THE NATURAL PARTIAL ORDER ON LINEAR SEMIGROUPS WITH NULLITY AND CO-RANK BOUNDED BELOW

SUREEPORN CHAOPRAKNOI, TEERAPHONG PHONGPATTANACHAROEN ${ }^{\boxtimes}$ and PONGSAN PRAKITSRI

(Received 1 July 2014; accepted 2 August 2014; first published online 14 October 2014)

Abstract

Higgins ['The Mitsch order on a semigroup', Semigroup Forum 49 (1994), 261-266] showed that the natural partial orders on a semigroup and its regular subsemigroups coincide. This is why we are interested in the study of the natural partial order on nonregular semigroups. Of particular interest are the nonregular semigroups of linear transformations with lower bounds on the nullity or the co-rank. In this paper, we determine when they exist, characterise the natural partial order on these nonregular semigroups and consider questions of compatibility, minimality and maximality. In addition, we provide many examples associated with our results.

2010 Mathematics subject classification: primary 20M20; secondary 06A06.
Keywords and phrases: linear transformation semigroup, natural partial order, left (right) compatible element, minimal (maximal) element.

1. Introduction

In 1952, Wagner [14] introduced the natural partial order on inverse semigroups, and then in 1980 this relation was independently extended by Hartwig [3] and Nambooripad [10] to the class of regular semigroups. Later, in 1986, Mitsch [9] generalised the notion of the natural partial order \leq to any semigroup S in the following fashion: for any elements a and b in S,

$$
a \leq b \quad \text { if and only if } a=x b=b y \quad \text { and } \quad a=a y \quad \text { for some } x, y \in S^{1},
$$

where S^{1} is the semigroup S with an identity 1 adjoined if S has no identity, otherwise S^{1} is S. Additionally, we define $a<b$ to mean $a \leq b$ and $a \neq b$.

The concept of the natural partial order on semigroups has been studied over decades. Many research articles considered various semigroups endowed with the natural partial order; for example, see [1, 5, 7, 13]. Moreover, the compatibility, minimality and maximality were also investigated. In 1994, Higgins proved the following result.

[^0]Proposition 1.1 [4]. Let S be a semigroup containing T as its subsemigroup and let x, y be elements in T. Then $x \leq y$ on T implies $x \leq y$ on S. In addition, the converse is true if T is regular.

Therefore, the natural partial order on a regular semigroup can be derived from the natural partial order on any semigroup containing it. However, this is not the case for nonregular semigroups (see [1]). For this reason, we direct our attention to certain nonregular semigroups or, more precisely, nonregular semigroups contained in the semigroup of all linear transformations, one of the most well-known and important semigroups.

Throughout this paper, we let V be a vector space and $L(V)$ be the set of all linear transformations on V. Then $L(V)$ is a regular semigroup under composition. The kernel and image of α in $L(V)$ are respectively denoted by $\operatorname{ker} \alpha$ and $\operatorname{im} \alpha$. The dimension of V is represented by $\operatorname{dim} V$. For any subset A of V, the subspace spanned by A is denoted by $\langle A\rangle$. As usual, 0 and 1 are respectively the zero map and the identity map on V.

For a cardinal number κ with $\kappa \leq \operatorname{dim} V$, let

$$
\begin{aligned}
K(V, \kappa) & =\{\alpha \in L(V) \mid \operatorname{dim}(\operatorname{ker} \alpha) \geq \kappa\}, \\
C I(V, \kappa) & =\{\alpha \in L(V) \mid \operatorname{dim}(V / \operatorname{im} \alpha) \geq \kappa\} .
\end{aligned}
$$

Observe that 0 belongs to $K(V, \kappa) \cap C I(V, \kappa)$. Further, if $\operatorname{dim} V$ is finite, then $K(V, \kappa)$ and $C I(V, \kappa)$ are equal to each other. Otherwise, as proved by Chaopraknoi and Kemprasit [2], $K(V, \kappa)$ and $C I(V, \iota)$ are distinct whenever κ, ι are cardinal numbers such that $\kappa \neq 0$ and $\kappa, \iota \leq \operatorname{dim} V$. In particular, when V is an infinite-dimensional vector space, the semigroups $K\left(V, \aleph_{0}\right)$ and $C I\left(V, \aleph_{0}\right)$ are not regular (see [6, 8] for details). Furthermore, we can prove that both $K(V, \kappa)$ and $C I(V, \kappa)$ are regular if and only if $\operatorname{dim} V$ is finite or $\kappa=0$. Therefore, the natural partial orders on $K(V, \kappa)$ and $C I(V, \kappa)$ when $\operatorname{dim} V$ is infinite and $0<\kappa \leq \operatorname{dim} V$ are of interest.

2. Preliminaries

In this paper, every linear transformation acts on the right-hand side of vectors. For $\alpha \in L(V)$ defined by $x_{i} \alpha=u$ and $y_{j} \alpha=v_{j}$ for all $i \in I, j \in J$, we write

$$
\alpha=\left(\begin{array}{cc}
\left\{x_{i}\right\}_{i \in I} & y_{j} \\
u & v_{j}
\end{array}\right)_{j \in J},
$$

where $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J}$ is a basis of V and I, J are index sets. Other linear transformations will also be represented in this way.

Proposition 2.1 [12]. Let $\alpha \in L(V)$ and let B_{1} be a basis of $\operatorname{ker} \alpha$ and B a basis of V containing B_{1}. Then:
(i) for each $v_{1}, v_{2} \in B \backslash B_{1}, v_{1}=v_{2}$ if and only if $v_{1} \alpha=v_{2} \alpha$;
(ii) $\quad\left(B \backslash B_{1}\right) \alpha$ is a basis of $\operatorname{im} \alpha$.

Now we give a characterisation for $K(V, \kappa)$ and $C I(V, \kappa)$ to be regular.
Theorem 2.2. Let $S(V, \kappa)$ be either $K(V, \kappa)$ or $C I(V, \kappa)$. Then $S(V, \kappa)$ is regular if and only if $\operatorname{dim} V$ is finite or $\kappa=0$.

Proof. Suppose that $\operatorname{dim} V$ is infinite and $\kappa>0$. Let B be a basis of V. There is a partition $\left\{B_{1}, B_{2}\right\}$ of B such that $|B|=\left|B_{1}\right|=\left|B_{2}\right|$. Let $\phi: B_{2} \rightarrow B$ be a bijection. Define $\alpha, \beta \in L(V)$, as in [6, Theorem 6.3.13], by

$$
\alpha=\left(\begin{array}{cc}
B_{1} & v \\
0 & v \phi
\end{array}\right)_{v \in B_{2}} \quad \text { and } \quad v \beta=v \phi^{-1} \quad \text { for all } v \in B
$$

Since $\operatorname{dim}(\operatorname{ker} \alpha)=\left|B_{1}\right|=|B| \geq \kappa$ and $\operatorname{dim}(V / \operatorname{im} \beta)=\left|B \backslash B_{2}\right|=\left|B_{1}\right| \geq \kappa$, we have $\alpha \in$ $K(V, \kappa)$ and $\beta \in C I(V, \kappa)$. Let $\gamma \in L(V)$ be such that $\alpha=\alpha \gamma \alpha$. Then $\gamma \alpha=1$, since α is onto. This implies that γ is one-to-one and hence $\gamma \notin K(V, \kappa)$, whence $K(V, \kappa)$ is not regular. Next let $\lambda \in L(V)$ be such that $\beta=\beta \lambda \beta$. Since β is one-to-one, $\beta \lambda=1$. Then λ is onto, so $\lambda \notin C I(V, \kappa)$. Therefore, $C I(V, \kappa)$ is not regular.

For the converse, it is clear that $K(V, 0)=L(V)=C I(V, 0)$, which is regular. Assume that $\operatorname{dim} V$ is finite. Then $K(V, \kappa)=C I(V, \kappa)$. Let $\alpha \in S(V, \kappa)$ and let B_{1} be a basis of $\operatorname{ker} \alpha$. Extend it to a basis B of V. Then, by Proposition 2.1(ii), $\left(B \backslash B_{1}\right) \alpha$ is a basis of $\operatorname{im} \alpha$. Let $C_{1}=\left(B \backslash B_{1}\right) \alpha$ and let C be a basis of V containing C_{1}. Define $\gamma \in L(V)$ by

$$
\gamma=\left(\begin{array}{cc}
C \backslash C_{1} & v \alpha \\
0 & v
\end{array}\right)_{v \in B \backslash B_{1}}
$$

Thus, $\operatorname{dim}(\operatorname{ker} \gamma)=\operatorname{dim} V-\operatorname{dim}(\operatorname{im} \gamma)=|B|-\left|B \backslash B_{1}\right|=\left|B_{1}\right| \geq \kappa$, so $\gamma \in S(V, \kappa)$. Clearly, $\alpha=\alpha \gamma \alpha$. Hence, $S(V, \kappa)$ is regular.

For any $\alpha, \beta \in L(V)$, let

$$
E(\alpha, \beta)=\{v \in V \mid v \alpha=v \beta\},
$$

a subspace of V contained in $V \alpha \beta^{-1}$. It is called the equaliser of α and β. The following results about the equaliser are very useful for our paper.

Proposition 2.3. Let $\alpha, \beta \in L(V)$ be such that $\operatorname{ker} \beta \subseteq \operatorname{ker} \alpha$ and let A_{1}, A_{2}, A_{3} be disjoint linearly independent sets such that $A_{1}, A_{1} \cup A_{2}, A_{1} \cup A_{2} \cup A_{3}$ are bases of $\operatorname{ker} \beta$, $\operatorname{ker} \alpha$, V, respectively. If $v \alpha=v \beta$ for all $v \in A_{3}$, then $V \alpha \beta^{-1}=E(\alpha, \beta)$.
Proof. Let $v \in V \alpha \beta^{-1}$. Then $v \beta=v^{\prime} \alpha$ for some $v^{\prime} \in V$. We write

$$
v=\sum_{i} a_{i} x_{i}+\sum_{j} b_{j} y_{j}+\sum_{k} c_{k} z_{k} \quad \text { and } \quad v^{\prime}=\sum_{i} a_{i}^{\prime} x_{i}+\sum_{j} b_{j}^{\prime} y_{j}+\sum_{k} c_{k}^{\prime} z_{k}
$$

for some $x_{i} \in A_{1}, y_{j} \in A_{2}, z_{k} \in A_{3}$ and some scalars $a_{i}, a_{i}^{\prime}, b_{j}, b_{j}^{\prime}, c_{k}, c_{k}^{\prime}$, where $i \in I$, $j \in J, k \in K$ and I, J, K are finite index sets. Then

$$
v \beta=\sum_{j} b_{j} y_{j} \beta+\sum_{k} c_{k} z_{k} \beta \quad \text { and } \quad v^{\prime} \alpha=\sum_{k} c_{k}^{\prime} z_{k} \alpha=\sum_{k} c_{k}^{\prime} z_{k} \beta
$$

Notice that $\left(A_{2} \cup A_{3}\right) \beta$ is linearly independent by Proposition 2.1(ii). Since $\nu \beta=v^{\prime} \alpha$, $b_{j}=0$ for all $j \in J$. Hence, $v \alpha=\sum_{k} c_{k} z_{k} \alpha=\sum_{k} c_{k} z_{k} \beta=v \beta$, so $v \in E(\alpha, \beta)$. Therefore, $V \alpha \beta^{-1}=E(\alpha, \beta)$.

Observe that for each $\alpha, \beta \in L(V), V \alpha \beta^{-1}=E(\alpha, \beta)$ implies $\operatorname{ker} \beta \subseteq \operatorname{ker} \alpha$. The next lemma is extracted from [13, proof of Theorem 2.5].

Lemma 2.4. Let $\alpha, \beta \in L(V)$ be such that $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$ and $V \alpha \beta^{-1}=E(\alpha, \beta)$. Then

$$
\alpha=\left(\begin{array}{cc}
\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} & z_{k} \\
0 & u_{k}
\end{array}\right)_{k \in K} \quad \text { and } \quad \beta=\left(\begin{array}{ccc}
\left\{x_{i}\right\}_{i \in I} & y_{j} & z_{k} \\
0 & y_{j} \beta & u_{k}
\end{array}\right)_{j \in J, k \in K},
$$

where $\left\{x_{i}\right\}_{i \in I},\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J},\left\{u_{k}\right\}_{k \in K}$ and $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} \cup\left\{z_{k}\right\}_{k \in K}$ are bases of $\operatorname{ker} \beta$, $\operatorname{ker} \alpha, \operatorname{im} \alpha$ and V, respectively.

In addition, one can see the following result.
Lemma 2.5. Let $\alpha, \beta \in L(V)$ be such that $V \alpha \beta^{-1}=E(\alpha, \beta)$.
(i) If $\operatorname{im} \alpha=\operatorname{im} \beta$, then $\alpha=\beta$.
(ii) If $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$ and $\operatorname{ker} \alpha=\operatorname{ker} \beta$, then $\alpha=\beta$.

For the remainder of this paper, unless stated otherwise, we assume that V is an infinite-dimensional vector space and that κ is a nonzero cardinal number not greater than $\operatorname{dim} V$. Note that both $K(V, \kappa)$ and $C I(V, \kappa)$ do not contain the identity. Thus, $K(V, \kappa)$ is not equal to $K(V, \kappa)^{1}$, and similarly for $C I(V, \kappa)$.

3. The natural partial order

In this section, we characterise the natural partial order on $K(V, \kappa)$ and $C I(V, \kappa)$. We first state a significant property of $(L(V), \leq)$.
Theorem 3.1 [13]. Let $\alpha, \beta \in L(V)$. Then $\alpha \leq \beta$ on $L(V)$ if and only if $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$ and $V \alpha \beta^{-1}=E(\alpha, \beta)$.

The following example shows that $(K(V, \kappa), \leq)$ cannot be obtained from $(L(V), \leq)$.
Example 3.2. Let $\kappa>1$ and let B be a basis of V. Then there is a partition $\left\{B_{1}, B_{2}\right\}$ of B such that $|B|=\left|B_{1}\right|=\left|B_{2}\right|$. Let $u \in B_{2}$. Thus, there exists a bijection $\phi: B_{2} \backslash\{u\} \rightarrow$ $B \backslash\{u\}$. Define $\alpha, \beta \in K(V, \kappa)$ by

$$
\alpha=\left(\begin{array}{cc}
B_{1} \cup\{u\} & v \\
0 & v \phi
\end{array}\right)_{v \in B_{2} \backslash\{u\}} \quad \text { and } \quad \beta=\left(\begin{array}{ccc}
B_{1} & v & u \\
0 & v \phi & u
\end{array}\right)_{v \in B_{2} \backslash\{u\}} .
$$

Obviously, $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$. Substituting $A_{1}=B_{1}, A_{2}=\{u\}$ and $A_{3}=B_{2} \backslash\{u\}$ in Proposition 2.3, we have $V \alpha \beta^{-1}=E(\alpha, \beta)$. Therefore, by Theorem 3.1, $\alpha \leq \beta$ on $L(V)$. Let $\mu \in L(V)$ be such that $\alpha=\beta \mu$. Observe that $0=u \alpha=u \beta \mu=u \mu$. Let $v \in B_{2} \backslash\{u\}$. It follows that $v \phi=v \alpha=v \beta \mu=v \phi \mu$. Since $\left(B_{2} \backslash\{u\}\right) \phi=B \backslash\{u\}$,

$$
\mu=\left(\begin{array}{ll}
u & v \\
0 & v
\end{array}\right)_{v \in B \backslash \backslash u\}}
$$

Hence, $\operatorname{dim}(\operatorname{ker} \mu)=1<\kappa$, so $\mu \notin K(V, \kappa)^{1}$. Therefore, $\alpha \not \leq \beta$ on $K(V, \kappa)$.

Theorem 3.3. Let $\alpha, \beta \in K(V, \kappa)$. Then $\alpha \leq \beta$ on $K(V, \kappa)$ if and only if:
(i) $\alpha=\beta$; or
(ii) $\operatorname{im} \alpha \subseteq \operatorname{im} \beta, V \alpha \beta^{-1}=E(\alpha, \beta)$ and $\alpha \in C I(V, \kappa)$.

Proof. Assume that $\alpha<\beta$ on $K(V, \kappa)$. Then $\alpha<\beta$ on $L(V)$ and therefore $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$ and $V \alpha \beta^{-1}=E(\alpha, \beta)$ by Theorem 3.1. Next we show that $\alpha \in C I(V, \kappa)$. Since $\alpha<\beta$ on $K(V, \kappa), \alpha=\alpha \mu$ for some $\mu \in K(V, \kappa)$. Let B_{1} be a basis of $\operatorname{im} \alpha$ and B_{2} a basis of $\operatorname{ker} \mu$. If there exists $v \in B_{1} \cap B_{2}$, then $v=u \alpha=u \alpha \mu=v \mu=0$ for some $u \in V$, which is a contradiction. Hence, $B_{1} \cap B_{2}=\emptyset$. We claim that $B_{1} \cup B_{2}$ is linearly independent. Suppose that

$$
\sum_{i} a_{i} v_{i}+\sum_{j} b_{j} w_{j}=0
$$

for some $v_{i} \in B_{1}, w_{j} \in B_{2}$ and suitable scalars a_{i}, b_{j}, where $i \in I, j \in J$ and I, J are finite index sets. Notice that for each $i \in I, v_{i}=u_{i} \alpha$ for some $u_{i} \in V$. Thus,

$$
0=\sum_{i} a_{i} v_{i}+\sum_{j} b_{j} w_{j}=\sum_{i} a_{i} u_{i} \alpha+\sum_{j} b_{j} w_{j}
$$

so

$$
0=\left(\sum_{i} a_{i} u_{i} \alpha+\sum_{j} b_{j} w_{j}\right) \mu=\sum_{i} a_{i} u_{i} \alpha+0=\sum_{i} a_{i} v_{i} .
$$

Hence, $a_{i}=0=b_{j}$ for all $i \in I, j \in J$, and we have the claim. Now extend $B_{1} \cup B_{2}$ to a basis B of V. Since $\mu \in K(V, \kappa), \operatorname{dim}(V / \operatorname{im} \alpha)=\left|B \backslash B_{1}\right| \geq\left|B_{2}\right| \geq \kappa$. Hence, $\alpha \in C I(V, \kappa)$, as desired.

Conversely, suppose that the condition (ii) holds. By Lemma 2.4,

$$
\alpha=\left(\begin{array}{cc}
\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} & z_{k} \\
0 & u_{k}
\end{array}\right)_{k \in K} \quad \text { and } \quad \beta=\left(\begin{array}{ccc}
\left\{x_{i}\right\}_{i \in I} & y_{j} & z_{k} \\
0 & y_{j} \beta & u_{k}
\end{array}\right)_{j \in J, k \in K}
$$

where $\left\{x_{i}\right\}_{i \in I},\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J},\left\{u_{k}\right\}_{k \in K}$ and $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} \cup\left\{z_{k}\right\}_{k \in K}$ are bases of ker β, $\operatorname{ker} \alpha, \operatorname{im} \alpha$ and V, respectively. Extend the linearly independent set $\left\{y_{j} \beta\right\}_{j \in J} \cup\left\{u_{k}\right\}_{k \in K}$ to a basis of V by joining $\left\{w_{l}\right\}_{l \in L}$. Define $\lambda, \mu \in L(V)$ by

$$
\lambda=\left(\begin{array}{cc}
\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} & z_{k} \\
0 & z_{k}
\end{array}\right)_{k \in K} \quad \text { and } \quad \mu=\left(\begin{array}{cc}
\left\{y_{j} \beta\right\}_{j \in J} \cup\left\{w_{l}\right\}_{l \in L} & u_{k} \\
0 & u_{k}
\end{array}\right)_{k \in K} .
$$

Then $\operatorname{dim}(\operatorname{ker} \lambda)=\operatorname{dim}(\operatorname{ker} \alpha)$. Also, $\operatorname{dim}(\operatorname{ker} \mu)=\operatorname{dim}(V / \operatorname{im} \alpha) \geq \kappa$, as $\alpha \in C I(V, \kappa)$. Hence, $\lambda, \mu \in K(V, \kappa)$. Since $\alpha=\lambda \beta=\beta \mu$ and $\alpha=\alpha \mu$, we have $\alpha \leq \beta$ on $K(V, \kappa)$.

The next example gives a reason why the partially ordered set $(C I(V, \kappa), \leq)$ will be determined.

Example 3.4. Let $\kappa>1$ and $\left\{B_{1}, B_{2}\right\}$ be a partition of a basis B of V with $|B|=$ $\left|B_{1}\right|=\left|B_{2}\right|$. Choose $u \in B_{1}$ and let $\phi: B \backslash\{u\} \rightarrow B_{2}$ be a bijection. Define distinct $\alpha, \beta \in C I(V, \kappa)$ by

$$
\alpha=\left(\begin{array}{cc}
u & v \\
0 & v \phi
\end{array}\right)_{v \in B \backslash\{u\}} \quad \text { and } \quad \beta=\left(\begin{array}{cc}
u & v \\
u & v \phi
\end{array}\right)_{v \in B \backslash\{u\}}
$$

Then $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$. Furthermore, $V \alpha \beta^{-1}=E(\alpha, \beta)$ by choosing $A_{1}=\emptyset, A_{2}=\{u\}$ and $A_{3}=B \backslash\{u\}$ in Proposition 2.3. Hence, $\alpha \leq \beta$ on $L(V)$ by Theorem 3.1. Suppose that $\alpha=\lambda \beta$ for some $\lambda \in L(V) \backslash\{1\}$. Let $v \in B \backslash\{u\}$. Thus, $v \beta=v \phi=v \alpha=v \lambda \beta$. Since β is one-to-one, $v \lambda=v$. Hence, $\operatorname{dim}(V / \operatorname{im} \lambda) \leq 1<\kappa$. Therefore, $\lambda \notin C I(V, \kappa)$, so $\alpha \not 又 \beta$ on $C I(V, \kappa)$.
Theorem 3.5. Let $\alpha, \beta \in C I(V, \kappa)$. Then $\alpha \leq \beta$ on $C I(V, \kappa)$ if and only if:
(i) $\alpha=\beta$; or
(ii) $\operatorname{im} \alpha \subseteq \operatorname{im} \beta, V \alpha \beta^{-1}=E(\alpha, \beta)$ and $\alpha \in K(V, \kappa)$.

Proof. Assume that $\alpha<\beta$ on $\operatorname{CI}(V, \kappa)$. From Theorem 3.1, it remains to show that $\alpha \in K(V, \kappa)$. Let $\lambda \in C I(V, \kappa)$ be such that $\alpha=\lambda \beta$. It follows from Lemma 2.4 that

$$
\alpha=\left(\begin{array}{cc}
\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} & z_{k} \\
0 & u_{k}
\end{array}\right)_{k \in K} \quad \text { and } \quad \beta=\left(\begin{array}{ccc}
\left\{x_{i}\right\}_{i \in I} & y_{j} & z_{k} \\
0 & y_{j} \beta & u_{k}
\end{array}\right)_{j \in J, k \in K},
$$

where $\left\{x_{i}\right\}_{i \in I},\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J},\left\{u_{k}\right\}_{k \in K}$ and $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} \cup\left\{z_{k}\right\}_{k \in K}$ are bases of ker β, $\operatorname{ker} \alpha, \operatorname{im} \alpha$ and V, respectively. We claim that for each $k \in K, z_{k}+v_{k} \in \operatorname{im} \lambda$ for some v_{k}, a linear combination of the x_{i}. Let $k_{0} \in K$. We write

$$
z_{k_{0}} \lambda=\sum_{i} a_{i} x_{i}+\sum_{j} b_{j} y_{j}+\sum_{k} c_{k} z_{k}
$$

for some scalars a_{i}, b_{j}, c_{k}, where $i \in I^{\prime} \subseteq I, j \in J^{\prime} \subseteq J, k \in K^{\prime} \subseteq K$ and $I^{\prime}, J^{\prime}, K^{\prime}$ are finite. Then

$$
u_{k_{0}}=z_{k_{0}} \alpha=z_{k_{0}} \lambda \beta=\sum_{j} b_{j} y_{j} \beta+\sum_{k} c_{k} u_{k}
$$

so $c_{k_{0}}=1, b_{j}=0$ and $c_{k}=0$ for all $j \in J^{\prime}$ and $k \in K^{\prime} \backslash\left\{k_{0}\right\}$. Thus, $z_{k_{0}} \lambda=\sum_{i} a_{i} x_{i}+z_{k_{0}}$ and the claim is proven. It is easy to see that $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} \cup\left\{z_{k}+v_{k}\right\}_{k \in K}$ is a basis of V. Since $\lambda \in C I(V, \kappa)$ and $\left\{z_{k}+v_{k}\right\}_{k \in K} \subseteq \operatorname{im} \lambda$,

$$
\operatorname{dim}(\operatorname{ker} \alpha)=\left|\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J}\right| \geq \operatorname{dim}(V / \operatorname{im} \lambda) \geq \kappa .
$$

Hence, $\alpha \in K(V, \kappa)$, as desired.
On the other hand, suppose that the condition (ii) holds. Then, by Lemma 2.4,

$$
\alpha=\left(\begin{array}{cc}
\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} & z_{k} \\
0 & u_{k}
\end{array}\right)_{k \in K} \quad \text { and } \quad \beta=\left(\begin{array}{ccc}
\left\{x_{i}\right\}_{i \in I} & y_{j} & z_{k} \\
0 & y_{j} \beta & u_{k}
\end{array}\right)_{j \in J, k \in K},
$$

where $\left\{x_{i}\right\}_{i \in I},\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J},\left\{u_{k}\right\}_{k \in K}$ and $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} \cup\left\{z_{k}\right\}_{k \in K}$ are bases of ker β, $\operatorname{ker} \alpha, \operatorname{im} \alpha$ and V, respectively. Notice that $\left\{y_{j} \beta\right\}_{j \in J} \cup\left\{u_{k}\right\}_{k \in K}$ is linearly independent. Extend this to a basis $\left\{y_{j} \beta\right\}_{j \in J} \cup\left\{u_{k}\right\}_{k \in K} \cup\left\{w_{l}\right\}_{l \in L}$ of V. Define $\lambda, \mu \in L(V)$, as in Theorem 3.3, by

$$
\lambda=\left(\begin{array}{cc}
\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} & z_{k} \\
0 & z_{k}
\end{array}\right)_{k \in K} \quad, \quad \mu=\left(\begin{array}{cc}
\left\{y_{j} \beta\right\}_{j \in J} \cup\left\{w_{l}\right\}_{l \in L} & u_{k} \\
0 & u_{k}
\end{array}\right)_{k \in K} .
$$

Then $\operatorname{dim}(V / \operatorname{im} \lambda)=\operatorname{dim}(\operatorname{ker} \alpha) \geq \kappa$, since $\alpha \in K(V, \kappa)$. As $\operatorname{im} \mu \subseteq \operatorname{im} \beta$ and $\beta \in C I(V, \kappa)$, $\operatorname{dim}(V / \operatorname{im} \mu) \geq \operatorname{dim}(V / \operatorname{im} \beta) \geq \kappa$; it follows that $\lambda, \mu \in C I(V, \kappa)$. Since $\alpha=\lambda \beta=\beta \mu$ and $\alpha=\alpha \mu$, we have $\alpha \leq \beta$ on $C I(V, \kappa)$.

By Theorems 3.3 and 3.5, we have the following result.
Corollary 3.6. Let $\alpha, \beta \in K(V, \kappa) \cap C I(V, \kappa)$. Then $\alpha \leq \beta$ on $K(V, \kappa) \cap C I(V, \kappa)$ if and only if im $\alpha \subseteq \operatorname{im} \beta$ and $V \alpha \beta^{-1}=E(\alpha, \beta)$.

Corollary 3.7.
(i) For each $\alpha, \beta \in K(V, \kappa), \alpha<\beta$ on $K(V, \kappa)$ if and only if $\alpha<\beta$ on $L(V)$ and $\alpha \in C I(V, \kappa)$.
(ii) For each $\alpha, \beta \in \operatorname{CI}(V, \kappa), \alpha<\beta$ on $\operatorname{CI}(V, \kappa)$ if and only if $\alpha<\beta$ on $L(V)$ and $\alpha \in K(V, \kappa)$.

We use the condition (ii) in Theorems 3.3 and 3.5 to pursue another example in which we can show that the natural partial orders on $K(V, \kappa)$ and $C I(V, \kappa)$ are totally different.

Example 3.8. Let $\left\{B_{1}, B_{2}, B_{3}\right\}$ be a partition of a basis of V such that $\left|B_{1}\right|=\left|B_{2}\right|=\left|B_{3}\right|=$ $\operatorname{dim} V$ and B_{1}, B_{2}, B_{3} are disjoint.
(i) Let $\phi: B_{2} \rightarrow B_{1} \cup B_{2}$ be a bijection. Define $\alpha, \beta \in K(V, \kappa)$ by

$$
\alpha=\left(\begin{array}{cc}
B_{1} \cup B_{2} & v \\
0 & v
\end{array}\right)_{v \in B_{3}} \quad \text { and } \quad \beta=\left(\begin{array}{ccc}
B_{1} & w & v \\
0 & w \phi & v
\end{array}\right)_{w \in B_{2}, v \in B_{3}}
$$

Then $\alpha \in C I(V, \kappa)$ and $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$. Choosing $A_{1}=B_{1}, A_{2}=B_{2}, A_{3}=B_{3}$ and applying Proposition 2.3, we have $V \alpha \beta^{-1}=E(\alpha, \beta)$. Therefore, $\alpha \leq \beta$ on $K(V, \kappa)$ by Theorem 3.3. Since β is onto, $\beta \notin C I(V, \kappa)$.
(ii) Let $\varphi: B_{1} \rightarrow B_{2}$ and $\phi: B_{2} \cup B_{3} \rightarrow B_{3}$ be bijections. Define $\alpha, \beta \in L(V)$ by

$$
\alpha=\left(\begin{array}{cc}
B_{1} & v \\
0 & v \phi
\end{array}\right)_{v \in B_{2} \cup B_{3}} \quad \text { and } \quad \beta=\left(\begin{array}{cc}
w & v \\
w \varphi & v \phi
\end{array}\right)_{w \in B_{1}, v \in B_{2} \cup B_{3}} .
$$

Then $\alpha, \beta \in C I(V, \kappa), \alpha \in K(V, \kappa)$ and $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$. Substituting $A_{1}=\emptyset, A_{2}=B_{1}$ and $A_{3}=B_{2} \cup B_{3}$ in Proposition 2.3, we get $V \alpha \beta^{-1}=E(\alpha, \beta)$. Hence, $\alpha \leq \beta$ on $C I(V, \kappa)$ by Theorem 3.5. As β is one-to-one, $\beta \notin K(V, \kappa)$.

4. The left and the right compatibility

For a semigroup S with a partial order ρ, an element $c \in S$ is said to be left (right) compatible with respect to ρ on S or, in short, on (S, ρ), if for any elements $a, b \in S$, $a \rho b$ implies $c a \rho c b(a c \rho b c)$. Moreover, c is said to be compatible on (S, ρ) if c is left and right compatible on (S, ρ). In what follows, we describe the compatible elements of $(K(V, \kappa), \leq)$ and $(C I(V, \kappa), \leq)$.

Theorem 4.1 [13]. Let $\gamma \in L(V)$ be nonzero. Then:
(i) $\quad \gamma$ is left compatible on $(L(V), \leq)$ if and only if γ is an epimorphism;
(ii) γ is right compatible on $(L(V), \leq)$ if and only if γ is a monomorphism.

The following facts are helpful.
Lemma 4.2 [11].
(i) $K(V, \kappa)$ is a right ideal of $L(V)$.
(ii) $C I(V, \kappa)$ is a left ideal of $L(V)$.

Recall that for each $\alpha, \beta \in L(V)$, if $V \alpha \beta^{-1}=E(\alpha, \beta)$, then $\operatorname{ker} \beta \subseteq \operatorname{ker} \alpha$.
Theorem 4.3. Let $\gamma \in K(V, \kappa)$ be nonzero. Then:
(i) γ is left compatible on $(K(V, \kappa), \leq)$ if and only if γ is an epimorphism;
(ii) γ is not right compatible on $(K(V, \kappa), \leq)$.

Proof. (i) Assume that γ is not an epimorphism. Let B_{1} be a basis of $\operatorname{ker} \gamma$ and B a basis of V containing B_{1}. Then $\left(B \backslash B_{1}\right) \gamma$ is a basis of im γ and we let $C_{1}=\left(B \backslash B_{1}\right) \gamma$. Extend C_{1} to a basis C of V. Let $u \in C \backslash C_{1}$ and $w \in C_{1}$. Thus, $w=w_{0} \gamma$ for some $w_{0} \in B \backslash B_{1}$. Define $\alpha, \beta \in K(V, \kappa) \cap C I(V, \kappa)$ by

$$
\alpha=\left(\begin{array}{cc}
\{u, w\} & C \backslash\{u, w\} \\
w & 0
\end{array}\right) \quad \text { and } \quad \beta=\left(\begin{array}{ccc}
u & w & C \backslash\{u, w\} \\
w & u & 0
\end{array}\right) .
$$

It follows that $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$, and $V \alpha \beta^{-1}=E(\alpha, \beta)$ by letting $A_{1}=C \backslash\{u, w\}, A_{2}=\{u-w\}$ and $A_{3}=\{u\}$ in Proposition 2.3. Hence, by Theorem 3.3, $\alpha \leq \beta$ on $K(V, \kappa)$. By Proposition 2.1(i), we have $v \gamma \neq w$ for all $v \in B \backslash\left(B_{1} \cup\left\{w_{0}\right\}\right)$, as $w_{0} \gamma=w$. For each $v \in B \backslash\left(B_{1} \cup\left\{w_{0}\right\}\right), v \gamma \in C_{1} \backslash\{w\} \subseteq C \backslash\{u, w\}$, so $v \gamma \alpha=0=v \gamma \beta$. Since $w=w \alpha=w_{0} \gamma \alpha$ and $u=w \beta=w_{0} \gamma \beta$,

$$
\gamma \alpha=\left(\begin{array}{cc}
w_{0} & B \backslash\left\{w_{0}\right\} \\
w & 0
\end{array}\right) \quad \text { and } \quad \gamma \beta=\left(\begin{array}{cc}
w_{0} & B \backslash\left\{w_{0}\right\} \\
u & 0
\end{array}\right) .
$$

Then im $\gamma \alpha \nsubseteq \operatorname{im} \gamma \beta$ and so, by Theorem 3.3, we get $\gamma \alpha \not \leq \gamma \beta$ on $K(V, \kappa)$.
Conversely, suppose that γ is an epimorphism. By Theorem 4.1(i), γ is left compatible on $(L(V), \leq)$. Let $\alpha, \beta \in K(V, \kappa)$ be such that $\alpha<\beta$ on $K(V, \kappa)$. Then $\alpha<\beta$ on $L(V)$, and $\alpha \in C I(V, \kappa)$ by Theorem 3.3. Hence, $\gamma \alpha \leq \gamma \beta$ on $L(V)$, and $\gamma \alpha \in C I(V, \kappa)$ since $C I(V, \kappa)$ is a left ideal of $L(V)$. Therefore, by Theorem 3.3, $\gamma \alpha \leq \gamma \beta$ on $K(V, \kappa)$.
(ii) Let B_{1} be a basis of ker γ contained in a basis B of V. Let $u \in B_{1}$ and $w \in B \backslash B_{1}$. Define $\alpha, \beta \in K(V, \kappa) \cap C I(V, \kappa)$ by

$$
\alpha=\left(\begin{array}{cc}
\{u, w\} & B \backslash\{u, w\} \\
w & 0
\end{array}\right) \quad \text { and } \quad \beta=\left(\begin{array}{ccc}
u & w & B \backslash\{u, w\} \\
w & u & 0
\end{array}\right) .
$$

By a similar argument to (i), $\alpha \leq \beta$ on $K(V, \kappa)$. Since

$$
\alpha \gamma=\left(\begin{array}{cc}
\{u, w\} & B \backslash\{u, w\} \\
w \gamma & 0
\end{array}\right) \quad \text { and } \quad \beta \gamma=\left(\begin{array}{cc}
u & B \backslash\{u\} \\
w \gamma & 0
\end{array}\right),
$$

$\operatorname{ker} \beta \gamma \nsubseteq \operatorname{ker} \alpha \gamma$. Hence, $V(\alpha \gamma)(\beta \gamma)^{-1} \neq E(\alpha \gamma, \beta \gamma)$. Therefore, $\alpha \gamma \not \leq \beta \gamma$ on $K(V, \kappa)$ by Theorem 3.3.

We investigate the left and the right compatible elements in $(C I(V, \kappa), \leq)$ in the following theorem.

Theorem 4.4. Let $\gamma \in C I(V, \kappa)$ be nonzero. Then:
(i) $\quad \gamma$ is not left compatible on $(C I(V, \kappa), \leq)$;
(ii) γ is right compatible on $(C I(V, \kappa), \leq)$ if and only if γ is a monomorphism.

Proof. (i) Clearly, γ is not an epimorphism. Similar to the proof of the necessity of Theorem 4.3(i), by Theorem 3.5, we have that γ is not left compatible on $(C I(V, \kappa), \leq)$.
(ii) Suppose that γ is not a monomorphism. Similar to the proof of Theorem 4.3(ii), by Theorem 3.5, γ is not right compatible on ($C I(V, \kappa), \leq$).

The sufficiency can be proved as in the converse proof of Theorem 4.3(i), applying Theorem 3.5 and Lemma 4.2(i).
Remark 4.5. Observing Theorems 4.3 and 4.4 and their proofs, we get the following results.
(i) The zero map is the unique compatible element in $(K(V, \kappa), \leq)((C I(V, \kappa), \leq))$.
(ii) For each subsemigroup S of $L(V)$ containing $K(V, \kappa) \cap C I(V, \kappa)$, if γ is left (right) compatible on (S, \leq), then γ is an epimorphism (a monomorphism).
(iii) Referring to α and β in the proof of the necessity of Theorem 4.3(i), if we choose $A_{1}=C \backslash\{u, w\}, A_{2}=\{u-w\}$ and $A_{3}=\{w\}$, then $A_{1} \cup A_{2} \cup A_{3}$ is also a basis of V but $w \alpha=w \neq u=w \beta$. Hence, the converse of Proposition 2.3 is not true.

5. Minimal and maximal elements

In the rest of this paper, we describe minimal and maximal elements in $K(V, \kappa)$ and $C I(V, \kappa)$. Since 0 is the minimum element in $(L(V), \leq)$, it is interesting to find the minimal nonzero elements in subsemigroups of $(L(V), \leq)$.

Theorem 5.1 [13]. Let $\alpha \in L(V)$. Then:
(i) α is a minimal nonzero element in $(L(V), \leq)$ if and only if $\operatorname{rank} \alpha=1$;
(ii) α is maximal in $(L(V), \leq)$ if and only if α is a monomorphism or an epimorphism.

Theorem 5.2. Let $S(V, \kappa)$ be $K(V, \kappa)$ or $C I(V, \kappa)$ and let $\alpha \in S(V, \kappa)$. Then α is a minimal nonzero element in $(S(V, \kappa), \leq)$ if and only if $\operatorname{rank} \alpha=1$.

Proof. Assume that α is a minimal nonzero element in $(S(V, \kappa), \leq)$. Let B_{1} be a basis of $\operatorname{ker} \alpha$. As is usual, we extend this to a basis B of V. Let $u \in B \backslash B_{1}$. Define $\beta \in K(V, \kappa) \cap C I(V, \kappa)$ by

$$
\beta=\left(\begin{array}{cc}
B \backslash\{u\} & u \\
0 & u \alpha
\end{array}\right) .
$$

Then $\operatorname{im} \beta \subseteq \operatorname{im} \alpha$. We have $V \beta \alpha^{-1}=E(\beta, \alpha)$ by taking $A_{1}=B_{1}, A_{2}=B \backslash\left(B_{1} \cup\{u\}\right)$ and $A_{3}=\{u\}$ in Proposition 2.3. Therefore, by the assumption and Theorems 3.3 and 3.5, $\beta=\alpha$. Hence, $\operatorname{rank} \alpha=1$.

The converse is clear by Theorem 5.1(i).
The next corollary follows from Theorems 5.1(i) and 5.2.

Corollary 5.3. Let $S(V, \kappa)$ be $K(V, \kappa)$ or $C I(V, \kappa)$ and let $\alpha \in S(V, \kappa)$. Then α is a minimal nonzero element in $(S(V, \kappa), \leq)$ if and only if α is a minimal nonzero element in $(L(V), \leq)$.

From Theorems 3.3 and 3.5, we have the following result.
Lemma 5.4.
(i) For each $\alpha \in K(V, \kappa) \backslash C I(V, \kappa)$, α is maximal in $(K(V, \kappa), \leq)$.
(ii) For each $\alpha \in C I(V, \kappa) \backslash K(V, \kappa), \alpha$ is maximal in $(C I(V, \kappa), \leq)$.

However, we can have elements in $K(V, \kappa) \cap C I(V, \kappa)$ which are maximal in $(K(V, \kappa), \leq)$ or in $(C I(V, \kappa), \leq)$.
Example 5.5. Let κ be a natural number and let $B=B_{1} \cup B_{2}$ be a basis of V, where $\left\{B_{1}, B_{2}\right\}$ is a partition of B such that $|B|=\left|B_{1}\right|=\left|B_{2}\right|$. Choose $B_{0} \subseteq B$ such that $\left|B_{0}\right|=\kappa$. Let ϕ be a bijection from $B \backslash B_{0}$ onto B_{2}.
(i) Define $\alpha \in L(V)$ by

$$
\alpha=\left(\begin{array}{cc}
B_{0} & v \\
0 & v \phi
\end{array}\right)_{v \in B \backslash B_{0}} .
$$

Observe that $\operatorname{dim}(\operatorname{ker} \alpha)=\left|B_{0}\right|=\kappa$ and $\operatorname{dim}(V / \operatorname{im} \alpha)=\left|B_{1}\right|>\kappa$, so $\alpha \in K(V, \kappa) \cap$ $C I(V, \kappa)$. To show that α is maximal in ($K(V, \kappa), \leq)$, we assume that $\alpha \leq \beta$ on $K(V, \kappa)$ for some $\beta \in K(V, \kappa)$. Then, by Theorem 3.3, $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$ and $V \alpha \beta^{-1}=E(\alpha, \beta)$. Moreover, $\operatorname{ker} \beta \subseteq \operatorname{ker} \alpha$. Hence, $\kappa \leq \operatorname{dim}(\operatorname{ker} \beta) \leq \operatorname{dim}(\operatorname{ker} \alpha)=\kappa$. This implies that $\operatorname{dim}(\operatorname{ker} \beta)=\operatorname{dim}(\operatorname{ker} \alpha)=\kappa$. Since κ is finite, $\operatorname{ker} \alpha=\operatorname{ker} \beta$. Therefore, $\alpha=\beta$ by Lemma 2.5(ii).
(ii) Define $\alpha \in L(V)$ by

$$
\alpha=\left(\begin{array}{cc}
B_{1} & v \\
0 & v \phi^{-1}
\end{array}\right)_{v \in B_{2}} .
$$

Since $\operatorname{dim}(\operatorname{ker} \alpha)>\kappa$ and $\operatorname{dim}(V / \operatorname{im} \alpha)=\kappa, \alpha \in K(V, \kappa) \cap C I(V, \kappa)$. To see that α is a maximal element in $(C I(V, \kappa), \leq)$, we assume that $\alpha \leq \beta$ on $C I(V, \kappa)$ for some $\beta \in C I(V, \kappa)$. Then, by Theorem 3.5, $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$ and $V \alpha \beta^{-1}=E(\alpha, \beta)$. Notice that $\kappa \leq \operatorname{dim}(V / \operatorname{im} \beta) \leq \operatorname{dim}(V / \operatorname{im} \alpha)=\kappa$, so $\operatorname{dim}(V / \operatorname{im} \beta)=\operatorname{dim}(V / \operatorname{im} \alpha)=\kappa$. As κ is finite and $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$, im $\alpha=\operatorname{im} \beta$. By Lemma 2.5(i), we get $\alpha=\beta$.

The next lemma is a generalisation of Example 5.5, and we omit the proof as it is similar to the example.

Lemma 5.6.
(i) Any element α in $K(V, \kappa)$ with $\operatorname{dim}(\operatorname{ker} \alpha)=\kappa<\infty$ is a maximal element in ($K(V, \kappa), \leq$).
(ii) Any element α in $C I(V, \kappa)$ with $\operatorname{dim}(V / \operatorname{im} \alpha)=\kappa<\infty$ is a maximal element in (CI(V,к), \leq).

The characterisations of the maximality in $(K(V, \kappa), \leq)$ and $(C I(V, \kappa), \leq)$ are shown in the following theorem. The sufficient conditions follow from Lemmas 5.4 and 5.6. We therefore only show the necessity of the conditions via the contrapositive.

Theorem 5.7.

(i) For each $\alpha \in K(V, \kappa), \alpha$ is maximal in $(K(V, \kappa), \leq)$ if and only if $\alpha \notin C I(V, \kappa)$ or $\operatorname{dim}(\operatorname{ker} \alpha)=\kappa<\infty$.
(ii) For each $\alpha \in C I(V, \kappa), \alpha$ is maximal in $(C I(V, \kappa), \leq)$ if and only if $\alpha \notin K(V, \kappa)$ or $\operatorname{dim}(V / \operatorname{im} \alpha)=\kappa<\infty$.

Proof. To deal with (i) and (ii), we first provide common results needed in our proof. Let $\alpha \in K(V, \kappa) \cap C I(V, \kappa)$ and let $w \in V \backslash \operatorname{im} \alpha$. Suppose that B_{1} is a basis of $\operatorname{ker} \alpha$ containing a nonzero element u. Then there exists a basis of V containing B_{1}, say B. It is known that $\left(B \backslash B_{1}\right) \alpha$ is a basis of $\operatorname{im} \alpha$. Define $\beta \in L(V)$, as in [13, Theorem 4.3], by

$$
\beta=\left(\begin{array}{cc}
v & u \\
v \alpha & w
\end{array}\right)_{v \in B \backslash\{u\}}
$$

Clearly, $\operatorname{im} \alpha \subsetneq \operatorname{im} \beta$, and $V \alpha \beta^{-1}=E(\alpha, \beta)$ by substituting $A_{1}=B_{1} \backslash\{u\}, A_{2}=\{u\}$ and $A_{3}=B \backslash B_{1}$ in Proposition 2.3.
(i) Assume that $\operatorname{dim}(\operatorname{ker} \alpha)>\kappa$ or κ is infinite. Then

$$
\operatorname{dim}(\operatorname{ker} \beta)=\left|B_{1} \backslash\{u\}\right|=\left|B_{1}\right|-1=\operatorname{dim}(\operatorname{ker} \alpha)-1 \geq \kappa
$$

so $\beta \in K(V, \kappa)$. Hence, $\alpha<\beta$ on $K(V, \kappa)$, by Theorem 3.3.
(ii) Assume that $\operatorname{dim}(V / \operatorname{im} \alpha)>\kappa$ or κ is infinite. Note that $\operatorname{im} \beta=\langle\{w\} \cup \operatorname{im} \alpha\rangle$. By assumption,

$$
\operatorname{dim}(V / \operatorname{im} \beta)=\operatorname{dim}(V / \operatorname{im} \alpha)-1 \geq \kappa .
$$

This implies that $\beta \in C I(V, \kappa)$. Hence, $\alpha<\beta$ on $C I(V, \kappa)$, by Theorem 3.5.
Consequently, we have the following interesting results.
Corollary 5.8.
(i) $\quad K(V, \kappa) \backslash C I(V, \kappa)$ is the set of all maximal elements in $(K(V, \kappa), \leq)$, where κ is infinite.
(ii) $C I(V, \kappa) \backslash K(V, \kappa)$ is the set of all maximal elements in $(C I(V, \kappa), \leq)$, where κ is infinite.
(iii) There are no $\alpha, \beta \in K(V, \kappa) \backslash C I(V, \kappa)$ such that $\alpha<\beta$ on $K(V, \kappa)$.
(iv) There are no $\alpha, \beta \in C I(V, \kappa) \backslash K(V, \kappa)$ such that $\alpha<\beta$ on $C I(V, \kappa)$.

Finally, we construct maximal elements in $(K(V, \kappa), \leq)$ and $(C I(V, \kappa), \leq)$.
Example 5.9. Let κ be a natural number and let B and C be bases of V. There exist $B_{0} \subseteq B$ and $C_{0} \subseteq C$ such that $\left|B_{0}\right|=\kappa=\left|C_{0}\right|$. Moreover, we have a bijection $\phi: B \backslash B_{0} \rightarrow C \backslash C_{0}$. Define $\alpha \in L(V)$ by

$$
\alpha=\left(\begin{array}{cc}
B_{0} & v \\
0 & v \phi
\end{array}\right)_{v \in B \backslash B_{0}} .
$$

Then $\operatorname{dim}(\operatorname{ker} \alpha)=\kappa=\operatorname{dim}(V / \operatorname{im} \alpha)$, so $\alpha \in K(V, \kappa) \cap C I(V, \kappa)$. Hence, α is maximal in $(K(V, \kappa), \leq)$ and in $(C I(V, \kappa), \leq)$ by Theorem 5.7.

Acknowledgement

The authors would like to thank the referee(s) for valuable suggestions and comments.

References

[1] S. Chaopraknoi, T. Phongpattanacharoen and P. Rawiwan, 'The natural partial order on some transformation semigroups’, Bull. Aust. Math. Soc. 89 (2014), 279-292.
[2] S. Chaopraknoi and Y. Kemprasit, 'Linear transformation semigroups admitting the structure of a semihyperring with zero', Ital. J. Pure Appl. Math. 17 (2005), 213-222.
[3] R. Hartwig, 'How to partially order regular elements', Math. Japonica 25 (1980), 1-13.
[4] P. M. Higgins, 'The Mitsch order on a semigroup', Semigroup Forum 49 (1994), 261-266.
[5] P. Huisheng and D. Weina, 'Naturally ordered semigroups of partial transformations preserving an equivalence relation', Comm. Algebra 41 (2013), 3308-3324.
[6] Y. Kemprasit, Algebraic Semigroup Theory (Pitak Press, Bangkok, 2002), (in Thai).
[7] M. P. O. Marques-Smith and R. P. Sullivan, 'Partial orders on transformation semigroups', Monatsh. Math. 140 (2003), 103-118.
[8] S. Mendez-Gonçalves and R. P. Sullivan, 'The ideal structure of semigroups of linear transformation with lower bounds on their nullity or defect', Algebra Colloq. 17(1) (2010), 109-120.
[9] H. Mitsch, 'A natural partial order for semigroups', Proc. Amer. Math. Soc. 97 (1986), 384-388.
[10] K. Nambooripad, 'The natural partial order on a regular semigroup', Proc. Edinb. Math. Soc. (2) 23 (1980), 249-260.
[11] P. Prakitsri, 'Nearring Structure on Variants of Some Transformation Semigroups', Master's Thesis, Chulalongkorn University, 2010.
[12] P. Prakitsri, S. Chaopraknoi and T. Phongpattanacharoen, 'The natural partial order on almost monomorphism semigroups and almost epimorphism semigroups', Proc. 19th Annual Meeting Mathematics (2014), 303-308.
[13] R. P. Sullivan, 'Partial orders on linear transformation semigroups', Proc. Roy. Soc. Edinburgh Sect. A 135 (2005), 413-437.
[14] V. Wagner, 'Generalized groups’, Dokl. Akad. Nauk SSSR 84 (1952), 1119-1122 (in Russian).

SUREEPORN CHAOPRAKNOI,
Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand e-mail: sureeporn.c@chula.ac.th

TEERAPHONG PHONGPATTANACHAROEN, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand e-mail: teeraphong.p@chula.ac.th

PONGSAN PRAKITSRI, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
e-mail: pongsan.p@gmail.com

[^0]: The third author was supported by Science Achievement Scholarship of Thailand (SAST).
 (C) 2014 Australian Mathematical Publishing Association Inc. 0004-9727/2014 \$16.00

