with dim(V/ im α) = κ < ∞ is a maximal element in
(CI(V, κ),≤).

The characterisations of the maximality in (K(V, κ),≤) and (CI(V, κ),≤) are shown
in the following theorem. The sufficient conditions follow from Lemmas 5.4 and 5.6.
We therefore only show the necessity of the conditions via the contrapositive.
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Theorem 5.7.

(i) For each α ∈ K(V, κ), α is maximal in (K(V, κ),≤) if and only if α < CI(V, κ) or
dim(kerα) = κ <∞.

(ii) For each α ∈ CI(V, κ), α is maximal in (CI(V, κ),≤) if and only if α < K(V, κ) or
dim(V/ imα) = κ <∞.

Proof. To deal with (i) and (ii), we first provide common results needed in our proof.
Let α ∈ K(V, κ) ∩ CI(V, κ) and let w ∈ V \ im α. Suppose that B1 is a basis of ker α
containing a nonzero element u. Then there exists a basis of V containing B1, say B.
It is known that (B \ B1)α is a basis of imα. Define β ∈ L(V), as in [13, Theorem 4.3],
by

β =

(
v u

vα w

)
v∈B\{u}

.

Clearly, imα ( im β, and Vαβ−1 = E(α, β) by substituting A1 = B1 \ {u}, A2 = {u} and
A3 = B \ B1 in Proposition 2.3.

(i) Assume that dim(kerα) > κ or κ is infinite. Then

dim(ker β) = |B1 \ {u}| = |B1| − 1 = dim(kerα) − 1 ≥ κ,

so β ∈ K(V, κ). Hence, α < β on K(V, κ), by Theorem 3.3.
(ii) Assume that dim(V/ imα) > κ or κ is infinite. Note that im β = 〈{w} ∪ imα〉. By

assumption,
dim(V/ im β) = dim(V/ imα) − 1 ≥ κ.

This implies that β ∈ CI(V, κ). Hence, α < β on CI(V, κ), by Theorem 3.5. �

Consequently, we have the following interesting results.

Corollary 5.8.

(i) K(V, κ) \ CI(V, κ) is the set of all maximal elements in (K(V, κ),≤), where κ is
infinite.

(ii) CI(V, κ) \ K(V, κ) is the set of all maximal elements in (CI(V, κ),≤), where κ is
infinite.

(iii) There are no α, β ∈ K(V, κ) \CI(V, κ) such that α < β on K(V, κ).
(iv) There are no α, β ∈ CI(V, κ) \ K(V, κ) such that α < β on CI(V, κ).

Finally, we construct maximal elements in (K(V, κ),≤) and (CI(V, κ),≤).

Example 5.9. Let κ be a natural number and let B and C be bases of V . There
exist B0 ⊆ B and C0 ⊆ C such that |B0| = κ = |C0|. Moreover, we have a bijection
φ : B \ B0 → C \C0. Define α ∈ L(V) by

α =

(
B0 v
0 vφ

)
v∈B\B0

.

Then dim(ker α) = κ = dim(V/ imα), so α ∈ K(V, κ) ∩ CI(V, κ). Hence, α is maximal
in (K(V, κ),≤) and in (CI(V, κ),≤) by Theorem 5.7.
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