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MONOGENESIS OF THE RINGS OF INTEGERS

IN CERTAIN IMAGINARY ABELIAN FIELDS

SYED INAYAT ALI SHAH and TORU NAKAHARA∗

Abstract. In this paper we consider a subfield K in a cyclotomic field km

of conductor m such that [km : K] = 2 in the cases of m = `pn with a prime
p, where ` = 4 or p > ` = 3. Then the theme is to know whether the ring of
integers in K has a power basis or does not.

§1. Introduction

Let F be an algebraic number field over the rationals Q. We denote

the ring of integers in F by ZF . If we have ZF = Z[α] for an element α

of ZF , then it is said that α generates a power basis of the ring ZF or

simply ZF has a power basis. The ring ZF is called monogenic if ZF has

a power basis, otherwise ZF is said to be non-monogenic. To determine

whether the ring of integers in a field is monogenic or not is proposed as an

unsolved problem in [Nar]. This problem is treated by many authors [DK],

[Ga], [Gr], [HSW], [N1], [SN], [T].

Set km = Q(ζm), where ζm is a primitive m-th root of unity. Let G

be the galois group Gal(km/Q) of km over Q. If k+
m is the maximal real

subfield of km, then the ring Zk+
m

of integers has always a power basis [Li],

[W].

In this article we treat certain imaginary abelian subfields K with [km :

K] = 2.

In the next section we consider the case that the conductor m =

4pn(n ≥ 1) with a prime p and will show that the ring ZK of any sub-

field K in km such that [km : K] = 2 has a power basis and it is generated

by the Gauß period ηH =
∑

ρ∈H ζρ
m, where H is the subgroup of G corre-

sponding to the field K. On the other hand, in the third section we prove

that in the case that m = 3pn(n ≥ 1) with a prime p > 3 and the subfield
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K which is distinct from km/3 and k+
m, the ring ZK of integers in K does

not have a power basis.

Finally we will give another characterization of fields whose rings of

integers do not have any power basis using the decomposition theory of

ideals [N2].

§2. Monogenic case

We start with the following theorems in which the rings of integers have

power bases.

Theorem 1. Suppose m = 2n ≥ 8 and let K be the imaginary subfield

of km distinct from km/2 such that [km : K] = 2. Then the ring ZK of

integers in K coincides with Z[η], where η is the Gauß period ζm− ζ−1
m and

the absolute value of the field discriminant of K is equal to 2(n−1)φ(2n−1)−1.

Proof. Let G = Gal(km/Q) = 〈τ〉 × 〈σ〉 with τ2 = e = σs, s =
φ(m)/2 = 2n−2 and ζτ

m = ζ̄m, ζσ
m = ζ5

m, where ᾱ means the complex conju-
gate of a number α and φ(·) denotes the Euler function. Then km/2, Q(ζm+

ζ−1
m ) and K are subfields fixed by the subgroups 〈σs/2〉, 〈τ〉 and H = 〈σs/2τ〉

respectively. Then K is generated by the Gauss period η=
∑

ρ∈H ζρ
m =

ζm − ζ−1
m .

We see that Zkm = Z[ζm] = ZK [ζm]. Then, since 52n−1 6≡ −1 (mod 4),
the relative different dkm/K is given by

(

ζm − ζσs/2τ
m

)

Zkm = (1 − ζ2
m)Zkm = L2,

where L is the ramified prime ideal (1 − ζm) of km over 2. From this, it
follows that

|d(K)| =
√

|d(km)|/22 = 2s(n−1)−1.

On the other hand, by G/H =
{

σjH; 0 ≤ j < s
}

, the different dK(η) of η
is given by

s−1
∏

j=1

(η − ησj
) =

s−1
∏

j=1

{

ζm

(

1 − ζσj
−1

m

) (

1 + ζ−σj
−1

m

)}

.

Since we observe that
{

ζσj

m , −ζ−σj

m ; 0 ≤ j < s
}

=
{

ζj
m; 0 < j < m, (j,m) = 1

}

,
{

ζσj
−1

m , −ζ−σj
−1

m ; 0 ≤ j < s
}

=
{

ζj
m; 0 ≤ j < m, (j,m) 6= 1

}

,
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we can put

Xm − 1 = Φm(X)(X − 1)
(

X + ζ−2
m

)

f(X),

where Φm(X) denotes the m-th cyclotomic polynomial and

f(X) =

s−1
∏

j=1

{(

X − ζσj
−1

m

) (

X + ζ−σj
−1

m

)}

,

hence m = Φm(1)
(

1 − ζ2s−2
m

)

f(1). Then we obtain

dK(η) ∼= f(1) ∼= 2n−1/L2,

namely

|dK(η)| = 2s(n−1)−1.

Here the symbol α ∼= β or α ∼= A onwards means (α) = (β) or (α) = A as
ideals for numbers α, β and an ideal A, respectively.

Theorem 2. Suppose that m = 4pn, where p is an odd prime and let

K be the imaginary subfield of km distinct from km/4 with [km : K] = 2
. Then the ring ZK of integers in K coincides with Z[η], where η is the

Gauß period ζm − ζ−1
m and the absolute value of the field discriminant of K

is equal to 2φ(pn)pnφ(pn)−pn−1
−1.

Proof. Let G = 〈τ〉 × 〈σ〉 with ζτ
4 = ζ̄4, ζτ

m/4 = ζm/4 and ζσ
4 =

ζ4, ζσ
m/4 = ζr

m/4, where r is a primitive root modulo pn. We have three

subfields km/4, k
+
m and K of degree φ(pn) whose galois groups are 〈τ〉, 〈σsτ〉

and H = 〈σs〉 with s = φ(m/4)/2 respectively. Denote ζ4 by ι and ζm/4

by ζ. For ζm = ιζ, let η =
∑

ρ∈H ζρ
m = ιζ + ιζ−1 = ζm − ζ−1

m be the Gauß
period.

As in the proof of Theorem 1, since Zkm = ZK [ζm], the relative differ-
ent dkm/K is given by

(

ζm − ζσs

m

)

Zkm = ι(ζ − ζ−1)Zkm = P,

where P is the ramified prime ideal (1 − ζ) of km/4 over p. Then

|d(K)| =
√

|d(km)|/Nkm(dkm/K) = 22sp2ns−(m/4p)−1.
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On the other hand, by G/H =
{

σjH, σjτH; 0 ≤ j < s
}

, the different dK(η)
of η is given by

(η − ητ )

s−1
∏

j=1

{

(η − ησj
)(η − ησjτ )

}

= (ι/ζ)2(s−1)2ι(ζ + ζ−1)

s−1
∏

j=1

{

(ζ2 − ζ2σj
)(ζ2 − ζ−2σj

)
}

.

Since we observe that

{

ζ2σj
, ζ−2σj

; 0 ≤ j < s
}

=
{

ζj; 0 < j < m/4, (j,m/4) = 1
}

,

we can put

Φm/4(X) = (X − ζ2)
(

X − ζ−2
)

f(X),

where

f(X) =

s−1
∏

j=1

(

X − ζ2σj
)(

X − ζ−2σj
)

,

hence f(ζ2) = Φ′

m/4(ζ
2)

(

ζ2 − ζ−2
)

−1
. Then we obtain

dK(η) ∼= 2Φ′

m/4(ζ
2)/

(

ζ − ζ−1
) ∼= 2pnP−pn−1

−1,

namely

|dK(η)| = NKdK(η) = 22sp2ns · p−pn−1
−1 = 22sp2ns−m/(4p)−1.

Therefore we obtain |d(K)| = |dK(η)| . This completes the proof of
Theorem 2.

Remark 1. Using the same way as in [W. Proposition 2.16.], we can
give a simple proof of monogenesis of imaginary subfields once we know that
they are generated by the Gauß period ζm − ζ−1

m . Our methods of proofs
for Theorem 1 and Theorem 2 which give a criterion to ZK = Z[ζm − ζ−1

m ]
can be applied to investigate non-monogenic phenomena in Theorem 3.
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§3. Non-Monogenic case

We claim that the ring Zk−

m
of integers in an imaginary field k−

m with

[km : k−

m] = 2 is non-monogenic. Contrary to the theorems in the previous

section, the Gauß period does not generate a power basis.

Theorem 3. Suppose m = 3pn, where p is a prime > 3, and K be the

imaginary subfield of km distinct from km/3 with [km : K] = 2. Then the

ring ZK of integers in K does not have a power basis.

Proof. Let ω = ζ3, ζ = ζm/3. Then ζm = ω · ζ. For a cyclotomic field
km = Q(ζm), let

G = Gal(km/Q) = 〈τ〉 × 〈σ〉

be the galois group with τ2 = e = σφ(m/3) and ωτ = ω̄, ωσ = ω, ζτ =
ζ, ζσ = ζr, where r is a primitive root modulo pn = m/3. Then ζτ

m =
ω̄ · ζ, ζσ

m = ω · ζr.

For s = φ(m/3)/2, let H = 〈σs〉 be the subgroup of G corresponding
to K and η =

∑

ρ∈H ζρ = ω(ζ + ζ−1) be the Gauß period. Then K =

Q(η). Since ZK = Zk3
Z+

km/3
= ωZ[γ] + ωτZ[γ], any ξ ∈ ZK can be

written as ξ = ωR + ωτS with R,S ∈ Z[γ], where γ = ζ + ζ−1. Then by
G/H =

{

σjH, σjτH; 0 ≤ j < s
}

, the different dK(ξ) of ξ is given by

(ξ − ξτ )
s−1
∏

j=1

{

(ξ − ξσj
)(ξ − ξσjτ )

}

= (ω − ωτ )(R − S)

s−1
∏

j=1

{

(ξ − ξσjτ )
}

s−1
∏

j=1

{

ω(R − Rσj
) + ωτ (S − Sσj

)
}

.

Here, we observe that T−T ρ is always divisible by γ−γρ = ζ−ζρ+ζ−1−ζ−ρ,
which is further divisible by P, if T ∈ Z[γ] and ρ ∈ G, where P is the
ramified prime ideal (1 − ζ) of km/3 over p. Therefore dK(ξ) is a multiple
of

(1 − ω)(ξ − ξστ )

s−1
∏

j=1

(

γ − γσj
)

= (1 − ω) (ξ − ξστ ) dk+

m/3

,

namely dK(ξ) is a multiple of

NK (ξ − ξστ ) 3sd
(

k+
m/3

)

= NK (ξ − ξστ ) d(K).
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Moreover, by the observation above, we have:

(i) If R = Sσ, then ξ − ξστ = ωτ
(

S − Sσ2
)

∈ P;

(ii) If S = Rσ, then ξ − ξστ = ω
(

R − Rσ2
)

∈ P;

(iii) If R − Sσ = S − Rσ, then 2 (ξ − ξστ ) = −(R + S) + (R + S)σ ∈ P;

(iv) If R − Sσ = Rσ − S, then (ξ − ξστ ) = (ω − ωτ )(R − Sσ) ∈ (1 − ω);

(v) Otherwise, as R,S are totally real, we have

|NK (ξ − ξτσ)|=
∣

∣

∣

∣

Nk+

m/3

(

(R − Sσ)2 − (R − Sσ) (S − Rσ) + (S − Rσ)2
)

∣

∣

∣

∣

>

∣

∣

∣

∣

Nk+

m/3

((R − Sσ) (S − Rσ))

∣

∣

∣

∣

≥ 1.

This implies that |NK (ξ − ξτσ)| > 1 whenever ξ − ξτσ 6= 0. Hence, we find
that |dK(ξ)| > |d(K)| if dK(ξ) 6= 0.

Remark 2. As in the previous section, since Zkm = ZK [ζm], the rela-
tive different dkm/K is given by

(

ζm − ζσs

m

)

Zkm = PZkm.

Then
|d(K)| =

√

|d(km)|/Nkm(dkm/K) = 3sp2ns−(m/3p)−1.

The following is slightly generalized from [N2] owing to a remark from

L. Washington.

Proposition. Let K be a galois extension of degree n > 2 over Q

and ` be a prime number of ramification index e and relative degree f for

K/Q. If either e`f < n or f > 1, e`f ≤ n + e − 1, then ZK does not have

a power basis.

Proof. Let α be a primitive element of K in ZK . Let the prime ideal
decomposition of ` in the field K be

` ∼=
∏

Le.

For any prime ideal L, we have
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αNK
�

≡ αmod L.

Then by

αNK
�

≡ α (mod
∏

L),

we see that

(αNK
�

− α)e ≡ 0 (mod `).

Thus if eNKL = e`f < n, then certainly the number

β = `−1(αNK
�

− α)e = (1/`)αe`f ± · · · ± (1/`)αe

is in ZK but outside of Z[α]. If (α, `) = 1, e`f ≤ n + e − 1, then α−eβ ∈ ZK

but 6∈ Z[α]. If (α, `) 6= 1 and ZK = Z[α], then α ≡ 0 (modL) for a certain
L, hence for any integer ξ = b0 + b1α + · · · + bn−1α

n−1 ∈ ZK , we have
ξ ≡ b0 (mod L), namely f = 1, which contradicts the hypothesis. Thus
there exists an integer of K, but outside of Z[α].

Example. Consider for the case of conductor m = |5 · (−3)| = 15 a
subfield K = Q(

√
5,
√
−3) of k15 = Q(ζ15) with [k15 : K] = 2. Since the

prime number 2 splits in Q(
√
−15) and L is inert in K/Q(

√
−15) for a

prime ideal L|2, the ring ZK of integers has no power basis by Proposition.
Using the Gauß period η = ζ3(ζ5 + ζ−1

5 ), we have K = Q(η). Then the non-
monogenesis of the ring ZK is confirmed by Theorem 3, too. The other
examples of prototype are shown in [SN].

Acknowledgements. The authors would like to express their sincere
thanks to a referee who indicated a simplified method for the proofs of the-
orems and improved proposition, Lawrence C. Washington at University
of Maryland, Tsuyoshi Uehara at Saga University, Yasuo Motoda at Yat-
sushiro National College of Technology and Sang Geun Hahn at Korea Adv.
Inst. of Sci. & Tech. (KAIST) for their valuable suggestions regarding this
work.

References

[DK] Dummit, D. S. and Kisilevsky, H., Indices in cyclic cubic fields, Number Theory

and Algebra, Collect. Pap. Dedic. H. B. Mann, A. E. Ross and O. Taussky-Todd,

New York San Francisco London, Academic Press, 1977, 29–42.

https://doi.org/10.1017/S0027763000008369 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008369


168-05 : 2002/12/6(17:31)

92 S. I. A. SHAH AND T. NAKAHARA

[Ga] Gaál, I., Computing all power integral bases in orders of totally real cyclic sextic

number fields, Math. Comp., 65 (1996), 801–822.
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