A_{ϕ}-INVARIANT SUBSPACES ON THE TORUS

KEIJI IZUCHI AND YASUO MATSUGU

Abstract

Generalizing the notion of invariant subspaces on the 2-dimensional torus T^{2}, we study the structure of A_{ϕ}-invariant subspaces of $L^{2}\left(T^{2}\right)$. A complete description is given of A_{ϕ}-invariant subspaces that satisfy conditions similar to those studied by Mandrekar, Nakazi, and Takahashi.

1. Introduction. Let $L^{2}\left(T^{2}\right)$ and $L^{\infty}\left(T^{2}\right)$ be the usual Lebesgue spaces on the 2dimensional torus T^{2}. We use (z, w) or $\left(e^{i \theta}, e^{i \psi}\right)$ as variables in T^{2}. Let Z and Z_{+}be the sets of integers and non-negative integers respectively. A closed subspace M of $L^{2}\left(T^{2}\right)$ is called z-invariant if $z M \subset M$, and called invariant if $z M \subset M$ and $w M \subset M$. For a function f in $L^{2}\left(T^{2}\right)$, let

$$
\hat{f}(n, k)=\int_{0}^{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}, e^{i \psi}\right) e^{-(n \theta+k \psi)} d \theta d \psi /(2 \pi)^{2}, \quad(n, k) \in Z^{2}
$$

where $d \theta d \psi /(2 \pi)^{2}$ is normalized Lebesgue measure on T^{2}. The Hardy space $H^{2}\left(T^{2}\right)$ is the space of $f \in L^{2}\left(T^{2}\right)$ such that $\hat{f}(n, k)=0$ for every $(n, k) \in Z^{2} \backslash Z_{+}^{2}$. For $f, g \in L^{2}\left(T^{2}\right)$, we write $f \perp g$ if $\int_{0}^{2 \pi} \int_{0}^{2 \pi} f \bar{g} d \theta d \psi /(2 \pi)^{2}=0$. Subsets E and F of $L^{2}\left(T^{2}\right)$ are called mutually orthogonal when $f \perp g$ for every $f \in E$ and $g \in F$, and in this case $E \oplus F$ denotes the direct sum of E and F. When $F \subset E \subset L^{2}\left(T^{2}\right)$, we denote by $E \ominus F$ the orthogonal complement of F in E.

The Beurling theorem says that every invariant subspace N on the unit circle T has the form $N=q(z) H^{2}(T)$ or $N=\chi_{E} L^{2}(T)$, where $q(z)$ is a unimodular function on T and χ_{E} is the characteristic function for a subset $E \subset T$. To avoid confusion, we use the notation T_{z} for the unit circle with the variable z. Hence every f in $L^{2}\left(T_{z}\right)$ is a z-variable function and $f=f(z)$. We may consider $L^{2}\left(T_{z}\right), H^{2}\left(T_{z}\right), L^{2}\left(T_{w}\right)$, and $H^{2}\left(T_{w}\right)$ as closed subspaces of $L^{2}\left(T^{2}\right)$ by the natural way. We note that $T^{2}=T_{z} \times T_{w}$.

For a subset E of $L^{2}\left(T^{2}\right)$, we denote by $[E]$ the closed linear span of E in $L^{2}\left(T^{2}\right)$. Let $H_{z}^{2}\left(T^{2}\right)=\left[\bigcup\left\{z^{-n} H^{2}\left(T^{2}\right) ; n \in Z_{+}\right\}\right]$. Then

$$
H_{z}^{2}\left(T^{2}\right)=\sum_{j=-\infty}^{\infty} \oplus z^{j} H^{2}\left(T_{w}\right)=\sum_{j=0}^{\infty} \oplus w^{j} L^{2}\left(T_{z}\right) .
$$

Now we give notations and definitions to state our results. Our main purpose is to study generalized invariant subspaces. To define them, let

$$
\phi: Z_{+} \longrightarrow Z \cup\{-\infty\} \quad \text { and } \quad \phi(0)=0
$$

Received by the editors July 23, 1996.
AMS subject classification: 32A35, 47A15.
(C)Canadian Mathematical Society 1998.
and let

$$
A_{\phi}=\left\{z^{i} w^{j} ; i \geq \phi(j), j \in Z_{+}\right\}
$$

When $\phi(j)=-\infty$, we mean that $\{i \in Z ; i \geq \phi(j)\}=Z$. Moreover we assume that

$$
A_{\phi} \text { is a semigroup. }
$$

Then, if $\phi(j)=-\infty$ then $\phi(i)=-\infty$ for every $i \geq j$. For each $n \in Z_{+}$, let $A_{\phi, n}=\left\{z^{i} w^{k}\right.$; $i \geq \phi(k), k \geq n\} . A_{\phi}$ is called cyclic if there exists $p \geq 1$ such that $\phi(p) \neq-\infty$ and $A_{\phi, p}=z^{\phi(p)} w^{p} A_{\phi}$. It is not difficult to see that A_{ϕ} is cyclic if and only if there exists $p \geq 1$ such that $\phi(p) \neq-\infty$ and $\phi(p)+\phi(j)=\phi(p+j)$ for every $j \in Z_{+}$. When A_{ϕ} is cyclic, we have $\phi(j)>-\infty$ for $j \in Z_{+}$.

A closed subspace M of $L^{2}\left(T^{2}\right)$ is called A_{ϕ}-invariant (see [7]) if

$$
A_{\phi} M=\left\{f g ; f \in A_{\phi}, g \in M\right\} \subset M
$$

Moreover if A_{ϕ} is cyclic, M is called cyclic A_{ϕ}-invariant. Since $A_{\phi, n} \backslash A_{\phi, n+1}=\left\{z^{i} w^{n}\right.$; $i \geq \phi(n)\},\left[A_{\phi, n} \backslash A_{\phi, n+1}\right]=w^{n} z^{\phi(n)} H^{2}\left(T_{z}\right)$, where we consider that $z^{\phi(n)} H^{2}\left(T_{z}\right)=L^{2}\left(T_{z}\right)$ if $\phi(n)=-\infty$. Then $\left[A_{\phi}\right]=\sum_{n=0}^{\infty} \oplus w^{n} z^{\phi(n)} H^{2}\left(T_{z}\right)$, and $\left[A_{\phi}\right]$ is an A_{ϕ}-invariant subspace. For a z-invariant subspace S of $L^{2}\left(T^{2}\right)$, let

$$
z^{\phi(n)} S=\bigcup_{i>\phi(n)} z^{i} S \quad \text { if } \phi(n)=-\infty
$$

In this paper, we study the structure of A_{ϕ}-invariant subspaces. Since $z \in A_{\phi}, A_{\phi^{-}}$ invariant subspaces are z-invariant. When $\phi_{0}(j)=0$ for every $j \in Z_{+}$, the family of $A_{\phi_{0}}$-invariant subspaces coincides with the family of usual invariant subspaces. In [2], Curto, Muhly, Nakazi, and Yamamoto studied A_{n}-invariant subspaces for a positive integer n, where $A_{n}=\left\{z^{i} w^{j} ; i \in Z\right.$ for $n \leq j, i \in Z_{+}$for $\left.0 \leq j<n\right\}$. Also Helson and Lowdenslager [4] studied invariant subspaces for A_{1}. When $\phi_{1}(j)=0$ for $0 \leq j<n$, and $\phi_{1}(j)=-\infty$ for $n \leq j$, we have $A_{\phi_{1}}=A_{n}$. Hence the concept of A_{ϕ}-invariant subspaces is a generalization of invariant and A_{n}-invariant subspaces. We note that $A_{\phi^{-}}$ invariant subspaces need not be invariant subspaces. For, let $\phi_{2}(j)=j$ for $j \in Z_{+}$; then $\left[A_{\phi_{2}}\right]=\sum_{j=0}^{\infty} \oplus(z w)^{j} H^{2}\left(T_{z}\right)$ is cyclic $A_{\phi_{2}}$-invariant but not an invariant subspace. It is not difficult to see that for a given ϕ, every A_{ϕ}-invariant subspace is invariant if and only if $w \in A_{\phi}$.

In Section 2, we give the basic procedure to study A_{ϕ}-invariant subspaces which is used several times later.

In Section 3, we determine the A_{ϕ}-invariant subspaces M such that $M \ominus\left[A_{\phi, 1} M\right]$ is a nonzero z-invariant subspace. This is a generalization of the work by Nakazi [10]. Also we give a characterization of closed subspaces of the form $\sum_{j=0}^{\infty} \oplus q_{j}(z) w^{j} H^{2}\left(T_{z}\right)$, where $q_{j}(z)$ is a unimodular function on T_{z}. These invariant subspaces are studied in [1].

In Sections 4, 5 and 6, we discuss the following special type of ϕ. Let $p \in Z_{+} \backslash\{0\}$ and $k \in Z$. For each $n \in Z_{+}$, let $\phi(n)$ be the smallest integer such that $p \phi(n)-k n \geq 0$. Then $A_{\phi}=\left\{z^{i} w^{j} ; p i-k j \geq 0,(i, j) \in Z \times Z_{+}\right\}$. To have a one to one correspondence
between A_{ϕ} and (p, k), we assume that p and $|k|$ are mutually prime if $k \neq 0$, and $p=1$ if $k=0$. In the case $k=0$, the family of A_{ϕ}-invariant subspaces coincides with the family of usual invariant subspaces. We have $\phi(p)=k$ and $k+\phi(j)=\phi(p+j)$ for every $j \in Z_{+}$, so that A_{ϕ} is cyclic. In Section 4, we solve the following problem.

Problem 1. Describe every A_{ϕ}-invariant subspace M such that $M=\left[A_{\phi, 1} M\right]$ and $z M \neq M$.

Let M be an A_{ϕ}-invariant subspace. For $h \in A_{\phi}$, let $V_{h}: M \ni f \rightarrow h f \in M$. Let P be the orthogonal projection of L^{2} onto M. Then the adjoint operator V_{h}^{*} on M is given by $V_{h}^{*} f=P(\bar{h} f)$ for $f \in M$. In Section 5, we solve the following problem.

Problem 2. Describe the A_{ϕ}-invariant subspaces M such that $V_{z^{k} w^{p}} V_{z}^{*}=V_{z}^{*} V_{z^{k} w^{p}}$.
The motivation of this problem comes from [9, 12], but obtained A_{ϕ}-invariant subspaces resemble the invariant subspaces given in [11, 13].

In Sections 6 and 7, we define (see Section 6) a homogeneous-type A_{ϕ}-invariant subspace. This definition is similar to the one given in [11, 13], and we study the following problem.

PROBLEM 3. Determine the homogeneous-type A_{ϕ}-invariant subspaces M with $z^{k} w^{p} M \subset z M$ and $z^{k} w^{p} M \neq z M$.

We cannot give the complete answer. It seems very complicated. In Section 7, we consider two special cases.
2. The Basic Procedure. The following lemma follows from [2, Lemma 2.2].

Lemma 2.1. Let M be an invariant subspace of $L^{2}\left(T^{2}\right)$. Suppose that $M=z M$ and $M \neq w M$. Then M can be represented as follows

$$
M=\psi\left(\chi_{K}(z) H_{z}^{2}\left(T^{2}\right) \oplus \chi_{E} L^{2}\left(T^{2}\right)\right)
$$

where ψ is a unimodular function on $T^{2}, K \subset T_{z}, d \theta / 2 \pi(K)>0, E \subset T^{2}$, and $\left(K \times T_{w}\right) \cap E=\emptyset$. Moreover if $\bigcap_{k=0}^{\infty} w^{k} M=\{0\}$, we have $M=\psi \chi_{K}(z) H_{z}^{2}\left(T^{2}\right)$.

Lemma 2.2. Let M be an A_{ϕ}-invariant subspace. If $z M=M$, then M is an invariant subspace and $w M=\left[A_{\phi, 1} M\right]$.

Proof. Since $A_{\phi, n} \backslash A_{\phi, n+1}=\left\{z^{i} w^{n} ; i \geq \phi(n)\right\}$, by our assumption we have $\left(A_{\phi, n} \backslash A_{\phi, n+1}\right) M=w^{n} M$ for every $n \in Z_{+}$. Since M is A_{ϕ}-invariant, $w M \subset M$, so that M becomes an invariant subspace. Hence we get

$$
\left[A_{\phi, 1} M\right]=\left[\bigcup_{n=1}^{\infty}\left(A_{\phi, n} \backslash A_{\phi, n+1}\right) M\right]=\left[\bigcup_{n=1}^{\infty} w^{n} M\right]=w M .
$$

Let M be an A_{ϕ}-invariant subspace with $z M=M$. Moreover if $M=w M$ then $M=$ $\chi_{E} L^{2}\left(T^{2}\right)$ for some $E \subset T^{2}$, and if $M \neq w M$ then the form of M is determined by Lemma 2.1. So that we are interested in the case of $M \neq z M$.

We use the following procedure (developed in the remainder of this section) several times in this paper.

The Basic Procedure. Let M be an A_{ϕ}-invariant subspace of $L^{2}\left(T^{2}\right)$ and let $p \geq 1$. Suppose that there exists a nonzero z-invariant subspace N such that

$$
N \subset M \ominus\left[A_{\phi, p} M\right]
$$

Let

$$
\tilde{M}=\left[\bigcup\left\{z^{n} M ; n \in Z\right\}\right] .
$$

Then \tilde{M} is A_{ϕ}-invariant and $z \tilde{M}=\tilde{M}$. Hence by Lemma $2.2, \tilde{M}$ is an invariant subspace and $M \subset \tilde{M}$. Since $N \perp\left[A_{\phi, p} M\right]$ and N is z-invariant, $z^{n} N \perp z^{i} w^{p} M$ for $n \in Z_{+}$and $i \geq \phi(p)$. Hence

$$
\begin{equation*}
N \perp w^{p} \tilde{M} \tag{2.1}
\end{equation*}
$$

so that $\tilde{M} \neq w \tilde{M}$. Then by Lemma 2.1, \tilde{M} has the following form

$$
\tilde{M}=\psi\left(\chi_{K}(z) H_{z}^{2}\left(T^{2}\right) \oplus \chi_{E} L^{2}\left(T^{2}\right)\right)
$$

where ψ is a unimodular function on $T^{2}, K \subset T_{z}, d \theta / 2 \pi(K)>0, E \subset T^{2}$, and

$$
\begin{equation*}
\left(K \times T_{w}\right) \cap E=\emptyset \tag{2.2}
\end{equation*}
$$

For the sake of simplicity, we assume

$$
\psi=1
$$

so that $\tilde{M}=\chi_{K}(z) H_{z}^{2}\left(T^{2}\right) \oplus \chi_{E} L^{2}\left(T^{2}\right)$. Since $H_{z}^{2}\left(T^{2}\right)=\sum_{j=0}^{\infty} \oplus w^{j} L^{2}\left(T_{z}\right)$,

$$
\begin{equation*}
\tilde{M}=\left(\sum_{j=0}^{\infty} \oplus w^{j} \chi_{K}(z) L^{2}\left(T_{z}\right)\right) \oplus \chi_{E} L^{2}\left(T^{2}\right) \tag{2.3}
\end{equation*}
$$

Since $M \subset \tilde{M}$, for each $f \in M$ we can write as

$$
f=\left(\sum_{j=0}^{\infty} \oplus w^{j} \chi_{K}(z) f_{j}(z)\right) \oplus g
$$

where $f_{j}(z) \in L^{2}\left(T_{z}\right)$ and $g \in \chi_{E} L^{2}\left(T^{2}\right)$. Using the above representation of f, we set

$$
\begin{equation*}
S_{j}=\left\{\chi_{K}(z) f_{j}(z) ; f \in M\right\} \subset \chi_{K}(z) L^{2}\left(T_{z}\right), \quad j \in Z_{+} \tag{2.4}
\end{equation*}
$$

Then S_{j} is a linear subspace of $L^{2}\left(T_{z}\right)$. Since $\tilde{M} \neq w \tilde{M}$, we have

$$
S_{j} \neq\{0\} \text { for every } j \in Z_{+}
$$

We note that S_{j} may not be closed. Since $z M \subset M$,

$$
\begin{equation*}
z S_{j} \subset S_{j}, \quad j \in Z_{+} \tag{2.5}
\end{equation*}
$$

We have also that

$$
\begin{equation*}
M \subset\left(\sum_{j=0}^{\infty} \oplus w^{j} S_{j}\right) \oplus \chi_{E} L^{2}\left(T^{2}\right) \tag{2.6}
\end{equation*}
$$

By (2.1), (2.3), (2.4), and (2.6)

$$
\begin{equation*}
N \subset \sum_{j=0}^{p-1} \oplus w^{j} S_{j} \subset \chi_{K}(z) \sum_{j=0}^{p-1} \oplus w^{j} L^{2}\left(T_{z}\right) \tag{2.7}
\end{equation*}
$$

By (2.4) and (2.6),

$$
\begin{equation*}
\left[A_{\phi, n} M\right] \subset\left(\sum_{j=n}^{\infty} \oplus w^{j} S_{j}\right) \oplus \chi_{E} L^{2}\left(T^{2}\right) \quad \text { for } n \in Z_{+} \tag{2.8}
\end{equation*}
$$

Since $1 \in A_{\phi}, A_{\phi} M=M$, so that by (2.6) and the definition of S_{n}

$$
\begin{equation*}
S_{n}=\sum_{j=0}^{n} z^{\phi(n-j)} S_{j}=\bigcup_{j=0}^{n} z^{\phi(n-j)} S_{j}, \quad n \in Z_{+}, \tag{2.9}
\end{equation*}
$$

here by (2.5),

$$
z^{\phi(n-j)} S_{j}=\bigcup_{i \geq \phi(n-j)} z^{i} S_{j}
$$

By (2.7) and (2.9),

$$
\begin{equation*}
A_{\phi} N \subset \sum_{j=0}^{\infty} \oplus w^{j} S_{j} \tag{2.10}
\end{equation*}
$$

Here we have the following lemma for a cyclic A_{ϕ}.
Lemma 2.3. Suppose that A_{ϕ} is cyclic and $z^{\phi(p)} w^{p} A_{\phi}=A_{\phi, p}$. Let M be a cyclic A_{ϕ}-invariant subspace such that $N=M \ominus\left[A_{\phi, p} M\right]$ is nonzero and z-invariant. Then we have $w^{p-1} z^{\phi(p-1)} \bar{S}_{0} \subset N$ and $z^{\phi(1)+\phi(p-1)-\phi(p)} \bar{S}_{0} \subset N \cap S_{0}$, where \bar{S}_{0} is the closure of S_{0} in $L^{2}\left(T_{z}\right)$.

Proof. Since $N=M \ominus\left[A_{\phi, p} M\right]$, by (2.4), (2.6), (2.7) and (2.8) we obtain

$$
\begin{equation*}
S_{j}=\left\{\chi_{K}(z) f_{j}(z) ; f \in N\right\}, \quad 0 \leq j \leq p-1 \tag{2.11}
\end{equation*}
$$

Let $\zeta=z^{\phi(p)} w^{p}$. By our assumption, $\zeta M=\zeta\left[A_{\phi} M\right]=\left[A_{\phi, p} M\right]$ and $N=M \ominus \zeta M$. Hence we can write M as

$$
\begin{equation*}
M=\left(\sum_{j=0}^{\infty} \oplus \zeta^{j} N\right) \oplus\left(\bigcap_{j=0}^{\infty} \zeta^{j} M\right) \tag{2.12}
\end{equation*}
$$

By (2.4) and (2.6), $\zeta^{j} M \subset\left(\sum_{i=j p}^{\infty} \oplus w^{i} \chi_{K}(z) L^{2}\left(T_{z}\right)\right) \oplus \chi_{E} L^{2}\left(T^{2}\right)$, so that

$$
\begin{equation*}
\bigcap_{j=0}^{\infty} \zeta^{j} M \subset \chi_{E} L^{2}\left(T^{2}\right) . \tag{2.13}
\end{equation*}
$$

Since M is A_{ϕ}-invariant, by (2.10), (2.12), and (2.13),

$$
\begin{equation*}
A_{\phi} N \subset \sum_{j=0}^{\infty} \oplus \zeta^{j} N \tag{2.14}
\end{equation*}
$$

To prove our assertion, let $f \in N$. By (2.7) we can write f as

$$
\begin{equation*}
f=\sum_{j=0}^{p-1} \oplus w^{j} \chi_{K}(z) f_{j}(z), \quad f_{j}(z) \in L^{2}\left(T_{z}\right) \tag{2.15}
\end{equation*}
$$

where $\chi_{K}(z) f_{j}(z) \in S_{j}$. By (2.14), $z^{\phi(p-1)} w^{p-1} f \in \sum_{j=0}^{\infty} \oplus \zeta^{j} N$. Moreover by (2.7) and (2.15),

$$
z^{\phi(p-1)} w^{p-1} \chi_{K}(z) f_{0}(z) \oplus\left(\sum_{j=1}^{p-1} \oplus z^{\phi(p-1)} w^{p-1+j} \chi_{K}(z) f_{j}(z)\right) \in N \oplus \zeta N .
$$

Therefore by (2.11), $z^{\phi(p-1)} w^{p-1} S_{0} \subset N$. Since N is a closed subspace,

$$
\begin{equation*}
z^{\phi(p-1)} w^{p-1} \bar{S}_{0} \subset N \tag{2.16}
\end{equation*}
$$

Next we prove that

$$
\begin{equation*}
z^{\phi(1)+\phi(p-1)-\phi(p)} \bar{S}_{0} \subset N \cap S_{0} \tag{2.17}
\end{equation*}
$$

In the same way as in the first paragraph, we have $w z^{\phi(1)} N \subset N \oplus \zeta N$. Then by (2.16), $w^{p} z^{\phi(1)+\phi(p-1)} \bar{S}_{0} \subset z^{\phi(1)} w N \subset N \oplus \zeta N$. Since A_{ϕ} is a semigroup, by (2.5) and (2.7) it is easy to see that $w^{p} z^{\phi(1)+\phi(p-1)} \bar{S}_{0} \subset \zeta\left(N \cap S_{0}\right)$. Consequently we get (2.17).

Now we continue the basic procedure. We consider the following two cases separately; $z N=N$ and $z N \neq N$.

Case 1. Suppose that $z N=N$. Then we have the following lemma.
Lemma 2.4. If $p=1$ and $z N=N$, then M is an invariant subspace with $z M=M$ and $w M \neq M$.

Proof. Suppose that $z N=N$. By (2.7) for $p=1, N \subset \chi_{K}(z) L^{2}\left(T_{z}\right)$. Hence by the Beurling theorem,

$$
\begin{equation*}
N=\chi_{K_{0}}(z) L^{2}\left(T_{z}\right) \tag{2.18}
\end{equation*}
$$

where $K_{0} \subset K$ and $d \theta / 2 \pi\left(K_{0}\right)>0$. Since $A_{\phi, n} \backslash A_{\phi, n+1}=\left\{z^{i} w^{n} ; i \geq \phi(n)\right\}, w^{n} N=$ $\left[\left(A_{\phi, n} \backslash A_{\phi, n+1}\right) N\right]$. Since $N \subset M$ and $A_{\phi} M \subset M$,

$$
\begin{equation*}
\sum_{n=0}^{\infty} \oplus w^{n} N=\left[A_{\phi} N\right] \subset M \tag{2.19}
\end{equation*}
$$

Let $M_{1}=M \ominus\left[A_{\phi} N\right]$. Then

$$
\begin{equation*}
M=\left[A_{\phi} N\right] \oplus M_{1} . \tag{2.20}
\end{equation*}
$$

Since $M_{1} \subset \tilde{M}, w^{j} M_{1} \subset w \tilde{M}$ for $j \geq 1$. By (2.1) for $p=1, w^{-j} N \perp M_{1}$ for $j \geq 1$. Hence by (2.18), (2.19), and (2.20), we have $\chi_{K_{0}}(z) L^{2}\left(T^{2}\right)=\sum_{n=-\infty}^{\infty} \oplus w^{n} N \perp M_{1}$. Thus we get

$$
\begin{equation*}
\chi_{K_{0}^{c}}(z) M_{1}=M_{1} . \tag{2.21}
\end{equation*}
$$

Since $z M \subset M, z M_{1} \subset M$. Since $z N=N$ and $M_{1} \perp\left[A_{\phi} N\right], z M_{1} \perp\left[A_{\phi} N\right]$. Hence by the definition of $M_{1}, z M_{1} \subset M_{1}$. We note that $\left\{f \in L^{\infty}\left(T_{z}\right) ; f M_{1} \subset M_{1}\right\}$ is a weak*-closed z-invariant subalgebra of $L^{\infty}\left(T_{z}\right)$. Since $d \theta / 2 \pi\left(K_{0}\right)>0$, the Beurling theorem says that the weak*-closed invariant subspace $\left[\left\{z^{n} \chi_{K_{0}^{c}}(z) ; n \in Z_{+}\right\}\right]_{\infty}$ of $L^{\infty}\left(T_{z}\right)$ generated by $\left\{z^{n} \chi_{K_{0}^{c}}(z) ; n \in Z_{+}\right\}$coincides with $\chi_{K_{0}^{c}} L^{\infty}\left(T_{z}\right)$. Since $z M_{1} \subset M_{1}$, by (2.21) we have $z M_{1}=M_{1}$. Therefore by (2.18), (2.19), and (2.20), $z M=M$. Hence by Lemma 2.2, M is an invariant subspace. By (2.18), (2.19), (2.20), and (2.21), $w M \neq M$.

CASE 2. Suppose that $z N \neq N$. To prove

$$
\begin{equation*}
K=T_{z}, \tag{2.22}
\end{equation*}
$$

suppose that $K \neq T_{z}$. By (2.7), $\chi_{K}(z) N=N$. Then in the same way as in the last paragraph of Lemma 2.4, we have $z N=N$. This is a contradiction. Hence we get (2.22).

By (2.2) and (2.22), $E=\emptyset$. As a consequence, by (2.3), (2.4) and (2.6)

$$
\begin{equation*}
M \subset \sum_{j=0}^{\infty} \oplus w^{j} S_{j} \subset \tilde{M}=\sum_{j=0}^{\infty} \oplus w^{j} L^{2}\left(T_{z}\right) \tag{2.23}
\end{equation*}
$$

By (2.7),

$$
\begin{equation*}
N \subset \sum_{j=0}^{p-1} \oplus w^{j} S_{j} \subset \sum_{j=0}^{p-1} \oplus w^{j} L^{2}\left(T_{z}\right) \tag{2.24}
\end{equation*}
$$

By (2.8),

$$
\begin{equation*}
\left[A_{\phi, n} M\right] \subset \sum_{j=n}^{\infty} \oplus w^{j} S_{j} \subset \sum_{j=n}^{\infty} \oplus w^{j} L^{2}\left(T_{z}\right), \quad n \in Z_{+} \tag{2.25}
\end{equation*}
$$

This is the end of the basic procedure. In the rest of this paper, we use the same notations in the basic procedure.
3. Simple A_{ϕ}-Invariant Subspaces. An A_{ϕ}-invariant subspace M of $L^{2}\left(T^{2}\right)$ is called simple if $z\left(M \ominus\left[A_{\phi, 1} M\right]\right) \subset M \ominus\left[A_{\phi, 1} M\right]$. The following theorem is a generalization of Nakazi's theorem [10].

THEOREM 3.1. Let M be an A_{ϕ}-invariant subspace of $L^{2}\left(T^{2}\right)$ such that $M \ominus\left[A_{\phi, 1} M\right]$ is a nonzero z-invariant subspace. Then
(i) $z\left(M \ominus\left[A_{\phi, 1} M\right]\right)=M \ominus\left[A_{\phi, 1} M\right]$ if and only if M is an invariant subspace with $M=z M$ and $M \neq w M$.
(ii) $z\left(M \ominus\left[A_{\phi, 1} M\right]\right) \neq M \ominus\left[A_{\phi, 1} M\right]$ if and only if there exists a unimodular function ψ on T^{2} such that $M=\psi\left[A_{\phi}\right]$.

Proof. Suppose that $M \ominus\left[A_{\phi, 1} M\right]$ is a nonzero z-invariant subspace. Then we can use the basic procedure in Section 2 for $p=1$ and $N=M \ominus\left[A_{\phi, 1} M\right]$. Now we have

$$
\begin{equation*}
M=N \oplus\left[A_{\phi, 1} M\right] . \tag{3.1}
\end{equation*}
$$

By (2.7), $N \subset S_{0} \subset \chi_{K}(z) L^{2}\left(T_{z}\right)$. Since $N=M \ominus\left[A_{\phi, 1} M\right]$, (2.11) holds for $p=1$, hence

$$
\begin{equation*}
N=S_{0} \subset \chi_{K}(z) L^{2}\left(T_{z}\right) \tag{3.2}
\end{equation*}
$$

(i) Suppose that $z N=N$. Then by Lemma $2.4, M$ is an invariant subspace with $M=z M$ and $M \neq w M$.

To prove the converse assertion, suppose that M is an invariant subspace with $M=z M$ and $M \neq w M$. Then we can use Lemma 2.1 to describe M, and it is not difficult to see that $z\left(M \ominus\left[A_{\phi, 1} M\right]\right)=M \ominus\left[A_{\phi, 1} M\right]$.
(ii) Suppose that $N \neq z N$. Then Case 2 in the basic procedure in Section 2 occurs. By (2.22) and (3.2), $S_{0}=N \subset L^{2}\left(T_{z}\right)$. Since N is z-invariant and $N \neq z N$, by the Beurling theorem $S_{0}=N=q(z) H^{2}\left(T_{z}\right)$, where $q(z)$ is a unimodular function on T_{z}. By induction, we shall prove

$$
\begin{equation*}
S_{j}=q(z) z^{\phi(j)} H^{2}\left(T_{z}\right) \quad \text { for } j \in Z_{+}, \tag{3.3}
\end{equation*}
$$

where S_{j} is defined in (2.4). Suppose that $n \geq 1$ and

$$
\begin{equation*}
S_{j}=q(z) z^{\phi(j)} H^{2}\left(T_{z}\right) \quad \text { for } 0 \leq j \leq n-1 \tag{3.4}
\end{equation*}
$$

By (3.1) and (3.2), $\left[A_{\phi, 1} M\right]=M \ominus N=M \ominus S_{0}$. By (2.9), $\sum_{j=0}^{n-1} z^{\phi(n-j)} S_{j} \subset S_{n} \subset$ [$\left.\sum_{j=0}^{n-1} z^{\phi(n-j)} S_{j}\right]$ for $n \geq 1$. Hence by (3.4),

$$
\begin{equation*}
q(z) \sum_{j=0}^{n-1} z^{\phi(n-j)} z^{\phi(j)} H^{2}\left(T_{z}\right) \subset S_{n} \subset q(z)\left[\sum_{j=0}^{n-1} z^{\phi(n-j)} z^{\phi(j)} H^{2}\left(T_{z}\right)\right] . \tag{3.5}
\end{equation*}
$$

Since A_{ϕ} is a semigroup, $\phi(n) \leq \phi(n-j)+\phi(j)$, so that $\sum_{j=0}^{n-1} z^{\phi(n-j)} z^{\phi(j)} H^{2}\left(T_{z}\right)=$ $z^{\phi(n)} H^{2}\left(T_{z}\right)$. Hence by (3.5), $S_{n}=q(z) z^{\phi(n)} H^{2}\left(T_{z}\right)$. Therefore we obtain (3.3).

Since $q(z) H^{2}\left(T_{z}\right)=S_{0}=N \subset M$, by (3.3) and $A_{\phi} M \subset M$ we have

$$
w^{j} S_{j}=w^{j} q(z) z^{\phi(j)} H^{2}\left(T_{z}\right) \subset M \quad \text { for } j \in Z_{+} .
$$

Hence by (2.23), $M \subset \sum_{j=0}^{\infty} \oplus w^{j} S_{j} \subset M$. As a consequence,

$$
M=\sum_{j=0}^{\infty} \oplus w^{j} S_{j}=q(z) \sum_{j=0}^{\infty} \oplus w^{i} z^{\phi(j)} H^{2}\left(T_{z}\right)=q(z)\left[A_{\phi}\right] .
$$

To prove the converse assertion, let $M=\psi\left[A_{\phi}\right]$ for a unimodular function ψ on T^{2}. Since $A_{\phi, 1} A_{\phi}=A_{\phi, 1},\left[A_{\phi, 1} M\right]=\psi\left[A_{\phi, 1}\right]$. Since $\left[A_{\phi}\right] \ominus\left[A_{\phi, 1}\right]=\left[\left\{z^{n} ; n \in Z_{+}\right\}\right]=H^{2}\left(T_{z}\right)$, $M \ominus\left[A_{\phi, 1} M\right]=\psi H^{2}\left(T_{z}\right)$. Of course, $\psi H^{2}\left(T_{z}\right)$ is z-invariant and $z \psi H^{2}\left(T_{z}\right) \neq \psi H^{2}\left(T_{z}\right)$. This completes the proof.

The following is a characterization of the invariant subspaces studied in [1].

THEOREM 3.2. Let M be an A_{ϕ}-invariant subspace of $L^{2}\left(T^{2}\right)$ with $M \neq z M$. For each $n \in Z_{+}$, let N_{n} be the largest z-invariant subspace which is contained in $M \ominus\left[A_{\phi, n+1} M\right]$. Then $N_{0} \neq\{0\}$ and for each $n \in Z_{+}$

$$
\begin{equation*}
M \ominus\left(\left[A_{\phi, n+1} M\right] \oplus N_{n}\right) \perp z^{i} N_{n} \quad \text { for every } i \in Z \tag{a}
\end{equation*}
$$

if and only if M is represented as follows

$$
\begin{equation*}
M=\psi\left(\sum_{j=0}^{\infty} \oplus q_{j}(z) w^{j} H^{2}\left(T_{z}\right)\right) \tag{b}
\end{equation*}
$$

or there exists a positive integer l such that

$$
\begin{equation*}
M=\psi\left(\left(\sum l-1_{j=0} \oplus q_{j}(z) w^{j} H^{2}\left(T_{z}\right)\right) \oplus\left(\sum_{j=l}^{\infty} \oplus w^{j} L^{2}\left(T_{z}\right)\right)\right) \tag{c}
\end{equation*}
$$

where ψ and $q_{j}(z), j \in Z_{+}$, are unimodular functions on T^{2} and T_{z}, respectively, and

$$
z^{\phi(i)} q_{j}(z) H^{2}\left(T_{z}\right) \subset q_{i+j}(z) H^{2}\left(T_{z}\right) \quad \text { for }(i, j) \in Z_{+}^{2}
$$

Proof. First, suppose that M is represented by the form in (b). Since M is $A_{\phi^{-}}$ invariant, by the form in (b) we have $\phi(i)>-\infty$ for $i \in Z_{+}$and

$$
z^{\phi(i)} w^{i} q_{j}(z) w^{j} H^{2}\left(T_{z}\right) \subset q_{i+j}(z) w^{i+j} H^{2}\left(T_{z}\right) \quad \text { for } i, j \in Z_{+}
$$

Then for each $t \in Z_{+}$, we have $\sum_{i=0}^{t} \oplus z^{\phi(t-i)} q_{i}(z) H^{2}\left(T_{z}\right) \subset q_{t}(z) H^{2}\left(T_{z}\right)$. Hence $M \ominus$ [$A_{\phi, n+1} M$] equals

$$
\psi\left\{\left(\sum_{j=0}^{n} \oplus q_{j}(z) w^{j} H^{2}\left(T_{z}\right)\right) \oplus\left(\sum_{j=n+1}^{\infty} \oplus w^{j}\left(q_{j}(z) H^{2}\left(T_{z}\right) \ominus\left[\sum_{i=0}^{j-n-1} \oplus z^{\phi(j-i)} q_{i}(z) H^{2}\left(T_{z}\right)\right]\right)\right)\right\}
$$

Now it is easy to see that $N_{n}=\psi\left(\sum_{i=0}^{n} \oplus q_{i}(z) w^{i} H^{2}\left(T_{z}\right)\right), N_{0} \neq\{0\}$ and condition (a) is satisfied. In the same way, we can prove the same conclusion for M in (c).

Next, suppose that $N_{0} \neq\{0\}$ and M satisfies condition (a). Then we can use the basic procedure in Section 2. For the space N_{0}, we can apply the case $p=1$. If $z N_{0}=N_{0}$, then by Lemma 2.4 we have $z M=M$. Hence by our assumption, $z N_{0} \neq N_{0}$. By (2.22), $K=T_{z}$. Then by (2.24) for $p=1$ and the Beurling theorem,

$$
\begin{equation*}
N_{0}=q(z) H^{2}\left(T_{z}\right) \tag{3.6}
\end{equation*}
$$

for a unimodular function $q(z)$ on T_{z}. By (2.23),

$$
\begin{equation*}
M \subset \sum_{j=0}^{\infty} \oplus w^{j} S_{j}, \quad S_{j} \subset L^{2}\left(T_{z}\right) \tag{3.7}
\end{equation*}
$$

By (2.25),

$$
\begin{equation*}
\left[A_{\phi, n+1} M\right] \subset \sum_{j=n+1}^{\infty} \oplus w^{j} L^{2}\left(T_{z}\right) \tag{3.8}
\end{equation*}
$$

Also for the space N_{n}, we can apply the basic procedure for the case $p=n+1$. Since $z N_{0} \neq N_{0}$, by (3.8) we have $z N_{n} \neq N_{n}$. Then by (2.24),

$$
\begin{equation*}
N_{n} \subset \sum_{j=0}^{n} \oplus w^{j} S_{j} \subset \sum_{j=0}^{n} \oplus w^{j} L^{2}\left(T_{z}\right) \tag{3.9}
\end{equation*}
$$

Since $N_{0} \subset M, w^{j} z^{\phi(j)} N_{0} \subset M$ for $j \in Z_{+}$. By (3.9), $N_{0} \subset S_{0}$, so that by (2.9) we have $\sum_{j=0}^{n} \oplus w^{j} z^{\phi(j)} N_{0} \subset M \cap\left(\sum_{j=0}^{n} \oplus w^{j} S_{j}\right)$. Then by (3.6), (3.8) and the definition of N_{n}, we obtain

$$
\begin{equation*}
q(z) \sum_{j=0}^{n} \oplus w^{j} z^{\phi(j)} H^{2}\left(T_{z}\right) \subset N_{n} \tag{3.10}
\end{equation*}
$$

Here we shall use condition (a). Then by (a) and (3.10),

$$
M \ominus\left(\left[A_{\phi, n+1} M\right] \oplus N_{n}\right) \perp \sum_{j=0}^{n} \oplus w^{j} L^{2}\left(T_{z}\right)
$$

Then by (3.7), (3.8) and (3.9), we have $M \subset N_{n} \oplus\left(\sum_{j=n+1}^{\infty} \oplus w^{j} L^{2}\left(T_{z}\right)\right)$ for $n \in Z_{+}$. By this fact and the definition of S_{j},

$$
\begin{equation*}
\sum_{j=0}^{n} \oplus w^{j} S_{j}=N_{n} \subset M \tag{3.11}
\end{equation*}
$$

Hence $\sum_{j=0}^{\infty} \oplus w^{j} S_{j} \subset M$. Therefore by (3.7),

$$
\begin{equation*}
M=\sum_{j=0}^{\infty} \oplus w^{j} S_{j} . \tag{3.12}
\end{equation*}
$$

By (3.11), $w^{j} S_{j}=N_{j} \ominus N_{j-1}$ for $j \geq 1$ and $S_{0}=N_{0}$, so that S_{j} is a closed z-invariant subspace of $L^{2}\left(T_{z}\right)$ for every $j \in Z_{+}$. By the Beurling theorem,

$$
\begin{equation*}
S_{j}=q_{j}(z) H^{2}\left(T_{z}\right) \tag{3.13}
\end{equation*}
$$

or

$$
\begin{equation*}
S_{j}=\chi_{E_{j}} L^{2}\left(T_{z}\right) \tag{3.14}
\end{equation*}
$$

where $q_{j}(z)$ is a unimodular function on T_{z} and $E_{j} \subset T_{z}$. If (3.13) happens for every $j \in Z_{+}$, by (3.12) M has the form of (b). Suppose that (3.14) happens for some $j \in Z_{+}$. Let l be the smallest integer in Z_{+}such that $S_{l}=\chi_{E_{l}} L^{2}\left(T_{z}\right)$. Then $S_{j}=q_{j}(z) H^{2}\left(T_{z}\right)$ for $0 \leq j<l$. Since $S_{0}=N_{0}$, by (3.6) we have $l \geq 1$. By (2.9),

$$
q(z) z^{\phi(l+j)} H^{2}\left(T_{z}\right)+z^{\phi(j)} \chi_{E_{l}} L^{2}\left(T_{z}\right)=z^{\phi(l+j)} S_{0}+z^{\phi(j)} S_{l} \subset S_{l+j}, \quad j \in Z_{+}
$$

Hence $S_{l+j}=L^{2}\left(T_{z}\right)$ for $j \in Z_{+}$. Therefore, in this case, M has the form (c). This completes the proof.
4. A Semi-Double Type of A_{ϕ}-Invariant Subspace. In this section, we study an A_{ϕ}-invariant subspace M with $M=\left[A_{\phi, 1} M\right]$ which is called of semi-double type. A closed subspace M of $L^{2}\left(T^{2}\right)$ is called doubly invariant if $z M=w M=M$. In this case $M=\chi_{E} L^{2}\left(T^{2}\right)$ for some $E \subset T^{2}$. First we prove the following.

PROPOSITION 4.1. Suppose that there exists a sequence of positive integers $\left\{k_{n}\right\}_{n=1}^{\infty}$ such that $k_{n} \rightarrow \infty$ and $z^{-k_{n}}\left(A_{\phi, 1}\right)^{n} \cup w^{-k_{n}}\left(A_{\phi, 1}\right)^{n} \subset A_{\phi, 1}$. If M is an A_{ϕ}-invariant subspace with $M=\left[A_{\phi, 1} M\right]$, then M is doubly invariant.

Proof. Suppose that $M=\left[A_{\phi, 1} M\right]$. Then $M=\left[\left(A_{\phi, 1}\right)^{j} M\right]$ for every $j \in Z_{+}$. Hence by our condition, for $n \geq 1$ we have

$$
z^{-k_{n}} A_{\phi, 1} M=z^{-k_{n}} A_{\phi, 1}\left[\left(A_{\phi, 1}\right)^{n-1} M\right] \subset\left[z^{-k_{n}}\left(A_{\phi, 1}\right)^{n} M\right] \subset\left[A_{\phi, 1} M\right]=M
$$

In the same way, $w^{-k_{n}} A_{\phi, 1} M \subset M$. We note that $\left\{f \in L^{\infty}\left(T^{2}\right) ; f M \subset M\right\}$ is a semigroup. Since the semigroup generated by $\left\{z^{-k_{n}} A_{\phi, 1} \cup w^{-k_{n}} A_{\phi, 1} ; n \geq 1\right\}$ coincides with $\left\{z^{i} w^{j} ; i, j \in Z\right\}$, by the above two inclusions M becomes doubly invariant.

Example 4.1. Let $\phi(0)=0$ and $\phi(j)=1$ for $j \geq 1$. Then ϕ satisfies the condition of Proposition 4.1.

EXAMPLE 4.2. Let $n \geq 1$. Let $\phi_{n}(j)=0$ for $0 \leq j \leq n-1$ and $\phi_{n}(j)=-\infty$ for $j \geq n$. Then ϕ_{n} satisfies the condition of Proposition 4.1.

As mentioned in Section 1, in the rest of this paper we consider the following special ϕ. Let $p \in Z_{+} \backslash\{0\}, k \in Z$, and assume that $p,|k|$ are mutually prime if $k \neq 0$, and $p=1$ if $k=0$. For each $n \in Z_{+}$, let $\phi(n)$ be the smallest integer such that $p \phi(n)-k n \geq 0$. Then

$$
A_{\phi}=\left\{z^{i} w^{j} ; p i-k j \geq 0,(i, j) \in Z \times Z_{+}\right\}
$$

It is trivial that A_{ϕ} is a semigroup. In this section, we solve the following problem.
PROBLEM 1. Describe every A_{ϕ}-invariant subspace M such that $M=\left[A_{\phi, 1} M\right]$ and $z M \neq M$.

By our definition of $\phi, \phi(p)=k, \phi(p)+\phi(j)=\phi(p+j)$ for $j \in Z_{+}$, and hence A_{ϕ} is cyclic, that is,

$$
\begin{equation*}
A_{\phi, p}=z^{\phi(p)} w^{p} A_{\phi}=z^{k} w^{p} A_{\phi} \tag{4.1}
\end{equation*}
$$

Since p and $|k|$ are mutually prime (when $k \neq 0$),

$$
p \phi(j)-k j \neq p \phi(i)-k i \quad \text { for } 0 \leq i, j \leq p-1, i \neq j
$$

and $p \phi(j)-k j>0$ for $1 \leq j \leq p-1$. Rearranging the order, let $\left\{j_{0}, j_{1}, \ldots, j_{p-1}\right\}=$ $\{0,1, \ldots, p-1\}$ such that

$$
p \phi\left(j_{i}\right)-k j_{i}<p \phi\left(j_{i+1}\right)-k j_{i+1}, \quad 0 \leq i \leq p-2
$$

We note that $j_{0}=0$ and

$$
\begin{equation*}
p \phi\left(j_{i}\right)-k j_{i}=i, \quad 0 \leq i \leq p-1 \tag{4.2}
\end{equation*}
$$

When $p=1$ and $k=0$, we do not need the above argument. Also we have the following lemma.

Lemma 4.1.
(i) $\phi(p)=k$.
(ii) $\phi(j)+\phi(p-j)=k+1$ for $1 \leq j \leq p-1$.
(iii) $j_{1}+j_{p-1}=p$.
(iv) If $j_{1}+j_{i}<p, 0 \leq i \leq p-1$, then $j_{1}+j_{i}=j_{i+1}$ and $\phi\left(j_{1}\right)+\phi\left(j_{i}\right)=\phi\left(j_{i+1}\right)$.
(v) If $j_{1}+j_{i}>p, 0 \leq i \leq p-1$, then $j_{1}+j_{i}=p+j_{i+1}$ and $\phi\left(j_{1}\right)+\phi\left(j_{i}\right)=k+\phi\left(j_{i+1}\right)$.

PROOF. (i) is already mentioned.
(ii) Let $1 \leq j \leq p-1$. Then $1 \leq p-j$, so that by the definition of ϕ we have $p(\phi(j)-1)-k j<0<p \phi(j)-k j$ and $p(\phi(p-j)-1)-k(p-j)<0<p \phi(p-j)-k(p-j)$. Hence

$$
p(\phi(j)+\phi(p-j)-2)-k p<0=p k-k p<p(\phi(j)+\phi(p-j))-k p
$$

This means that $\phi(j)+\phi(p-j)-2<k<\phi(j)+\phi(p-j)$. Therefore we get (ii).
(iii) Since p and $|k|$ are mutually prime, (4.2) gives (iii).
(iv) Suppose that $0 \leq i \leq p-1$ and $j_{1}+j_{i}<p$. By (4.2), $p \phi\left(j_{i}\right)-k j_{i}=i$. Then
$p\left(\phi\left(j_{1}\right)+\phi\left(j_{i}\right)\right)-k\left(j_{1}+j_{i}\right)=i+1$. Since $j_{1}+j_{i}<p$, (4.2) implies that $j_{1}+j_{i}=j_{i+1}$ and $\phi\left(j_{1}\right)+\phi\left(j_{i}\right)=\phi\left(j_{i+1}\right)$.
(v) Suppose that $j_{1}+j_{i}>p$. By (4.2), $p\left(\phi\left(j_{1}\right)+\phi\left(j_{i}\right)-k\right)-k\left(j_{1}+j_{i}-p\right)=i+1$. Since $j_{1}+j_{i}-p<p$, by (4.2) again we get $j_{1}+j_{i}-p=j_{i+1}$ and $\phi\left(j_{1}\right)+\phi\left(j_{i}\right)-k=\phi\left(j_{i+1}\right)$. Thus we get (v).

The following lemma follows from the Beurling theorem (see the proof of [11, Theorem 3]).

LEMMA 4.2. Let S be a closed subspace of $L^{2}\left(T^{2}\right)$ such that $z^{k} w^{p} S=S$. Moreover suppose that $S \perp z^{i} w^{j} S$ for $(i, j) \notin\{(n k, n p) ; n \in Z\}$. Then there exist a unimodular function ψ on T^{2} and $E_{0} \subset T^{2}$ such that $S=\psi \chi_{E_{0}}\left[\left\{\left(z^{k} w^{p}\right)^{n} ; n \in Z\right\}\right]$ and $\chi_{E_{0}} \in$ $\left[\left\{\left(z^{k} w^{p}\right)^{n} ; n \in Z\right\}\right]$.

Let

$$
H_{p, k}=\left\{z^{i} w^{j} ; p i-k j \geq 0,(i, j) \in Z^{2}\right\} .
$$

Then $A_{\phi} \subset H_{p, k}$ and

$$
\begin{equation*}
H_{p, k}=\bigcup\left\{\left(z^{k} w^{p}\right)^{n} A_{\phi} ; n \in Z\right\}=\bigcup\left\{\left(z^{\phi(p)} w^{p}\right)^{n} A_{\phi} ; n \in Z\right\} . \tag{4.3}
\end{equation*}
$$

Now we solve Problem 1.
THEOREM 4.1. Let M be an A_{ϕ}-invariant subspace such that $M=\left[A_{\phi, 1} M\right]$ and $z M \neq M$. Then

$$
M=\psi \chi_{E_{0}}\left[H_{p, k}\right] \oplus \chi_{E} L^{2}\left(T^{2}\right)
$$

for a unimodular function ψ on $T^{2}, \chi_{E_{0}} \in\left[\left\{\left(z^{k} w^{p}\right)^{n} ; n \in Z\right\}\right], E \subset T^{2}$, and $E_{0} \cap E=\emptyset$.
Moreover
(i) if $\bigcap_{n=0}^{\infty} z^{n} M=\{0\}$, then $M=\psi \chi_{E_{0}}\left[H_{p, k}\right]$;
(ii) if $\bigcap_{n=0}^{\infty} z^{n} M=\{0\}$ and there exists $h \in M$ such that $|h|>0$ a.e. on T^{2}, then $M=\psi\left[H_{p, k}\right]$.

It is not difficult to prove our theorem for the case $p=1$ and $k=0$ (see Lemma 2.1).

Proof of Theorem 4.1. Let $D=M \ominus z M$. Since $z M \neq M, D \neq\{0\}$. Since M is z-invariant,

$$
\begin{equation*}
M=D \oplus z M=\left(\sum_{n=0}^{\infty} \oplus z^{n} D\right) \oplus D_{\infty} \quad \text { and } \quad D_{\infty}=\bigcap_{n=0}^{\infty} z^{n} M \tag{4.4}
\end{equation*}
$$

Then D_{∞} is A_{ϕ}-invariant and $z D_{\infty}=D_{\infty}$. By Lemma 2.2, D_{∞} is an invariant subspace.
Since $M=\left[A_{\phi, 1} M\right], M=\left[\left(A_{\phi, 1}\right)^{p} M\right]$. Since $\left(A_{\phi, 1}\right)^{p} \subset A_{\phi, p}, M=\left[A_{\phi, p} M\right]$. Then by (4.1),

$$
\begin{equation*}
M=\left[A_{\phi, p} M\right]=z^{k} w^{p}\left[A_{\phi} M\right]=z^{k} w^{p} M \tag{4.5}
\end{equation*}
$$

By (4.4) and (4.5),

$$
w^{p} D_{\infty}=\bigcap_{n=0}^{\infty} z^{n} w^{p} M=\bigcap_{j=-k}^{\infty} z^{j}\left(z^{k} w^{p} M\right)=\bigcap_{j=-k}^{\infty} z^{j} M=D_{\infty}
$$

Since D_{∞} is an invariant subspace, $w D_{\infty}=D_{\infty}$. Therefore D_{∞} is a doubly invariant subspace and

$$
\begin{equation*}
D_{\infty}=\chi_{E} L^{2}\left(T^{2}\right), \quad E \subset T^{2} \tag{4.6}
\end{equation*}
$$

By (4.3), (4.5) and $M=\left[A_{\phi} M\right]$, we have $M=\left[H_{p, k} M\right]$. Hence by (4.4),

$$
\begin{equation*}
M=D \oplus z\left[H_{p, k} M\right] \tag{4.7}
\end{equation*}
$$

Let $\left\{j_{0}, j_{1}, \ldots, j_{p-1}\right\}=\{0,1, \ldots, p-1\}$ such that (see above Lemma 4.1) $p \phi\left(j_{i}\right)-$ $k j_{i}<p \phi\left(j_{i+1}\right)-k j_{i+1}, 0 \leq i \leq p-2$. Let

$$
\begin{equation*}
L_{p}=z H_{p, k} \quad \text { and } \quad L_{i}=z^{\phi\left(j_{i}\right)} w^{j_{i}} H_{p, k} \quad \text { for } 0 \leq i \leq p-1 \tag{4.8}
\end{equation*}
$$

Since $j_{0}=0, L_{0}=H_{p, k}$. Then $H_{p, k}=L_{0} \supset L_{i} \supset L_{i+1} \supset L_{p}=z H_{p, k}$ for $0 \leq i \leq p-1$. By the definition of $H_{p, k}$,

$$
\begin{equation*}
z^{k} w^{p} H_{p, k}=H_{p, k} \tag{4.9}
\end{equation*}
$$

Hence by Lemma 4.1, $z^{\phi\left(j_{1}\right)} w^{j_{1}} L_{i}=L_{i+1}$, and then

$$
\begin{equation*}
L_{i+1}=z^{\phi\left(j_{i}\right)} w^{j_{i}} L_{1} . \tag{4.10}
\end{equation*}
$$

Let $D_{i}=\left[L_{i} M\right] \ominus\left[L_{i+1} M\right]$. Then by (4.7),

$$
\begin{equation*}
D=\sum_{i=0}^{p-1} \oplus D_{i} . \tag{4.11}
\end{equation*}
$$

Here we have

$$
\begin{aligned}
D_{i} & =z^{\phi\left(j_{i}\right)} w^{j_{i}}\left(z^{-\phi\left(j_{i}\right)} w^{-j_{i}}\left[L_{i} M\right] \ominus\left[L_{1} M\right]\right) \quad \text { by (4.10) } \\
& =z^{\phi\left(j_{i}\right)} w^{j_{i}}\left(\left[H_{p, k} M\right] \ominus\left[L_{1} M\right]\right) \quad \text { by }(4.8) \\
& =z^{\phi\left(j_{i}\right)} w^{j_{i}} D_{0}
\end{aligned}
$$

Thus we get

$$
\begin{equation*}
D_{i}=z^{\phi\left(j_{i}\right)} w^{j_{i}} D_{0}, \quad 0 \leq i \leq p-1 \tag{4.12}
\end{equation*}
$$

By (4.8) and (4.9), $z^{k} w^{p} L_{i}=L_{i}$. Hence $z^{k} w^{p} D_{i}=D_{i}$, so that by (4.11) and (4.12), $z^{k} w^{p} D_{0}=D_{0}$, and $D_{0} \perp z^{t} w^{s} D_{0}$ for $(t, s) \in Z^{2}$ and $p t-k s \neq 0$. Then by Lemma 4.2, there exists a unimodular function ψ on T^{2} and $E_{0} \subset T^{2}$ such that

$$
\begin{equation*}
D_{0}=\psi \chi_{E_{0}}\left[\left\{\left(z^{k} w^{p}\right)^{n} ; n \in Z\right\}\right] \quad \text { and } \quad \chi_{E_{0}} \in\left[\left\{\left(z^{k} w^{p}\right)^{n} ; n \in Z\right\}\right] . \tag{4.13}
\end{equation*}
$$

Therefore by (4.3), (4.4), (4.6), (4.11), (4.12) and (4.13),

$$
\begin{aligned}
M & =\left(\sum_{n=0}^{\infty} \oplus z^{n}\left(\sum_{i=0}^{p-1} \oplus D_{i}\right)\right) \oplus \chi_{E} L^{2}\left(T^{2}\right) \\
& =\left(\sum_{n=0}^{\infty} \oplus z^{n}\left(\sum_{i=0}^{p-1} \oplus z^{\phi\left(j_{i}\right)} w^{j_{i}} D_{0}\right)\right) \oplus \chi_{E} L^{2}\left(T^{2}\right) \\
& =\left(\psi \chi_{E_{0}}\left[H_{p, k}\right]\right) \oplus \chi_{E} L^{2}\left(T^{2}\right) .
\end{aligned}
$$

The rest is easy to prove. This completes the proof.
5. Commuting Operators and A_{ϕ}-Invariant Subspaces. In this section, we discuss a special type of ϕ which is studied in Section 4. Let $p \in Z_{+} \backslash\{0\}$ and $k \in Z$ such that p and $|k|$ are mutually prime if $k \neq 0$, and $p=1$ if $k=0$. For each $n \in Z_{+}$, let $\phi(n)$ be the smallest integer which satisfies $p \phi(n)-k n \geq 0$. We note that $\phi(p)=k$. Let $A_{\phi}=\left\{z^{i} w^{j} ; p i-k j \geq 0,(i, j) \in Z \times Z_{+}\right\}$. Rearranging the order, let $\left\{j_{0}, j_{1}, \ldots, j_{p-1}\right\}=\{0,1, \ldots, p-1\}$ such that $p \phi\left(j_{i}\right)-k j_{i}<p \phi\left(j_{i+1}\right)-k j_{i+1}$ for $0 \leq i \leq p-2$. We note that $j_{0}=0$. When $p=1$ and $k=0$, we do not need the above argument.

Let M be an A_{ϕ}-invariant subspace. For $h \in A_{\phi}$, let

$$
V_{h}: M \ni f \longrightarrow h f \in M
$$

Let P be the orthogonal projection of L^{2} onto M. Then the adjoint operator V_{h}^{*} on M satisfies

$$
V_{h}^{*} f=P(\bar{h} f) \quad \text { for } f \in M
$$

Hence we have that

$$
\begin{equation*}
\operatorname{Ker} V_{z^{n}}^{*}=M \ominus z^{n} M \quad \text { for } n \geq 1 ; \tag{5.1}
\end{equation*}
$$

We study the following problem (see [9, 12]).
Problem 2. Describe A_{ϕ}-invariant subspaces M such that $V_{z^{k} w^{p}}^{*} V_{z}=V_{z} V_{z^{k} w^{p}}^{*}$.

Proposition 5.1. Let M be an A_{ϕ}-invariant subspace. Then the following three conditions are equivalent.
(i) $V_{z^{k} w^{p}}^{*} V_{z}=V_{z} V_{z^{k} w^{p}}^{*}$.
(ii) $V_{z^{k} w^{p}}^{*} V_{z^{n}}=V_{z^{n}} V_{z^{k} w^{p}}^{*}$ for every $n \geq 1$.
(iii) $V_{z^{k} w^{p}}^{*} V_{z^{n}}=V_{z^{n}} V_{z^{k} w^{p}}^{*}$ for some $n \geq 1$.

Proof. It is easy to prove that (i) \Longleftrightarrow (ii) and (ii) \Rightarrow (iii). So we only have to prove that (iii) \Rightarrow (i). Suppose that $V_{z^{k} w^{p}}^{*} V_{z^{n}}=V_{z^{n}} V_{z^{k} w^{p}}^{*}$ for $n \geq 2$. Then

$$
\begin{equation*}
V_{z^{n}}^{*} V_{z^{k} w^{p}}=V_{z^{k} w^{p}} V_{z^{n}}^{*} . \tag{5.3}
\end{equation*}
$$

By (5.1), $\operatorname{Ker} V_{z^{n}}^{*}=M \ominus z^{n} M$. Hence by (5.3),

$$
\begin{equation*}
z^{k} w^{p}\left(M \ominus z^{n} M\right) \subset M \ominus z^{n} M . \tag{5.4}
\end{equation*}
$$

To prove $V_{z^{k} w^{p}}^{*} V_{z}=V_{z} V_{z^{k} w^{p}}^{*}$, we need to prove that

$$
\begin{equation*}
z^{k} w^{p}(M \ominus z M) \subset M \ominus z M \tag{5.5}
\end{equation*}
$$

We note that $z M \subset M$. If $z M=M$, there is nothing to prove. Suppose that $z M \neq M$. Then

$$
\begin{equation*}
M=\left(\sum_{j=0}^{n-1} \oplus z^{j}(M \ominus z M)\right) \oplus z^{n} M . \tag{5.6}
\end{equation*}
$$

To prove (5.5), suppose not. Then there exists an f in $M \ominus z M$ such that

$$
\begin{equation*}
z^{k} w^{p} f=f_{1} \oplus z f_{2} \in(M \ominus z M) \oplus z M, \quad f_{2} \neq 0 \tag{5.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
z^{k} w^{p} z^{n-1} f=z^{n-1} f_{1} \oplus z^{n} f_{2} \in\left(\sum_{j=0}^{n-1} \oplus z^{j}(M \ominus z M)\right) \oplus z^{n} M \tag{5.8}
\end{equation*}
$$

Since $f \in M \ominus z M, z^{n-1} f \in M \ominus z^{n} M$, so that by (5.4) we have $z^{k} w^{p} z^{n-1} f \in M \ominus z^{n} M$. But by (5.6), (5.7) and (5.8), $z^{k} w^{p} z^{n-1} f \notin M \ominus z^{n} M$. This is a contradiction. Hence we get (5.5).

Then by (5.1) and (5.5), $V_{z^{k} w^{p}} V_{z}^{*}=V_{z}^{*} V_{z^{k} w^{p}}=0$ on $M \ominus z M$. Also we have $V_{z^{k} w^{p}} V_{z}^{*}=$ $V_{z}^{*} V_{z^{k} w^{p}}$ on $z M$. Hence $V_{z^{k} w^{p}} V_{z}^{*}=V_{z}^{*} V_{z^{k} w^{p}}$ on $M=(M \ominus z M) \oplus z M$. Therefore $V_{z^{k} w^{p}}^{*} V_{z}=$ $V_{z} V_{z^{k} w^{p}}^{*}$.

In the same way as in the proof of Proposition 5.1, we can prove the following.
LEMMA 5.1. Let M be an A_{ϕ}-invariant subspace. Then $V_{z^{k} w^{p}}^{*} V_{z}=V_{z} V_{z^{k} w^{p}}^{*}$ if and only if $z\left(M \ominus z^{k} w^{p} M\right) \subset M \ominus z^{k} w^{p} M$.

THEOREM 5.1. Let M be an A_{ϕ}-invariant subspace with $\left[A_{\phi, 1} M\right] \neq M$. Then $V_{z^{k} w^{p}}^{*} V_{z}=$ $V_{z} V_{z^{k} w^{p}}^{*}$ if and only if one of the following happens.
(i) There exists a unimodular function ψ on T^{2} and a positive integer n such that $1 \leq n \leq p$ and

$$
M=\psi \sum_{j=0}^{\infty} \oplus\left(z^{k} w^{p}\right)^{j}\left\{\left(\sum_{i=0}^{n-1} \oplus z^{\phi\left(j_{i}\right)} w^{j_{i}} H^{2}\left(T_{z}\right)\right) \oplus\left(\sum_{i=n}^{p-1} \oplus z^{\phi\left(j_{i}\right)-1} w^{j_{i}} H^{2}\left(T_{z}\right)\right)\right\}
$$

(ii) M is an invariant subspace with $z M=M$ and $w M \neq M$.

The case $p=1$ and $k=0$ of this theorem is proved in $[9,12]$.
Proof of Theorem 5.1. Let

$$
\begin{equation*}
\zeta=z^{k} w^{p} \tag{5.9}
\end{equation*}
$$

Suppose that

$$
\begin{equation*}
V_{\zeta}^{*} V_{z}=V_{z} V_{\zeta}^{*} . \tag{5.10}
\end{equation*}
$$

Let $N=M \ominus \zeta M$. By (4.1) and (5.9), $\zeta A_{\phi}=A_{\phi, p}$. Since $\left[A_{\phi} M\right]=M, \zeta M=\left[A_{\phi, p} M\right]$. Then $N=M \ominus\left[A_{\phi, p} M\right]$. Since $A_{\phi, p} \subset A_{\phi, 1}, \zeta M \subset\left[A_{\phi, 1} M\right]$. Hence by our assumption, $N \neq\{0\}$. Then we have the following decomposition

$$
\begin{equation*}
M=\left(\sum_{j=0}^{\infty} \oplus \zeta^{j} N\right) \oplus \bigcap_{j=0}^{\infty} \zeta^{j} M \tag{5.11}
\end{equation*}
$$

By (5.10) and Lemma 5.1, $z N \subset N$. Therefore we can use the basic procedure in Section 2. Using it, we shall study the structures of N and M. As in Section 2, let $\tilde{M}=\left[\bigcup\left\{z^{l} M ; l \in Z\right\}\right]$. Then by (5.9), $\zeta \tilde{M}=z^{k} w^{p} \tilde{M}=w^{p} \tilde{M}$, and by (2.1), $N \perp w^{p} \tilde{M}$. By (2.4) and (2.7),

$$
\begin{equation*}
N \subset \sum_{j=0}^{p-1} \oplus w^{j} S_{j} \subset \chi_{K}(z)\left(\sum_{j=0}^{p-1} \oplus w^{j} L^{2}\left(T_{z}\right)\right) \quad \text { and } \quad S_{j} \subset \chi_{K}(z) L^{2}\left(T_{z}\right) \tag{5.12}
\end{equation*}
$$

By (2.3),

$$
\begin{equation*}
M \subset \tilde{M}=\chi_{K}(z)\left(\sum_{j=0}^{\infty} \oplus w^{j} L^{2}\left(T_{z}\right)\right) \oplus \chi_{E} L^{2}\left(T^{2}\right) \tag{5.13}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\bigcap_{j=0}^{\infty} \zeta^{j} M \subset \bigcap_{j=0}^{\infty} w^{j p} \tilde{M}=\chi_{E} L^{2}\left(T^{2}\right) \tag{5.14}
\end{equation*}
$$

By Lemma 4.1 (ii), $\phi(1)+\phi(p-1)-k=1$. Since $\phi(p)=k$, by Lemma 2.3 we have

$$
\begin{gather*}
z^{\phi(p-1)} w^{p-1} \bar{S}_{0} \subset N ; \tag{5.15}\\
z \bar{S}_{0} \subset N \cap S_{0} . \tag{5.16}
\end{gather*}
$$

Now we separate the proof into two cases; $z \bar{S}_{0} \neq \bar{S}_{0}$ and $z \bar{S}_{0}=\bar{S}_{0}$.

CASE 1. Suppose that $z \bar{S}_{0} \neq \bar{S}_{0}$. Then by (2.5) and the Beurling theorem,

$$
\begin{equation*}
\bar{S}_{0}=q(z) H^{2}\left(T_{z}\right) \tag{5.17}
\end{equation*}
$$

for a unimodular function $q(z)$ on T_{z}. By (5.12), $\bar{S}_{0} \subset \chi_{K}(z) L^{2}\left(T_{z}\right)$. Hence in this case, we have $K=T_{z}$, and by (2.2), $E=\emptyset$. Hence by (5.11)-(5.14),

$$
\begin{equation*}
M=\sum_{j=0}^{\infty} \oplus \zeta^{j} N \subset \sum_{j=0}^{\infty} \oplus\left(\sum_{i=0}^{p-1} \oplus z^{j k} w^{j p+i} S_{i}\right) \subset \tilde{M}=\sum_{i=0}^{\infty} \oplus w^{t} L^{2}\left(T_{z}\right) \tag{5.18}
\end{equation*}
$$

We note that for each pair of i and j there corresponds a unique t such that $z^{j k} w^{j p+i} S_{i} \subset$ $w^{t} L^{2}\left(T_{z}\right)$ and $t=j p+i$. By (5.16), $z \bar{S}_{0} \subset S_{0} \subset \bar{S}_{0}$, hence by (5.17) we have $q(z) z H^{2}\left(T_{z}\right) \subset$ $S_{0} \subset q H^{2}\left(T_{z}\right)$. Since $\operatorname{dim}\left(H^{2}\left(T_{z}\right) \ominus z H^{2}\left(T_{z}\right)\right)=1, S_{0}$ becomes a closed subspace, and

$$
\begin{equation*}
S_{0}=\bar{S}_{0}=q(z) H^{2}\left(T_{z}\right) \tag{5.19}
\end{equation*}
$$

Since S_{0} is a closed subspace, by (5.16) we have

$$
\begin{equation*}
z S_{0} \subset N \cap S_{0} \subset S_{0} \tag{5.20}
\end{equation*}
$$

Here we want to prove

$$
\begin{equation*}
S_{0} \subset N \tag{5.21}
\end{equation*}
$$

To prove this, suppose not. Then by (5.19) and (5.20),

$$
\begin{equation*}
N \cap S_{0}=z S_{0} \tag{5.22}
\end{equation*}
$$

For $f \in N$, by (5.12) we can write f as $f=\sum_{j=0}^{p-1} \oplus w^{j} f_{j}(z), f_{j} \in S_{j}$. By (5.18), using the above representation of $f \in N$ we have

$$
\begin{equation*}
S_{i}=\left\{f_{i} ; f \in N\right\} \quad \text { for } 0 \leq i \leq p-1 \tag{5.23}
\end{equation*}
$$

Then $z^{\phi(1)} w f=\sum_{j=0}^{p-1} \oplus z^{\phi(1)} w w^{j} f_{j}(z) \in M$. Since $M=N \oplus \zeta N \oplus \zeta^{2} M$, by (5.12) and (5.22) we have $z^{\phi(1)} w w^{p-1} S_{p-1} \subset \zeta\left(N \cap S_{0}\right)=\zeta z S_{0}$. Therefore by (5.15) and Lemma 4.1 (ii),

$$
\begin{equation*}
w^{p-1} S_{p-1} \subset z^{-\phi(1)} w^{-1} \zeta z S_{0}=z^{\phi(p-1)} w^{p-1} S_{0} \subset N \tag{5.24}
\end{equation*}
$$

Next we shall prove

$$
\begin{equation*}
w^{p-2} S_{p-2} \subset N \tag{5.25}
\end{equation*}
$$

Since $z^{\phi(2)} w^{2} N \subset M$ and $f=\sum_{j=0}^{p-1} \oplus w^{j} f_{j}(z) \in N$, we have $\sum_{j=0}^{p-1} \oplus z^{\phi(2)} w^{2} w^{j} f_{j}(z) \in M$. Then by (5.18), $z^{\phi(2)} w^{2} w^{p-1} f_{p-1}(z)+z^{\phi(2)} w^{2} w^{p-2} f_{p-2}(z) \in \zeta N$. By (5.18) and (5.24), $z^{\phi(2)} w^{2} w^{p-1} f_{p-1}(z) \in \zeta N$, so that $z^{\phi(2)} w^{2} w^{p-2} f_{p-2}(z) \in \zeta\left(N \cap S_{0}\right)$. Therefore by (5.22),
$z^{\phi(2)} w^{2} w^{p-2} S_{p-2} \subset \zeta\left(N \cap S_{0}\right)=\zeta z S_{0}$. Since $z^{\phi(2)} w^{2} z^{\phi(p-2)} w^{p-2}=\zeta z$ by Lemma 4.1 (ii), we obtain

$$
\begin{equation*}
w^{p-2} S_{p-2} \subset z^{\phi(p-2)} w^{p-2} S_{0} \tag{5.26}
\end{equation*}
$$

Since $z^{\phi(p-2)} w^{p-2} f=\sum_{j=0}^{p-1} \oplus z^{\phi(p-2)} w^{p-2} w^{j} f_{j}(z) \in M$, we have

$$
z^{\phi(p-2)} w^{p-2} f_{0}(z) \oplus z^{\phi(p-2)} w^{p-1} f_{1}(z) \in N
$$

Then $z^{\phi(p-2)} w^{p-1} f_{1}(z) \in w^{p-1} S_{p-1}$, so that by (5.24) we have $z^{\phi(p-2)} w^{p-2} S_{0} \subset N$. Therefore by (5.26), we obtain (5.25). In the same way, we can prove by induction that $w^{p-i} S_{p-i} \subset N$ for $1 \leq i \leq p-1$. Since $f=\sum_{j=0}^{p-1} \oplus w^{j} f_{j}(z) \in N$ and $f_{j}(z) \in S_{j}$, by the above we have $f_{0}(z) \in N$. By (5.23), $S_{0} \subset N$ and this contradicts (5.22). Thus we get (5.21).

Now we shall prove that

$$
\begin{equation*}
w^{j} S_{j} \subset N \quad \text { for } 0 \leq j \leq p-1 \tag{5.27}
\end{equation*}
$$

The reader may think that (5.27) is already proved in the last paragraph. But these arguments are done under the assumption $N \cap S_{0}=z S_{0}$. Here we want to prove (5.27) under the assumption $N \cap S_{0}=S_{0}$. By (5.21), (5.27) is true for $j=0$. By induction we prove (5.27). Suppose that

$$
\begin{equation*}
w^{j} S_{j} \subset N \quad \text { for } 0 \leq j \leq n-1 \tag{5.28}
\end{equation*}
$$

for n with $1 \leq n \leq p-1$. We prove that $w^{n} S_{n} \subset N$. When $n=p-1$, by (5.12), (5.23) and (5.28) we have $w^{n} S_{n}=w^{p-1} S_{p-1} \subset N$ easily. Hence we assume $n<p-1$. For $f=\sum_{j=0}^{p-1} \oplus w^{j} f_{j}(z) \in N, z^{\phi(p-n-1)} w^{p-n-1} f \in M$. Then

$$
\left(\sum_{j=0}^{n} \oplus z^{\phi(p-n-1)} w^{p+j-n-1} f_{j}\right) \oplus\left(\sum_{j=n+1}^{p-1} \oplus z^{\phi(p-n-1)} w^{p+j-n-1} f_{j}\right) \in N \oplus \zeta N .
$$

Hence by our assumption (5.28), $z^{\phi(p-n-1)} w^{p-1} f_{n} \in N$. By (5.23),

$$
\begin{equation*}
z^{\phi(p-n-1)} w^{p-1} \bar{S}_{n} \subset N \tag{5.29}
\end{equation*}
$$

This implies that $z^{\phi(n+1)} w^{n+1} z^{\phi(p-n-1)} w^{p-1} \bar{S}_{n} \subset \zeta\left(N \cap w^{n} S_{n}\right)$. Since $\phi(p)=k$, by Lemma 4.1 we have

$$
\begin{equation*}
z w^{n} \bar{S}_{n} \subset N \cap w^{n} S_{n} \subset w^{n} \bar{S}_{n} \tag{5.30}
\end{equation*}
$$

We note that (5.29) and (5.30) correspond to (5.15) and (5.16) respectively. By the same argument used to prove (5.21), we can prove $w^{n} S_{n} \subset N$. Here we only give an outline of this proof. If $z \bar{S}_{n}=\bar{S}_{n}$, (5.30) immediately gives $w^{n} S_{n} \subset N$. Next suppose that $z \bar{S}_{n} \neq \bar{S}_{n}$.

Then S_{n} becomes a closed subspace of $L^{2}\left(T_{z}\right)$. To prove $w^{n} S_{n} \subset N$, suppose not. Then by (5.30),

$$
\begin{equation*}
N \cap w^{n} S_{n}=z w^{n} S_{n} \tag{5.31}
\end{equation*}
$$

By the fact $z^{\phi(n+1)} w^{n+1} N \subset N \oplus \zeta N$ and (5.31), we have $w^{p-1} S_{p-1} \subset N$. By induction, we can prove that $w^{n} S_{n} \subset N$. As a consequence, we get (5.27).

Therefore by (5.12) and (5.27), we obtain

$$
\begin{equation*}
N=\sum_{j=0}^{p-1} \oplus w^{j} S_{j} . \tag{5.32}
\end{equation*}
$$

Here we note that $z^{\phi(p-j)} w^{p-j} w^{j} S_{j} \subset \zeta S_{0}$ for $0 \leq j \leq p-1$. By Lemma 4.1 (ii), $\phi(p-j)+\phi(j)=\phi(p)+1$, so that by (5.19) we have

$$
\begin{equation*}
S_{j} \subset q(z) z^{\phi(j)-1} H^{2}\left(T_{z}\right), \quad 0 \leq j \leq p-1 \tag{5.33}
\end{equation*}
$$

Now we shall prove that there exists an integer n such that $1 \leq n \leq p$ and

$$
\begin{equation*}
N=q(z)\left(\left(\sum_{i=0}^{n-1} \oplus z^{\phi\left(j_{i}\right)} w^{j_{i}} H^{2}\left(T_{z}\right)\right) \oplus\left(\sum_{i=n}^{p-1} \oplus z^{\phi\left(j_{i}\right)-1} w^{j_{i}} H^{2}\left(T_{z}\right)\right)\right) \tag{5.34}
\end{equation*}
$$

By (5.19) and (5.21),

$$
\begin{equation*}
q(z)\left(\sum_{j=0}^{p-1} \oplus z^{\phi(j)} w^{j} H^{2}\left(T_{z}\right)\right) \subset N \tag{5.35}
\end{equation*}
$$

If $q(z)\left(\sum_{j=0}^{p-1} \oplus z^{\phi(j)} w^{j} H^{2}\left(T_{z}\right)\right)=N$, then N has the desired form and in this case we have $n=p$. Suppose that $q(z)\left(\sum_{j=0}^{p-1} \oplus z^{\phi(j)} w^{j} H^{2}\left(T_{z}\right)\right) \neq N$. Then there is a positive integer n such that

$$
\begin{equation*}
w^{j_{n}} S_{j_{n}} \neq q(z) z^{\phi\left(j_{n}\right)} w^{j_{n}} H^{2}\left(T_{z}\right), \quad 1 \leq n \leq p-1 \tag{5.36}
\end{equation*}
$$

Here we may assume that n is the smallest integer which satisfies (5.36). Then

$$
\begin{equation*}
w^{j_{i}} S_{j_{i}}=q(z) z^{\phi\left(j_{i}\right)} w^{j_{i}} H^{2}\left(T_{z}\right), \quad 0 \leq i<n \tag{5.37}
\end{equation*}
$$

By (5.32) and (5.35), $w^{j_{n}} S_{j_{n}} \supset z^{\phi\left(j_{n}\right)} w^{j_{n}} S_{0}=q(z) z^{\phi\left(j_{n}\right)} w^{j_{n}} H^{2}\left(T_{z}\right)$. Then by (5.33) and (5.36),

$$
\begin{equation*}
w^{j_{n}} S_{j_{n}}=q(z) z^{\phi\left(j_{n}\right)-1} w^{j_{n}} H^{2}\left(T_{z}\right) \tag{5.38}
\end{equation*}
$$

When $n=p-1, N$ has the desired form in (5.34), so that we may assume $n<p-1$.
We shall prove that

$$
\begin{equation*}
w^{j_{i}} S_{j_{i}}=q(z) z^{\phi\left(j_{i}\right)-1} w^{j_{i}} H^{2}\left(T_{z}\right) \quad \text { for } n<i \leq p-1 \tag{5.39}
\end{equation*}
$$

By (5.32) and (5.38),

$$
\begin{equation*}
z^{\phi\left(j_{1}\right)} w^{j_{1}} w^{j_{n}} S_{j_{n}}=q(z) z^{\phi\left(j_{1}\right)+\phi\left(j_{n}\right)-1} w^{j_{1}+j_{n}} H^{2}\left(T_{z}\right) \subset M \tag{5.40}
\end{equation*}
$$

We note that $p \neq j_{1}+j_{n}$, because $n<p-1$. Hence it happens $j_{1}+j_{n}<p$ or $p<j_{1}+j_{n}$.
First, suppose that $j_{1}+j_{n}<p$. Then by Lemma 4.1 (iv), $\phi\left(j_{1}\right)+\phi\left(j_{n}\right)=\phi\left(j_{1}+j_{n}\right)$ and $j_{1}+j_{n}=j_{n+1}$. Hence by (5.40), $q(z) z^{\phi\left(j_{n+1}\right)-1} w^{j_{n+1}} H^{2}\left(T_{z}\right) \subset M$. Since $j_{n+1}<p$, by (5.32) we have $q(z) z^{\phi\left(j_{n+1}\right)-1} w^{j_{n+1}} H^{2}\left(T_{z}\right) \subset w^{j_{n+1}} S_{j_{n+1}}$. Then by (5.33), $S_{j_{n+1}}=q(z) z^{\phi\left(j_{n+1}\right)-1} H^{2}\left(T_{z}\right)$.

Next, suppose that $p<j_{1}+j_{n}$. Then by Lemma 4.1 (v), $j_{1}+j_{n}=p+j_{n+1}$ and $\phi\left(j_{1}\right)+\phi\left(j_{n}\right)=k+\phi\left(j_{n+1}\right)$, so that by (5.40), $q(z) \zeta z^{\phi\left(j_{n+1}\right)-1} w^{j_{n+1}} H^{2}\left(T_{z}\right) \subset M$. By (5.18), $q(z) \zeta z^{\phi\left(j_{n+1}\right)-1} w^{j_{n+1}} H^{2}\left(T_{z}\right) \subset \zeta N$. Hence $q(z) z^{\phi\left(j_{n+1}\right)-1} w^{j_{n+1}} H^{2}\left(T_{z}\right) \subset w^{j_{n+1}} S_{j_{n+1}}$. By (5.33), we get $S_{j_{n+1}}=q(z) z^{\phi\left(j_{n+1}\right)-1} w^{j_{n+1}} H^{2}\left(T_{z}\right)$. Therefore by induction, we can prove (5.39). By (5.32), (5.37) and (5.39), we get (5.34), so that by (5.18) M is of the form (i).

CASE 2. Suppose that $z \bar{S}_{0}=\bar{S}_{0}$. By (5.16), $z \bar{S}_{0} \subset N \cap S_{0} \subset \bar{S}_{0}$. Hence S_{0} is a closed subspace of $L^{2}\left(T_{z}\right)$ and $z S_{0}=S_{0} \subset N$. By (5.8), $S_{0} \subset M \ominus\left[A_{\phi, 1} M\right]$, so that S_{0} plays the role of N in the basic procedure in Section 2 for $p=1$. Since $z S_{0}=S_{0}$, Case 1 happens in the basic procedure. Then by Lemma 2.4, M is an invariant subspace with $z M=M$ and $w M \neq M$. Therefore M satisfies the condition (ii).

By Lemma 5.1, it is not difficult to prove the converse assertion.
6. Homogeneous-Type A_{ϕ}-Invariant Subspaces. We discuss the same ϕ which is studied in Section 4. Let $p \in Z_{+} \backslash\{0\}$ and $k \in Z$ such that p and $|k|$ are mutually prime if $k \neq 0$, and $p=1$ if $k=0$. For each $n \in Z_{+}$, let $\phi(n)$ be the smallest integer such that $p \phi(n)-k n \geq 0$.

Let M be an A_{ϕ}-invariant subspace. For $n \in Z_{+}$, let

$$
\begin{equation*}
M_{n}=\left[\sum_{j=0}^{n}\left(z^{k} w^{p}\right)^{j} z^{n-j} M\right] . \tag{6.1}
\end{equation*}
$$

Then M_{n} is A_{ϕ}-invariant and $M=M_{0} \supset M_{1} \supset M_{2} \supset \cdots$. Let $X_{n}=M_{n} \ominus M_{n+1}$ for $n \in Z_{+}$. Then we have the following decomposition

$$
\begin{equation*}
M=\left(\sum_{n=0}^{\infty} \oplus X_{n}\right) \oplus M_{\infty} \tag{6.2}
\end{equation*}
$$

where $M_{\infty}=\bigcap_{n=0}^{\infty} M_{n}$. Here we call M a homogeneous-type A_{ϕ}-invariant subspace if

$$
\begin{equation*}
z X_{n} \subset X_{n+1} \quad \text { and } \quad z^{k} w^{p} X_{n} \subset X_{n+1} \quad \text { for } n \in Z_{+} \tag{6.3}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{\infty}=\{0\} \tag{6.4}
\end{equation*}
$$

In this section, we study the following problem (see [11, 13]).

Problem 3. Determine the homogeneous-type A_{ϕ}-invariant subspaces M with $z^{k} w^{p} M \subset z M$ and $z^{k} w^{p} M \neq z M$.

In [11], Nakazi gave an answer for the case $p=1$ and $k=0$.
Lemma 6.1. Let M be A_{ϕ}-invariant. Then M is of homogeneous-type if and only if there is a closed subspace E of $L^{2}\left(T^{2}\right)$ such that $M=\sum_{n=0}^{\infty} \oplus\left[\sum_{j=0}^{n}\left(z^{k} w^{p}\right)^{j} z^{n-j} E\right]$.

Proof. Suppose that M is of homogeneous-type. Then by (6.2) and (6.4),

$$
\begin{equation*}
M=\sum_{n=0}^{\infty} \oplus X_{n} \tag{6.5}
\end{equation*}
$$

We shall show that

$$
\begin{equation*}
X_{n}=\left[\sum_{j=0}^{n}\left(z^{k} w^{p}\right)^{j} z^{n-j} X_{0}\right] \quad \text { for } n \in Z_{+} \tag{6.6}
\end{equation*}
$$

By (6.3), $\left[z^{k} w^{p} X_{n}+z X_{n}\right] \subset X_{n+1}$. Then by (6.1) and (6.5), $M_{1}=\sum_{n=0}^{\infty} \oplus\left[z^{k} w^{p} X_{n}+z X_{n}\right]$, so that $X_{0}=M \ominus M_{1}=X_{0} \oplus\left(\sum_{n=1}^{\infty} \oplus\left(X_{n} \ominus\left[z^{k} w^{p} X_{n-1}+z X_{n-1}\right]\right)\right)$. Thus $X_{n}=\left[z^{k} w^{p} X_{n-1}+\right.$ $\left.z X_{n-1}\right]$ for $n \geq 1$. Hence we have (6.6). Set $E=X_{0}$; then M has the desired form.

Next, suppose that there exists a closed subspace E of $L^{2}\left(T^{2}\right)$ such that

$$
M=\sum_{n=0}^{\infty} \oplus\left[\sum_{j=0}^{n}\left(z^{k} w^{p}\right)^{j} z^{n-j} E\right]
$$

Then we have

$$
M_{i}=\sum_{n=i}^{\infty} \oplus\left[\sum_{j=0}^{n}\left(z^{k} w^{p}\right)^{j} z^{n-j} E\right] .
$$

Hence

$$
X_{n}=\left[\sum_{j=0}^{n}\left(z^{k} w^{p}\right)^{j} z^{n-j} E\right] \quad \text { and } \quad M_{\infty}=\{0\}
$$

Now it is easy to see that X_{n} satisfies (6.3), so that M is of homogeneous-type.
LEMMA 6.2. Let M be an A_{ϕ}-invariant subspace with $z^{k} w^{p} M \subset z M$ and $M \neq\{0\}$. Suppose that M is of homogeneous-type. Let E be the closed subspace of $L^{2}\left(T^{2}\right)$ which is given in Lemma 6.1. Then $M=\sum_{n=0}^{\infty} \oplus z^{n} E$ and $z^{k-1} w^{p} E \subset E$.

Proof. Let $\zeta=z^{k} w^{p}$. Suppose that M is of homogeneous-type. Then by Lemma 6.1, there is a nonzero closed subspace E of $L^{2}\left(T^{2}\right)$ such that

$$
\begin{equation*}
M=\sum_{n=0}^{\infty} \oplus X_{n}, \quad X_{n}=\left[\sum_{j=0}^{n} \zeta^{j} z^{n-j} E\right] \tag{6.7}
\end{equation*}
$$

By our assumption, $\zeta M \subset z M$, so that $\zeta M=\sum_{n=0}^{\infty} \oplus \zeta X_{n} \subset \sum_{n=0}^{\infty} \oplus z X_{n}$. Since $\zeta X_{n} \cup z X_{n} \subset$ X_{n+1}, by the above inclusion we have $\zeta X_{n} \subset z X_{n}$. Hence

$$
\left[\sum_{j=0}^{n} \zeta^{j+1} z^{n-j} E\right] \subset\left[\sum_{j=0}^{n} \zeta^{j} z^{n+1-j} E\right], \quad n \in Z_{+}
$$

When $n=0, \zeta E \subset z E$. Hence $X_{n}=\left[\sum_{j=0}^{n} \zeta^{j} z^{n-j} E\right] \subset z^{n} E \subset X_{n}$, so that we get $X_{n}=z^{n} E$. Therefore by (6.7), $M=\sum_{n=0}^{\infty} \oplus z^{n} E$.

THEOREM 6.1. Let M be an A_{ϕ}-invariant subspace with $z^{k} w^{p} M \subset z M$ and $z^{k} w^{p} M \neq$ $z M$. Suppose that M is of homogeneous-type. Then M has one of the following forms.

$$
\begin{equation*}
M=\psi \sum_{j=0}^{\infty} \oplus\left(z^{k-1} w^{p}\right)^{j}\left(G \oplus\left(\sum_{i=0}^{p-1} \oplus z^{\phi(i)} w^{i} H^{2}\left(T_{z}\right)\right)\right), \tag{i}
\end{equation*}
$$

where ψ is a unimodular function on T^{2} and G is a closed subspace such that

$$
G \subset\left[\left\{z^{\phi(i)-1} w^{i}, z^{\phi(i)-2} w^{i} ; 1 \leq i \leq p-1\right\}\right] .
$$

$$
\begin{equation*}
M=\psi \sum_{j=0}^{\infty} \oplus\left(z^{k-1} w^{p}\right)^{j}\left(G \oplus\left(\sum_{i=0}^{p-1} \oplus z^{\phi(i)+1} w^{i} H^{2}\left(T_{z}\right)\right)\right) \tag{ii}
\end{equation*}
$$

where ψ is a unimodular function on T^{2} and G is a closed subspace such that

$$
G \subset\left[\left\{1, z^{\phi(i)} w^{i}, z^{\phi(i)-1} w^{i}, z^{\phi(i)-2} w^{i} ; 1 \leq i \leq p-1\right\}\right] .
$$

The structure of G is in general too complicated to describe more explicitly. In Section 7, we determine G for two special kinds of ϕ.

Proof of Theorem 6.1. Let

$$
\begin{equation*}
\zeta=z^{k} w^{p} \tag{6.8}
\end{equation*}
$$

Since M is of homogeneous-type, by Lemmas 6.1 and 6.2 there is a nonzero closed subspace E of $L^{2}\left(T^{2}\right)$ such that

$$
\begin{equation*}
M=\sum_{n=0}^{\infty} \oplus\left[\sum_{j=0}^{n} \zeta^{j} z^{n-j} E\right]=\sum_{n=0}^{\infty} \oplus z^{n} E, \quad \zeta z^{-1} E \subset E . \tag{6.9}
\end{equation*}
$$

If $\zeta z^{-1} E=E$, then by (6.9), $\zeta M=z M$. This contradicts our assumption. Therefore $\zeta z^{-1} E \neq E$. Let $Y=E \ominus \zeta z^{-1} E \neq\{0\}$. Then

$$
\begin{equation*}
E=Y \oplus \zeta z^{-1} E \tag{6.10}
\end{equation*}
$$

By (6.9), $z^{i} Y \perp z^{j} Y$ for $i, j \in Z_{+}, i \neq j$. Let

$$
\begin{equation*}
N=\sum_{i=0}^{\infty} \oplus z^{i} Y \tag{6.11}
\end{equation*}
$$

Then by (6.9), (6.10) and (6.11),

$$
\begin{equation*}
M=N \oplus \zeta z^{-1} M \tag{6.12}
\end{equation*}
$$

Here let B be the semigroup in $\left\{z^{i} w^{j} ; i, j \in Z\right\}$ generated by ζz^{-1} and A_{ϕ}. For each $n \in Z_{+}$, we put $\mu(n)=\min \left\{i \in Z ; z^{i} w^{n} \in B\right\}$. Then $\mu(0)=0$ and $A_{\mu}=B$. By (6.8) and the definition of ϕ,

$$
\begin{equation*}
\mu(i p+j)=\phi(i p+j)-i \quad \text { for } i \in Z_{+}, 0 \leq j \leq p-1 ; \tag{6.13}
\end{equation*}
$$

$$
\begin{equation*}
\mu(p)=k-1 \tag{6.14}
\end{equation*}
$$

$$
\begin{equation*}
\zeta z^{-1} A_{\mu}=A_{\mu, p} \tag{6.15}
\end{equation*}
$$

Hence A_{μ} is cyclic. By our assumption, $\zeta z^{-1} M \subset M$, so that M is A_{μ}-invariant. Then by (6.15), $\left[A_{\mu, p} M\right]=\zeta z^{-1} M$. Hence (6.11) and (6.12) imply that N is a nonzero z-invariant subspace, $z N \neq N$ and

$$
\begin{equation*}
N=M \ominus\left[A_{\mu, p} M\right] . \tag{6.16}
\end{equation*}
$$

Now we can use Case 2 of the basic procedure in Section 2 for $\mu(n)$ instead of $\phi(n)$. Then by (2.23), there is a nonzero subspace S_{j} of $L^{2}\left(T_{z}\right)$ (perhaps not closed) such that

$$
\begin{equation*}
M \subset \sum_{j=0}^{\infty} \oplus w^{j} S_{j} \subset \tilde{M}=\sum_{j=0}^{\infty} \oplus w^{j} L^{2}\left(T_{z}\right) \tag{6.17}
\end{equation*}
$$

and by (2.24),

$$
\begin{equation*}
N \subset \sum_{j=0}^{p-1} \oplus w^{j} S_{j} \subset \sum_{j=0}^{p-1} \oplus w^{j} L^{2}\left(T_{z}\right) \tag{6.18}
\end{equation*}
$$

By (6.12) and the definition of S_{j} (see (2.4)),

$$
\begin{equation*}
\zeta z^{-1} S_{j}=w^{p} S_{j+p}, \quad j \in Z_{+} . \tag{6.19}
\end{equation*}
$$

By (2.25),

$$
\begin{equation*}
\left[A_{\mu, n} M\right] \subset \sum_{j=n}^{\infty} \oplus w^{j} S_{j} \subset \sum_{j=n}^{\infty} \oplus w^{j} L^{2}\left(T_{z}\right), \quad n \in Z_{+} \tag{6.20}
\end{equation*}
$$

By (2.9),

$$
\begin{equation*}
\sum_{j=0}^{n} z^{\mu(n-j)} S_{j} \subset S_{n} \subset\left[\sum_{j=0}^{n} z^{\mu(n-j)} S_{j}\right], \quad n \in Z_{+} \tag{6.21}
\end{equation*}
$$

By (6.13), (6.14) and Lemma 4.1 (ii), $\mu(1)+\mu(p-1)-\mu(p)=2$. Hence by Lemma 2.3,

$$
\begin{equation*}
z^{2} \bar{S}_{0} \subset N \cap S_{0} \tag{6.22}
\end{equation*}
$$

By (2.5), \bar{S}_{0} is a z-invariant subspace of $L^{2}\left(T_{z}\right)$, so that by the Beurling theorem $\bar{S}_{0}=$ $q(z) H^{2}\left(T_{z}\right)$ or $\bar{S}_{0}=\chi_{F}(z) L^{2}\left(T_{z}\right)$, where $q(z)$ is a unimodular function on T_{z} and $F \subset T_{z}$. By (6.22), $z^{2} \bar{S}_{0} \subset S_{0} \subset \bar{S}_{0}$. Then for both cases, S_{0} becomes a closed subspace and $S_{0}=q(z) H^{2}\left(T_{z}\right)$ or $S_{0}=\chi_{F}(z) L^{2}\left(T_{z}\right)$. Moreover by (6.22),

$$
\begin{equation*}
z^{2} S_{0} \subset N \tag{6.23}
\end{equation*}
$$

Here we note that $S_{0} \neq \chi_{F}(z) L^{2}\left(T_{z}\right)$. For, suppose that $S_{0}=\chi_{F}(z) L^{2}\left(T_{z}\right)$. By (6.20), $S_{0} \perp\left[A_{\mu, 1} M\right]$. Then by Lemma $2.4, M$ is an invariant subspace with $z M=M$ and $w M \neq M$. But by (6.9), M satisfies $z M \neq M$. This is a contradiction. Therefore $S_{0}=q(z) H^{2}\left(T_{z}\right)$.

For the sake of simplicity we assume that

$$
\begin{equation*}
S_{0}=H^{2}\left(T_{z}\right) \tag{6.24}
\end{equation*}
$$

Now recall the proof of (5.21) in the proof of Theorem 5.1. In the same way, from (6.23) we can prove $z S_{0} \subset N$. Since $z^{2} S_{0} \subset N \cap S_{0} \subset S_{0}$, by the above inclusion we have

$$
\begin{equation*}
N \cap S_{0}=S_{0} \quad \text { or } \quad N \cap S_{0}=z S_{0} \tag{6.25}
\end{equation*}
$$

By (6.19) for $j=0, \zeta z^{-1} S_{0}=w^{p} S_{p}$. Then by (6.21),

$$
\begin{equation*}
z^{\mu(p-j)} w^{p-j} w^{j} S_{j} \subset \zeta z^{-1} S_{0}, \quad 0 \leq j \leq p-1 \tag{6.26}
\end{equation*}
$$

By (6.13), (6.14) and Lemma 4.1 (ii), $\mu(p)-\mu(p-j)=\mu(j)-2$. Hence by (6.8) and (6.26), $S_{j} \subset z^{\mu(j)-2} S_{0}$. On the other hand, by (6.21) we have $z^{\mu(j)} S_{0} \subset S_{j}, 0 \leq j \leq p-1$. Hence $z^{\mu(j)} S_{0} \subset S_{j} \subset z^{\mu(j)-2} S_{0}$ for $0 \leq j \leq p-1$. Then by (6.24), S_{j} is a closed subspace of $L^{2}\left(T_{z}\right)$ and

$$
\begin{equation*}
S_{j}=z^{\mu(j)-\epsilon(j)} S_{0}=z^{\mu(j)-\epsilon(j)} H^{2}\left(T_{z}\right) \quad \text { for some } \epsilon(j)=0,1,2 \tag{6.27}
\end{equation*}
$$

Since $\mu(0)=0$,

$$
\begin{equation*}
\epsilon(0)=0 . \tag{6.28}
\end{equation*}
$$

By (6.16), (6.18), (6.20), and the A_{μ}-invariantness of M,

$$
\begin{equation*}
\sum_{j=0}^{p-1} \oplus z^{\mu(j)} w^{j}\left(N \cap S_{0}\right) \subset N \tag{6.29}
\end{equation*}
$$

By (6.18) and (6.27),

$$
\begin{equation*}
N \subset \sum_{j=0}^{p-1} \oplus w^{j} S_{j}=\sum_{j=0}^{p-1} \oplus z^{\mu(j)-\epsilon(j)} w^{j} H^{2}\left(T_{z}\right) \tag{6.30}
\end{equation*}
$$

By (6.29), we can define

$$
\begin{equation*}
G=N \ominus\left(\sum_{j=0}^{p-1} \oplus z^{\mu(j)} w^{j}\left(N \cap S_{0}\right)\right) \tag{6.31}
\end{equation*}
$$

We consider the following two cases separately (see (6.25)); $N \cap S_{0}=S_{0}$ and $N \cap S_{0}=z S_{0}$.
When $N \cap S_{0}=S_{0}$, by (6.24) and (6.31) we have

$$
N=G \oplus \sum_{j=0}^{p-1} \oplus z^{\mu(j)} w^{j} H^{2}\left(T_{z}\right)
$$

By (6.12) and (6.17), $M=\sum_{j=0}^{\infty} \oplus\left(\zeta z^{-1}\right)^{j} N$. Hence, in this case, M has the form given by (i). By (6.28), (6.30), and (6.31), it is not difficult to see that G satisfies the desired condition.

In the same way, when $N \cap S_{0}=z S_{0}, M$ has the form given by (ii).
7. Examples of Homogeneous-Type A_{ϕ}-Invariant Subspaces. This section is a continuation of Section 6. Let $\left\{j_{0}, j_{1}, \ldots, j_{p-1}\right\}=\{0,1, \ldots, p-1\}$ such that $p \phi\left(j_{i}\right)-$ $k j_{i}<p \phi\left(j_{i+1}\right)-k j_{i+1}$ for $0 \leq i \leq p-2$. We note that $j_{0}=0$ (see for detail Section 4), and the structure of $\left\{j_{i}\right\}_{i=0}^{p-1}$ depends strongly on the given p and k. We study in Theorem 7.1 the case $j_{i}=i, 1 \leq i \leq p-1$, and in Theorem 7.2 the case $j_{i}=p-i, 1 \leq i \leq p-1$. Comparing these theorems, we find that the structures of G are completely different. For general cases, it is natural to expect that G has the mixed structures of G in Theorems 7.1 and 7.2.

THEOREM 7.1. Suppose that $j_{i}=i$ for $0 \leq i \leq p-1$ for given p and k. Let M be an $A_{\phi^{-}}$ invariant subspace with $z^{k} w^{p} M \subset z M$ and $z^{k} w^{p} M \neq z M$. Then M is of homogeneous-type if and only if

$$
M=\psi \sum_{j=0}^{\infty} \oplus\left(z^{k-1} w^{p}\right)^{j}\left(G \oplus\left(\sum_{i=0}^{p-1} \oplus z^{\phi(i)} w^{i} H^{2}\left(T_{z}\right)\right)\right),
$$

where ψ is a unimodular function on T^{2} and G has one of the following forms.

$$
\begin{equation*}
G=\{0\} \quad \text { or } \quad G=\left[\left\{z^{\phi(s)-1} w^{s} ; s_{1} \leq s \leq p-1\right\}\right] \tag{i}
\end{equation*}
$$

for some s_{1} with $1 \leq s_{1} \leq p-1$.

$$
\begin{equation*}
G=\left[\left\{z^{\phi(i)-1} w^{i}, z^{\phi(j)-2} w^{j} ; s_{1} \leq i \leq p-1, s_{2} \leq j \leq p-1\right\}\right] \tag{ii}
\end{equation*}
$$

for some s_{1} and s_{2} with $1 \leq s_{1} \leq s_{2} \leq p-1$.

$$
\begin{equation*}
G=G_{1} \oplus\left[\left\{z^{\phi(i)-1} w^{i}, z^{\phi(j)-2} w^{j} ; t_{1} \leq i \leq p-1, t_{2} \leq j \leq p-1\right\}\right] \tag{iii}
\end{equation*}
$$

where

$$
G_{1}=\left[\left\{\left(z^{\phi(1)} w\right)^{j}\left(\sum_{i=0}^{t_{1}-s_{1}-j-1}\left(\alpha_{i} z^{\phi\left(s_{2}+i\right)-2} w^{s_{2}+i}+\beta_{i} z^{\phi\left(s_{1}+i\right)-1} w^{s_{1}+i}\right)\right) ; 0 \leq j \leq t_{1}-s_{1}-1\right\}\right]
$$

for some complex numbers $\left\{\alpha_{i}, \beta_{i}\right\}_{i=0}^{t_{1}-s_{1}-1}$ with $\alpha_{0} \neq 0$ and $\beta_{0} \neq 0$, and for some s_{1}, s_{2}, t_{1}, t_{2} with $0 \leq s_{1}<t_{1} \leq s_{2}<t_{2} \leq p$ and $t_{2}-s_{2}=t_{1}-s_{1}$.

We note that for a given $p \in Z_{+} \backslash\{0\}$, a pair (p, k) satisfies the assumption of Theorem 7.1 if and only if $k=l p-1$ and $l p \neq 1$ for some $l \in Z$.

PRoof of Theorem 7.1. Suppose that M is of homogeneous-type. We use the same notations as in the proof of Theorem 6.1 and we continue our proof from the end of the proof of Theorem 6.1. Since $j_{i}=i$ for $0 \leq i \leq p-1$,

$$
\begin{equation*}
z^{\phi(j)} w^{j}=\left(z^{\phi(1)} w\right)^{j}, \quad 0 \leq j \leq p-1 \tag{7.1}
\end{equation*}
$$

This is the key point of our assumption.
First suppose that

$$
\begin{equation*}
N \cap S_{0}=S_{0}=H^{2}\left(T_{z}\right) \tag{7.2}
\end{equation*}
$$

Then by the end of the proof of Theorem 6.1, we may consider

$$
\begin{equation*}
M=\sum_{j=0}^{\infty} \oplus\left(z^{k-1} w^{p}\right)^{j}\left(G \oplus\left(\sum_{i=0}^{p-1} \oplus z^{\phi(i)} w^{i} H^{2}\left(T_{z}\right)\right)\right), \tag{7.3}
\end{equation*}
$$

where G is a closed subspace with

$$
\begin{equation*}
G \subset\left[\left\{z^{\phi(j)-1} w^{j}, z^{\phi(j)-2} w^{j} ; 1 \leq j \leq p-1\right\}\right] \tag{7.4}
\end{equation*}
$$

Using the property that $A_{\phi} M \subset M$, we will describe G.
For $i=1$ or 2 , we define positive integers t_{i} and s_{i}. When $z^{\phi(t)-i} w^{t} \in G$ for some $1 \leq t \leq p-1$, let t_{i} be the smallest integer t satisfying the above condition. For convenience, let $t_{i}=p$ when $z^{\phi(t)-i} w^{t} \notin G$ for every $1 \leq t \leq p-1$. When $\hat{f}(\phi(s)-i, s) \neq 0$ for some $f \in G$ and for some s with $1 \leq s \leq p-1$, let s_{i} be the smallest integer s satisfying the above condition. Then $\hat{f}(\phi(s)-i, s)=0$ for every $f \in G$ and $1 \leq s<s_{i}$ and $\hat{g}\left(\phi\left(s_{i}\right)-i, s_{i}\right) \neq 0$ for some $g \in G$. We note that s_{1} and s_{2} may not exist. If s_{i} exists, by the definitons we have $s_{i} \leq t_{i}$. In the following, we shall see that the structure of G depends on the data of s_{i} and t_{i}. To study the structure of G, we separate into several cases. The following follows from (7.4).
(a) If both s_{1} and s_{2} do not exist, $G=\{0\}$.
(b) If s_{1} exists and s_{2} does not, then $s_{1}=t_{1}$ and

$$
G=\left[\left\{z^{\phi(s)-1} w^{s} ; s_{1} \leq s \leq p-1\right\}\right], \quad 1 \leq s_{1} \leq p-1
$$

For, by our assumptions and the definitions of s_{1} and s_{2},

$$
\begin{equation*}
G \subset\left[\left\{z^{\phi(s)-1} w^{s} ; s_{1} \leq s \leq p-1\right\}\right] \tag{7.5}
\end{equation*}
$$

and there exists $f \in G$ such that

$$
\begin{equation*}
f=\sum_{s=s_{1}}^{p-1} a_{s} z^{\phi(s)-1} w^{s}, \quad a_{s_{1}} \neq 0 \tag{7.6}
\end{equation*}
$$

Since $z^{\phi\left(p-s_{1}-1\right)} w^{p-s_{1}-1} G \subset z^{\phi\left(p-s_{1}-1\right)} w^{p-s_{1}-1} M \subset M$,

$$
\sum_{s=s_{1}}^{p-1} a_{s} z^{\phi\left(p-s_{1}-1\right)+\phi(s)-1} w^{p+s-s_{1}-1} \in M
$$

Then by (6.16), (6.18) and (6.20), $a_{s_{1}} z^{\phi\left(p-s_{1}-1\right)+\phi\left(s_{1}\right)-1} w^{p-1} \in N$. Since $a_{s_{1}} \neq 0$, by (7.1) we have $z^{\phi(p-1)-1} w^{p-1} \in N$. By (6.13), (6.31), and (7.2), we have $z^{\phi(p-1)-1} w^{p-1} \in G$, so that by (7.6) we get $\sum_{s=s_{1}}^{p-2} a_{s} z^{\phi(s)-1} w^{s} \in G$. In the same way, using $z^{\phi\left(p-s_{1}-2\right)} w^{p-s_{1}-2} G \subset$ M, we have $z^{\phi(p-2)-1} w^{p-2} \in G$. By induction, we can prove that $z^{\phi(s)-1} w^{s} \in G, s_{1} \leq$ $s \leq p-1$. By (7.5), we see that G has the desired form.

The above proof also shows the following two facts (c) and (d).
(c) If $t_{i} \leq p-1$, then $z^{\phi(t)-i} w^{t} \in G$ for every $t_{i} \leq t \leq p-1$.
(d) If $\sum_{s=l}^{p-1} a_{s} z^{\phi(s)-i} w^{s} \in G$ and $a_{l} \neq 0$, then $t_{i} \leq l$.
(e) If s_{2} exists, then s_{1} exists and $s_{1} \leq t_{1} \leq s_{2}$.

For, suppose that s_{2} exists. Then by (7.4) there exists $f \in G$ such that

$$
\begin{equation*}
f=\sum_{s=s_{2}}^{p-1} a_{s} z^{\phi(s)-2} w^{s}+\sum_{j=s_{1}}^{p-1} b_{j} z^{\phi(j)-1} w^{j}, \quad a_{s_{2}} \neq 0 \tag{7.7}
\end{equation*}
$$

When s_{1} does not exist, we consider $b_{j}=0$ for $s_{1} \leq j \leq p-1$. Since $z f \in z G \subset z N \subset N$, by (6.31) and (7.2) we have $\sum_{s=s_{2}}^{p-1} a_{s} z^{\phi(s)-1} w^{s} \in G, a_{s_{2}} \neq 0$. Then by (d), $t_{1} \leq s_{2}$. The inequality $s_{1} \leq t_{1}$ follows from the definitions of s_{1} and t_{1}.
(f) If s_{2} exists and $s_{1}=t_{1}$, then $s_{2}=t_{2}$ and
$G=\left[\left\{z^{\phi(i)-1} w^{i}, z^{\phi(j)-2} w^{j} ; s_{1} \leq i \leq p-1, s_{2} \leq j \leq p-1\right\}\right], \quad 1 \leq s_{1} \leq s_{2} \leq p-1$.
For, suppose that s_{2} exists and $s_{1}=t_{1}$. Then there exists $f \in G$ satisfying (7.7). Since $s_{1}=t_{1}$, by (c) we have $\sum_{s=s_{2}}^{p-1} a_{s} z^{\phi(s)-2} w^{s} \in G, s_{s_{2}} \neq 0$. By (d), $t_{2} \leq s_{2}$. The opposite inequality follows from the definitions of s_{2} and t_{2}, so that $s_{1} \leq s_{2}=t_{2}$. Then (c) gives (7.8).

Finally, suppose that s_{2} exists and $s_{1}<t_{1}$. We first prove that

$$
\begin{equation*}
t_{2}-s_{2}=t_{1}-s_{1} \tag{7.9}
\end{equation*}
$$

Let $f \in G$ such that

$$
f=\sum_{s=s_{2}}^{p-1} a_{s} z^{\phi(s)-2} w^{s}+\sum_{j=s_{1}}^{p-1} b_{j} z^{\phi(j)-1} w^{j}, \quad b_{s_{1}} \neq 0
$$

Since $z^{\phi\left(t_{2}-s_{2}\right)} w^{t_{2}-s_{2}} f \in M$, by (7.3) and (7.4)

$$
\sum_{s=s_{2}}^{p+s_{2}-t_{2}-1} a_{s} z^{\phi\left(t_{2}-s_{2}\right)+\phi(s)-2} w^{t_{2}+s-s_{2}}+\sum_{j=s_{1}}^{p+s_{2}-t_{2}-1} b_{j} z^{\phi\left(t_{2}-s_{2}\right)+\phi(j)-1} w^{t_{2}+j-s_{2}} \in G .
$$

By (7.1),

$$
\sum_{s=s_{2}}^{p+s_{2}-t_{2}-1} a_{s} z^{\phi\left(t_{2}+s-s_{2}\right)-2} w^{t_{2}+s-s_{2}}+\sum_{j=s_{1}}^{p+s_{2}-t_{2}-1} b_{j} z^{\phi\left(t_{2}+j-s_{2}\right)-1} w^{t_{2}+j-s_{2}} \in G .
$$

Since $t_{2}+s-s_{2} \geq t_{2}$ for $s \geq s_{2}$, by (c) we have $\sum_{j=s_{1}}^{p+s_{2}-t_{2}-1} b_{j} z^{\phi\left(t_{2}+j-s_{2}\right)-1} w^{t_{2}+j-s_{2}} \in G$.
Since $b_{s_{1}} \neq 0$, by (d) we have $t_{1} \leq t_{2}+s_{1}-s_{2}$. Hence $t_{1}-s_{1} \leq t_{2}-s_{2}$.
Let $g \in G$ such that

$$
g=\sum_{s=s_{2}}^{p-1} c_{s} z^{\phi(s)-2} w^{s}+\sum_{j=s_{1}}^{p-1} d_{j} z^{\phi(j)-1} w^{j}, \quad c_{s_{2}} \neq 0
$$

Since $z^{\phi\left(t_{1}-s_{1}\right)} w^{t_{1}-s_{1}} g \in M$, in the same way as above we have

$$
\sum_{s=s_{2}}^{p+s_{1}-t_{1}-1} c_{s} z^{\phi\left(t_{1}+s-s_{1}\right)-2} w^{t_{1}+s-s_{1}} \in G .
$$

Since $c_{s_{2}} \neq 0$, by (d) we get $t_{2} \leq t_{1}+s_{2}-s_{1}$, so that $t_{2}-s_{2} \leq t_{1}-s_{1}$. Therefore we get (7.9).

Consequently there exist t_{1}, t_{2}, s_{1}, and s_{2} such that $s_{1}<t_{1} \leq s_{2}<t_{2}, t_{2}-t_{1}=s_{2}-s_{1}$, and

$$
\begin{equation*}
G=G_{1} \oplus\left[\left\{z^{\phi(i)-1} w^{i}, z^{\phi(j)-2} w^{j} ; t_{1} \leq i \leq p-1, t_{2} \leq j \leq p-1\right\}\right] \tag{7.10}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{1} \subset\left[\left\{z^{\phi(i)-1} w^{i}, z^{\phi(j)-2} w^{j} ; s_{1} \leq i<t_{1}, s_{2} \leq j<t_{2}\right\}\right] \tag{7.11}
\end{equation*}
$$

and

$$
\begin{equation*}
z^{i} w^{j} \notin G_{1} \quad \text { for every }(i, j) \in Z^{2} \tag{7.12}
\end{equation*}
$$

To describe G_{1}, fix $f_{0} \in G_{1}$ such that $\hat{f}_{0}\left(\phi\left(s_{2}\right)-2, s_{2}\right) \neq 0$. Then we have

$$
\hat{f}_{0}\left(\phi\left(s_{1}\right)-1, s_{1}\right) \neq 0
$$

For, write f_{0} as

$$
f_{0}=\sum_{s=s_{2}}^{t_{2}-1} a_{s} z^{\phi(s)-2} w^{s}+\sum_{j=s_{1}}^{t_{1}-1} b_{j} z^{\phi(j)-1} w^{j}, \quad a_{s_{2}} \neq 0
$$

For the sake of simplicity, let $a_{s}=0$ for $t_{2} \leq s \leq p-1$, and $b_{j}=0$ for $t_{1} \leq j \leq p-1$.
Then

$$
f_{0}=\sum_{s=s_{2}}^{p-1} a_{s} z^{\phi(s)-2} w^{s}+\sum_{j=s_{1}}^{p-1} b_{j} z^{\phi(j)-1} w^{j}, \quad a_{s_{2}} \neq 0
$$

To show $b_{s_{1}} \neq 0$, suppose that $b_{s_{1}}=0$. By our assumption, $t_{1}-s_{1}>0$, so that $z^{\phi\left(t_{1}-s_{1}-1\right)} w^{t_{1}-s_{1}-1} f_{0} \in M$. Hence

$$
\sum_{s=s_{2}}^{p+s_{1}-t_{1}} a_{s} z^{\phi\left(t_{1}-s_{1}-1\right)+\phi(s)-2} w^{t_{1}+s-s_{1}-1}+\sum_{j=s_{1}+1}^{p+s_{1}-t_{1}} b_{j} z^{\phi\left(t_{1}-s_{1}-1\right)+\phi(j)-1} w^{t_{1}+j-s_{1}-1} \in G .
$$

By (7.1),

$$
\sum_{s=s_{2}}^{p+s_{1}-t_{1}} a_{s} z^{\phi\left(t_{1}+s-s_{1}-1\right)-2} w^{t_{1}+s-s_{1}-1}+\sum_{j=s_{1}+1}^{p+s_{1}-t_{1}} b_{j} z^{\phi\left(t_{1}+j-s_{1}-1\right)-1} w^{t_{1}+j-s_{1}-1} \in G .
$$

Since $t_{1}+j-s_{1}-1 \geq t_{1}$ for $j \geq s_{1}+1$, by the definition of t_{1} and (c) we have

$$
\sum_{s=s_{2}}^{p+s_{1}-t_{1}} a_{s} z^{\phi\left(t_{1}+s-s_{1}-1\right)-2} w^{t_{1}+s-s_{1}-1} \in G
$$

Since $a_{s_{2}} \neq 0$, by (d) we have $t_{2} \leq t_{1}+s_{2}-s_{1}-1$. This contradicts (7.9), so that $\hat{f}_{0}\left(\phi\left(s_{1}\right)-1, s_{1}\right)=b_{s_{1}} \neq 0$.

By (7.9) and the above fact, we can rewrite f_{0} as

$$
\begin{equation*}
f_{0}=\sum_{i=0}^{p-1}\left(\alpha_{i} z^{\phi\left(s_{2}+i\right)-2} w^{s_{2}+i}+\beta_{i} z^{\phi\left(s_{1}+i\right)-1} w^{s_{1}+i}\right), \tag{7.13}
\end{equation*}
$$

$$
\alpha_{0} \neq 0, \beta_{0} \neq 0 \quad \text { and } \quad \alpha_{i}=\beta_{i}=0 \quad \text { for } t_{1}-s_{1} \leq i \leq p-1
$$

Now we shall prove that
$G_{1}=\left[\left\{\left(z^{\phi(1)} w\right)^{j}\left(\sum_{i=0}^{t_{1}-s_{1}-j-1}\left(\alpha_{i} z^{\phi\left(s_{2}+i\right)-2} w^{s_{2}+i}+\beta_{i} z^{\phi\left(s_{1}+i\right)-1} w^{s_{1}+i}\right)\right) ; 0 \leq j \leq t_{1}-s_{1}-1\right\}\right]$,
where $1 \leq s_{1}<t_{1} \leq s_{2}<t_{2} \leq p$.
Let $0 \leq j \leq t_{1}-s_{1}-1$. Since $z^{\phi(j)} w^{j} f_{0} \in M$,

$$
\sum_{i=0}^{p-s_{2}-j-1} \alpha_{i} z^{\phi(j)+\phi\left(s_{2}+i\right)-2} w^{j+s_{2}+i}+\sum_{i=0}^{p-s_{1}-j-1} \beta_{i} z^{\phi(j)+\phi\left(s_{1}+i\right)-1} w^{j+s_{1}+i} \in G
$$

By (7.1),

$$
\sum_{i=0}^{p-s_{2}-j-1} \alpha_{i} z^{\phi\left(j+s_{2}+i\right)-2} w^{j+s_{2}+i}+\sum_{i=0}^{p-s_{1}-j-1} \beta_{i} z^{\phi\left(j+s_{1}+i\right)-1} w^{j+s_{1}+i} \in G .
$$

By (7.10) and (7.11),

$$
\sum_{i=0}^{t_{2}-s_{2}-j-1} \alpha_{i} z^{\phi\left(j+s_{2}+i\right)-2} w^{j+s_{2}+i}+\sum_{i=0}^{t_{1}-s_{1}-j-1} \beta_{i} z^{\phi\left(j+s_{1}+i\right)-1} w^{j+s_{1}+i} \in G_{1} .
$$

By (7.1) and (7.9),

$$
\begin{equation*}
\left(z^{\phi(1)} w\right)^{j} \sum_{i=0}^{t_{1}-s_{1}-j-1}\left(\alpha_{i} z^{\phi\left(s_{2}+i\right)-2} w^{s_{2}+i}+\beta_{i} z^{\phi\left(s_{1}+i\right)-1} w^{s_{1}+i}\right) \in G_{1} . \tag{7.14}
\end{equation*}
$$

For convenience, put

$$
\begin{equation*}
f_{j}=\left(z^{\phi(1)} w\right)^{j} \sum_{i=0}^{t_{1}-s_{1}-j-1}\left(\alpha_{i} z^{\phi\left(s_{2}+i\right)-2} w^{s_{2}+i}+\beta_{i} z^{\phi\left(s_{1}+i\right)-1} w^{s_{1}+i}\right) \tag{7.15}
\end{equation*}
$$

for $0 \leq j \leq t_{1}-s_{1}-1$. Therefore by (7.14),

$$
\begin{equation*}
\left[\left\{f_{j} ; 0 \leq j \leq t_{1}-s_{1}-1\right\}\right] \subset G_{1} \tag{7.16}
\end{equation*}
$$

To show the converse inclusion, let take $f \in G_{1}, f \neq 0$, arbitrary. We can write f as

$$
f=\sum_{i=0}^{t_{1}-s_{1}-1}\left(a_{i} z^{\phi\left(s_{2}+i\right)-2} w^{s_{2}+i}+b_{i} z^{\phi\left(s_{1}+i\right)-1} w^{s_{1}+i}\right) .
$$

By the same reasoning as in the paragraph before (7.13), there exists an integer m, $0 \leq m \leq t_{1}-s_{1}-1$, such that

$$
\begin{equation*}
f=\sum_{i=m}^{t_{1}-s_{1}-1}\left(a_{i} z^{\phi\left(s_{2}+i\right)-2} w^{s_{2}+i}+b_{i} z^{\phi\left(s_{1}+i\right)-1} w^{s_{1}+i}\right), \quad a_{m} \neq 0, b_{m} \neq 0 \tag{7.17}
\end{equation*}
$$

Here we have

$$
\begin{equation*}
\frac{\alpha_{0}}{\beta_{0}}=\frac{a_{m}}{b_{m}} \tag{7.18}
\end{equation*}
$$

For, suppose not, that is, $\alpha_{0} / \beta_{0} \neq a_{m} / b_{m}$. By multiplying $z^{\phi\left(t_{1}-s_{1}-1\right)} w^{t_{1}-s_{1}-1}$ with f_{0}, by (7.9), (7.10), (7.11), and (7.13) we have

$$
\begin{equation*}
\alpha_{0} z^{\phi\left(t_{2}-1\right)-2} w^{t_{2}-1}+\beta_{0} z^{\phi\left(t_{1}-1\right)-1} w^{t_{1}-1} \in G_{1} . \tag{7.19}
\end{equation*}
$$

By multiplying $z^{\phi\left(t_{1}-s_{1}-1-m\right)} w^{t_{1}-s_{1}-1-m}$ with f, by (7.17) we can also get

$$
\begin{equation*}
a_{m} z^{\phi\left(t_{2}-1\right)-2} w^{t_{2}-1}+b_{m} z^{\phi\left(t_{1}-1\right)-1} w^{t_{1}-1} \in G_{1} . \tag{7.20}
\end{equation*}
$$

Since $\alpha_{0} / \beta_{0} \neq a_{m} / b_{m}$, by (7.19) and (7.20) we have $z^{\phi\left(t_{2}-1\right)-2} w^{t_{2}-1}, z^{\phi\left(t_{1}-1\right)-1} w^{t_{1}-1} \in G_{1}$. This contradicts (7.12). Hence we get (7.18).

By (7.1), (7.15), (7.16), (7.17), and (7.18),

$$
G_{1} \ni f-\frac{a_{m}}{\alpha_{0}} f_{m}=\sum_{i=m+1}^{t_{1}-s_{1}-1}\left(c_{i} z^{\phi\left(s_{2}+i\right)-2} w^{s_{2}+i}+d_{i} z^{\phi\left(s_{1}+i\right)-1} w^{s_{1}+i}\right), \quad \text { say. }
$$

We note that the number of terms in the above sum is less than in (7.17). Repeating these arguments, we can prove that there exist complex numbers $\left\{c_{m}, c_{m+1}, \ldots, c_{t_{1}-s_{1}-1}\right\}$ such that $f=\sum_{i=m}^{t_{1}-s_{1}-1} c_{i} f_{i}$. Hence $G_{1} \subset\left[\left\{f_{j} ; 0 \leq j \leq t_{1}-s_{1}-1\right\}\right]$. By (7.16), we get the desired equality. This completes the proof for the case $N \cap S_{0}=S_{0}=H^{2}\left(T_{z}\right)$, and in this case, one of (i), (ii) and (iii) with $s_{1} \geq 1$ happens.

Next we study the case

$$
\begin{equation*}
N \cap S_{0}=z S_{0}=z H^{2}\left(T_{z}\right) \tag{7.21}
\end{equation*}
$$

By Theorem 6.1 (and its proof), we may assume

$$
M=\sum_{j=0}^{\infty} \oplus\left(z^{k-1} w^{p}\right)^{j}\left(G \oplus\left(\sum_{i=0}^{p-1} \oplus z^{\phi(i)+1} w^{i} H^{2}\left(T_{z}\right)\right)\right)
$$

and

$$
\begin{equation*}
N=G \oplus\left(\sum_{i=0}^{p-1} \oplus z^{\phi(i)+1} w^{i} H^{2}\left(T_{z}\right)\right) \tag{7.22}
\end{equation*}
$$

where G is a closed subspace such that

$$
G \subset\left[\left\{1, z^{\phi(i)} w^{i}, z^{\phi(i)-1} w^{i}, z^{\phi(i)-2} w^{i} ; 1 \leq i \leq p-1\right\}\right] .
$$

In this case,

$$
\begin{equation*}
G \subset\left[\left\{z^{\phi(i)} w^{i}, z^{\phi(j)-1} w^{j} ; 0 \leq i \leq p-1,1 \leq j \leq p-1\right\}\right] . \tag{7.23}
\end{equation*}
$$

To prove this, suppose that there exists $h \in G$ such that $\hat{h}(\phi(i)-2, i) \neq 0$ for some $1 \leq i \leq p-1$. Then we can write h as

$$
h=\sum_{i=1}^{t} a_{i} z^{\phi(i)-2} w^{i}+\sum_{j=1}^{p-1} b_{j} z^{\phi(j)-1} w^{j}+\sum_{m=0}^{p-1} c_{m} z^{\phi(m)} w^{m}, \quad a_{t} \neq 0
$$

for some t with $1 \leq t \leq p-1$. Since $z^{\phi(p-t)} w^{p-t} h \in M$, by (6.9)-(6.20) we have

$$
a_{t} z^{\phi(p-t)+\phi(t)-2} w^{p}+\sum_{j=t}^{p-1}\left\{b_{j} z^{\phi(p-t)+\phi(j)-1} w^{p+j-t}+c_{j} z^{\phi(p-t)+\phi(j)} w^{p+j-t}\right\} \in \zeta \bar{z} N .
$$

Then

$$
a_{t} z^{\phi(p-t)+\phi(t)-k-1}+\sum_{j=t}^{p-1}\left\{b_{j} z^{\phi(p-t)+\phi(j)-k} w^{j-t}+c_{j} z^{\phi(p-t)+\phi(j)-k+1} w^{j-t}\right\} \in N .
$$

Hence by Lemma 4.1 and (7.1),

$$
a_{t}+\sum_{j=t}^{p-1}\left\{b_{j} z^{\phi(j-t)+1} w^{j-t}+c_{j} z^{\phi(j-t)+2} w^{j-t}\right\} \in N .
$$

Therefore by (7.22), $1 \in G \subset N$. By the definition of S_{0} (see (2.4)), $1 \in S_{0}$, so that $1 \in N \cap S_{0}$. This contradicts (7.21). Hence we get (7.23).

Since M can be written as

$$
M=z \sum_{j=0}^{\infty} \oplus\left(z^{k-1} w^{p}\right)^{j}\left(z^{-1} G \oplus\left(\sum_{i=0}^{p-1} \oplus z^{\phi(i)} w^{i} H^{2}\left(T_{z}\right)\right)\right),
$$

we can proceed in the same way as in the case $N \cap S_{0}=S_{0}$. By (6.24), $S_{0}=H^{2}\left(T_{z}\right)$. By the definition of S_{0}, we note that (5.23) holds. Then there exists $h \in N$ such that $\hat{h}(0,0) \neq 0$. By (7.22), there exists g in G such that $\hat{g}(0,0) \neq 0$. By $(7.21), 1 \notin N$. Hence $1 \notin G$, so that $z^{-1} \notin z^{-1} G$. Therefore in this case only (iii) happens and $s_{1}=0$.

The converse assertion is not difficult to prove. This completes the proof.
THEOREM 7.2. Suppose that $j_{i}=p-i$ for $1 \leq i \leq p-1$ for a given ϕ. Let M be an $A_{\phi^{-}}$ invariant subspace with $z^{k} w^{p} M \subset z M$ and $z^{k} w^{p} M \neq z M$. Then M is of homogeneous-type if and only if

$$
M=\psi \sum_{j=0}^{\infty} \oplus\left(z^{k-1} w^{p}\right)^{j}\left(G \oplus\left(\sum_{i=0}^{p-1} \oplus z^{\phi(i)} w^{i} H^{2}\left(T_{z}\right)\right)\right),
$$

where ψ is a unimodular function on T^{2} and G has one of the following forms.

$$
\begin{equation*}
G=G_{1} \oplus\left[\left\{z^{\phi(i)-1} w^{i} ; 1 \leq i \leq p-1\right\}\right], \tag{i}
\end{equation*}
$$

where G_{1} is a nonzero closed subspace of $\left[\left\{z^{\phi(j)-2} w^{j} ; 1 \leq j \leq p-1\right\}\right]$.
(ii) G is a closed subspace with $G \subset\left[\left\{z^{\phi(i)-1} w^{i} ; 1 \leq i \leq p-1\right\}\right]$.

$$
\begin{equation*}
G=G_{1} \oplus\left[\left\{z^{\phi(i)-1} w^{i} ; 1 \leq i \leq p-1\right\}\right] \tag{iii}
\end{equation*}
$$

where G_{1} is a closed subspace of $\left[\left\{z^{-1}, z^{\phi(j)-2} w^{j} ; 1 \leq j \leq p-1\right\}\right]$ and there exists a function g in G_{1} such that $\hat{g}(-1,0) \neq 0$.

We note that for a given $p \in Z_{+} \backslash\{0\}$, a pair (p, k) satisfies the assumption of Theorem 7.2 if and only if $k=l p+1$ and $l p \neq-1$ for some $l \in Z$.

Proof. We use the same notations as in the proof of Theorem 6.1 and we continue our proof from the end of the proof of Theorem 6.1. By our assumption, we have

$$
\begin{align*}
& \text { if } 1 \leq s, t \leq p-1 \text { and } s+t \leq p \text {, then } \phi(s)+\phi(t)=\phi(s+t)+1 \text {, } \tag{7.24}\\
& \text { if } 1 \leq s, t \leq p-1 \text { and } s+t>p \text {, then } \phi(s)+\phi(t)=\phi(s+t-p)+k \tag{7.25}
\end{align*}
$$

We separate the proof into two cases; $N \cap S_{0}=S_{0}=H^{2}\left(T_{z}\right)$ and $N \cap S_{0}=z H^{2}\left(T_{z}\right)$.
First suppose that $N \cap S_{0}=H^{2}\left(T_{z}\right)$. Then by Section 6 ,

$$
\begin{equation*}
G=N \ominus\left(\sum_{i=0}^{p-1} \oplus z^{\phi(i)} w^{i} H^{2}\left(T_{z}\right)\right) \tag{7.26}
\end{equation*}
$$

and

$$
G \subset\left[\left\{z^{\phi(i)-1} w^{i}, z^{\phi(i)-2} w^{i} ; 1 \leq i \leq p-1\right\}\right]
$$

Suppose that there exists f in G such that $\hat{f}(\phi(i)-2, i) \neq 0$ for some $1 \leq i \leq p-1$. Then f can be written as

$$
f=\sum_{j=m}^{t} a_{j} z^{\phi(j)-2} w^{j}+\sum_{i=1}^{p-1} b_{i} z^{\phi(i)-1} w^{i}, \quad a_{m} \neq 0, a_{t} \neq 0
$$

where $1 \leq m \leq t \leq p-1$. Since $z^{\phi(p-m-1)} w^{p-m-1} f \in M$,

$$
a_{m} z^{\phi(p-m-1)+\phi(m)-2} w^{p-1}+\sum_{i=1}^{m} b_{i} z^{\phi(p-m-1)+\phi(i)-1} w^{p+i-m-1} \in N .
$$

By (7.24),

$$
a_{m} z^{\phi(p-1)-1} w^{p-1}+\sum_{i=1}^{m} b_{i} z^{\phi(p+i-m-1)} w^{p+i-m-1} \in N
$$

By (7.26) and $a_{m} \neq 0$,

$$
\begin{equation*}
z^{\phi(p-1)-1} w^{p-1} \in G \tag{7.27}
\end{equation*}
$$

Then using $z^{\phi(p-m-2)} w^{p-m-2} f \in M$, we get $z^{\phi(p-2)-1} w^{p-2} \in G$. For, $z^{\phi(p-m-2)} w^{p-m-2} f \in$ M implies that

$$
\sum_{j=m}^{m+1} a_{j} z^{\phi(p-m-2)+\phi(j)-2} w^{p+j-m-2}+\sum_{i=1}^{m+1} b_{i} z^{\phi(p-m-2)+\phi(i)-1} w^{p+i-m-2} \in N
$$

By (7.24), (7.25) and (7.26), we have $a_{m} z^{\phi(p-2)-1} w^{p-2}+a_{m+1} z^{\phi(p-1)-1} w^{p-1} \in G$. By (7.27) and $a_{m} \neq 0, z^{\phi(p-2)-1} w^{p-2} \in G$. Repeating this argument, we have

$$
\begin{equation*}
z^{\phi(i)-1} w^{i} \in G, \quad m \leq i \leq p-1 \tag{7.28}
\end{equation*}
$$

Next we show

$$
\begin{equation*}
z^{\phi(i)-1} w^{i} \in G, \quad 1 \leq i \leq t-1 \tag{7.29}
\end{equation*}
$$

Since $z^{\phi(p+1-t)} w^{p+1-t} f \in M$,

$$
\sum_{j=t-1}^{t} a_{j} z^{\phi(p+1-t)+\phi(j)-2} w^{p+j+1-t}+\sum_{i=t-1}^{p-1} b_{i} z^{\phi(p+1-t)+\phi(i)-1} w^{p+i+1-t} \in \zeta \bar{z} N
$$

By (7.24) and (7.25),

$$
a_{t} z^{\phi(1)+k-2} w^{p+1}+a_{t-1} z^{k-1} w^{p}+b_{t-1} z^{k} w^{p}+\sum_{i=t}^{p-1} b_{i} z^{\phi(i+1-t)+k-1} w^{p+i+1-t} \in \zeta \bar{z} N
$$

Then by (7.26) and $a_{t} \neq 0, z^{\phi(1)-1} w \in G$. Then using $z^{\phi(p+2-t)} w^{p+2-t} f \in M$, we get $z^{\phi(2)-1} w^{2} \in G$. Repeating this argument, we obtain (7.29).

Since $m \leq t$, by (7.28) and (7.29) we have $z^{\phi(i)-1} w^{i} \in G$ for every i with $1 \leq i \leq p-1$. Hence in this case G has the form in (i).

When $\hat{f}(\phi(i)-2, i)=0$ for every $f \in G$ and $1 \leq i \leq p-1, G$ has the form in (ii).
Next suppose that

$$
\begin{equation*}
N \cap S_{0}=z H^{2}\left(T_{z}\right) \tag{7.30}
\end{equation*}
$$

Then by Section 6,

$$
\begin{equation*}
G=N \ominus\left(\sum_{i=0}^{p-1} \oplus z^{\phi(i)+1} w^{i} H^{2}\left(T_{z}\right)\right) \tag{7.31}
\end{equation*}
$$

and

$$
G \subset\left[\left\{1, z^{\phi(i)} w^{i}, z^{\phi(i)-1} w^{i}, z^{\phi(i)-2} w^{i} ; 1 \leq i \leq p-1\right\}\right] .
$$

In this case, we prove

$$
\begin{equation*}
G \subset\left[\left\{1, z^{\phi(i)} w^{i}, z^{\phi(i)-1} w^{i} ; 1 \leq i \leq p-1\right\}\right] . \tag{7.32}
\end{equation*}
$$

To prove (7.32), suppose not. Then there exists g in G such that $\hat{g}(\phi(i)-2, i) \neq 0$ for some $1 \leq i \leq p-1$. Write g as

$$
g=\sum_{j=m}^{s} a_{j} z^{\phi(j)-2} w^{j}+\sum_{i=0}^{p-1}\left(b_{i} z^{\phi(i)-1} w^{i}+c_{i} z^{\phi(i)} w^{i}\right),
$$

where $1 \leq s \leq p-1, a_{s} \neq 0$ and $b_{0}=0$. Since $z^{\phi(p-s)} w^{p-s} g \in M$,

$$
a_{s} z^{\phi(p-s)+\phi(s)-2} w^{p}+\sum_{i=s}^{p-1} z^{\phi(p-s)} w^{p-s}\left(b_{i} z^{\phi(i)-1} w^{i}+c_{i} z^{\phi(i)} w^{i}\right) \in \zeta \bar{z} N .
$$

Then by (7.24) and (7.25),

$$
a_{s}+b_{s} z+c_{s} z^{2}+\sum_{i=s+1}^{p-1}\left(b_{i} z^{\phi(i-s)} w^{i-s}+c_{i} z^{\phi(i-s)+1} w^{i-s}\right) \in N
$$

By (7.31),

$$
a_{s}+\sum_{i=s+1}^{p-1} b_{i} z^{\phi(i-s)} w^{i-s} \in G .
$$

This fact gives us that $z^{\phi(i)} w^{i} \in G$ for $1 \leq i \leq p-1$, which is proved in the same way as in the proof of (7.28). Since $a_{s} \neq 0$, we therefore have $1 \in G$. This means that $1 \in N \cap S_{0}$ and $N \cap S_{0}=H^{2}\left(T_{z}\right)$. This contradicts (7.30). Thus we get (7.32).

Since $S_{0}=H^{2}\left(T_{z}\right)$, there exists h in N such that $\hat{h}(0,0) \neq 0$. By (7.31), we may assume $h \in G$. Then in the same way as in the proof of (7.28), we can prove that $z^{\phi(i)} w^{i} \in G$ for $1 \leq i \leq p-1$. Let $G_{1}=G \ominus\left[\left\{z^{\phi(i)} w^{i} ; 1 \leq i \leq p-1\right\}\right], G^{\prime}=z^{-1} G$ and $G_{1}^{\prime}=z^{-1} G_{1}$. Then G^{\prime} and G_{1}^{\prime} have the desired forms (iii) in place of G and G_{1} respectively.

The converse assertion is not difficult to prove.

References

1. O. Agrawal, D. Clark, and R. Douglas, Invariant subspaces in the polydisk. Pacific J. Math. 121(1986), 1-11.
2. R. Curto, P. Muhly, T. Nakazi, and T. Yamamoto, On superalgebras of the polydisc algebra. Acta Sci. Math. 51(1987), 413-421.
3. P. Ghatage and V. Mandrekar, On Beurling type invariant subspaces of $L^{2}\left(T^{2}\right)$ and their equivalence. J. Operator Theory 20(1988), 83-89.
4. H. Helson and D. Lowdenslager, Prediction theory and Fourier series in several variables. Acta Math. 99(1958), 165-202.
5. K. Hoffman, Banach Spaces of Analytic Functions. Prentice-Hall, New Jersey, 1962.
6. K. Izuchi, Unitary equivalence of invariant subspaces in the polydisk. Pacific J. Math. 130(1987), 351-358.
7. K. Izuchi and Y. Matsugu, Outer functions and invariant subspaces on the torus. Acta Sci. Math. 59(1994), 429-440.
8. K. Izuchi and S. Ohno, Selfadjoint commutators and invariant subspaces on the torus. J. Operator Theory 31(1994), 189-204.
9. V. Mandrekar, The validity of Beurling theorems in polydiscs. Proc. Amer. Math. Soc. 103(1988), 145-148.
10. T. Nakazi, Certain invariant subspaces of H^{2} and L^{2} on a bidisc. Canad. J. Math. 40(1988), 1272-1280.
11. __ Homogeneous polynomials and invariant subspaces in the polydisc. Arch. Math. 58(1992), 56-63.
12. _Invariant subspaces in the bidisc and commutators. J. Austr. Math. Soc. (Ser. A) 56(1994), 232-242.
13. T. Nakazi and K. Takahashi, Homogeneous polynomials and invariant subspaces in the polydisc II. Proc. Amer. Math. Soc. 113(1991), 991-997.
14. W. Rudin, Function Theory in Polydiscs, Benjamin, New York, 1969.
15. _, Invariant subspaces of H^{2} on a torus. J. Funct. Anal. 61(1985), 378-384.

Department of Mathematics Department of Mathematics
Niigata University
Niigata 950-21
Japan
email: izuchi@scux.sc.niigata-u.ac.jp

Shinshu University
Matsumoto 390
Japan
email: ymatsugu@ripms.shinshu-u.ac.jp

