# MINIMALLY STRONG DIGRAPHS 

by DENNIS P. GELLER $\dagger$

(Received 23rd December 1968)
Dirac (2) and Plummer (5) independently investigated the structure of minimally 2-connected graphs $G$, which are characterized by the property that for any line $x$ of $G, G-x$ is not 2 -connected. In this paper we investigate an analogous class of strongly connected digraphs $D$ such that for any arc $x, D-x$ is not strong. Not surprisingly, these digraphs have much in common with the minimally 2 -connected graphs, and a number of theorems similar to those in (2) and (5) are proved, notably our Theorems 9 and 12.

Unless otherwise noted, all definitions for digraphs given here are from (4). Definitions for graphs are not given, and can be found in (3). A digraph is an ordered pair $D=(V, X)$ where $V$ is a finite set of points and $X$ is a set of ordered pairs of distinct points; elements of $X$ are called arcs. If $x=u v$ is an arc then $x$ joins $u$ to $v$ : we also say that $u$ is adjacent to $v$ and that $v$ is adjacent from $u$. Following Berge (1) the set of points adjacent from $u$ is denoted $\Gamma u$ and the set of points adjacent to $u$ is $\Gamma^{-1} u$. We call $\left|\Gamma^{-1} u\right|$ the indegree $\operatorname{id}(u)$ and $|\Gamma u|$ the outdegree $\operatorname{od}(u)$. The degree of $u$ is $\operatorname{id}(u)+\operatorname{od}(u)$. A symmetric pair ( $u v$ ) is a pair of arcs $u v$ and $v u$. An oriented digraph has no symmetric pairs. With each digraph $D$ we can associate the "underlying" graph $G=G(D)$ by letting $G$ have the same point set as $D$ and joining $u$ and $v$ by a line if $D$ has at least one of the arcs $u v$ or $v u$.

A semiwalk (called " semisequence" in (4)) is a sequence of points and arcs $u_{0} x_{0} u_{1} x_{1} \ldots x_{n-1} u_{n}$ such that for each $x_{i}$ either $x_{i}=u_{i} u_{i+1}$ or $x_{i}=u_{i+1} u_{i}$; a semiwalk is spanning if it contains all the points of $D$, and closed if $u_{0}=u_{n}$. If all the points (and hence all the arcs) of a semiwalk are distinct we have a semipath. A semiwalk for which $u_{0}=u_{n}$ but all other points are distinct is a semicycle. A walk from $u_{0}$ to $u_{n}\left(\mathrm{a} u_{0}-u_{n}\right.$ walk) is a semiwalk $u_{0} x_{0} \ldots x_{n-1} u_{n}$ in which, for each $i, x_{i}=u_{i} u_{i+1}$; path and cycle are defined analogously. It is clear that any $u_{0}-u_{n}$ walk contains a $u_{0}-u_{n}$ path. A pseudocycle is a semicycle consisting of a path from $u_{0}$ to $u_{n}$ together with the $\operatorname{arc} u_{0} u_{n}$. A cycle with three points is a triangle. If $D$ has a symmetric pair ( $u v$ ) and $W$ is a walk containing either $u v$ or $v u$ we will say that $W$ contains ( $u v$ ).

A digraph $D$ is weakly connected, or weak, if $G(D)$ is connected; it is unilaterally connected, or unilateral, if for each pair $u, v$ of points either there is a walk from $u$ to $v$ or there is a walk from $v$ to $u$; it is strongly connected, or strong, if for each pair $u, v$ of points there is both a walk from $u$ to $v$ and a walk

[^0]from $v$ to $u$. A digraph $D$ with at least 3 points is a block if $G(D)$ is a 2-connected graph; if $D$ is not a block then a cutpoint of $D$ is a cutpoint of $G(D)$. An arc $x$ of $D$ is basic if there are points $w_{1}$ and $w_{2}$ such that every $w_{1}-w_{2}$ walk contains $x$; in particular, $x=u v$ is basic if and only if every $u-v$ walk contains $x$.

A digraph $D$ is minimally strong if for each $x \in X, D-x$ is not strong. It is clear that a digraph is minimally strong only if each of its blocks is, so we need essentially concern ourselves only with investigating minimally strong blocks. We will first develop some basic results about strong and minimally strong digraphs. Theorems 1 and 2 appeared first in (4).

Theorem 1. A digraph is unilateral if and only if it has a spanning walk, and strong if and only if it has a closed spanning walk.

Theorem 2. If $D$ is a strong digraph and $w$ is a point of $D$ for which $D-w$ is not unilateral, then there are two points $u$ and $v$ in $D$ such that each $u-v$ walk and each $v-u$ walk contains $w$.

If $w$ separates $u$ and $v$ as in Theorem 2 then, following (4), we say that $w$ is 3-between $u$ and $v$.

Theorem 3. A strong block $D$ with at least four points has at least two points $u_{1}$ and $u_{2}$ such that each $D-u_{i}$ is unilateral.

Proof. Since $D$ is a block it has no cutpoint; thus for each $v, D-v$ is weak. Suppose that there is some $v$ for which $D-v$ is strictly weak, and let $v$ be 3between $w_{1}$ and $w_{2}$. If $W$ is a shortest closed spanning walk in $D$ then each $w_{i}$ lies on a cycle $Z_{i}$ which is a subwalk of $W$; since $v$ can appear only once on a cycle, the cycles $Z_{1}$ and $Z_{2}$ are distinct. Each $Z_{i}$ has a point $u_{i}$ which appears only once in $W$, for otherwise a shorter closed spanning walk could be obtained from $w$ by simply ignoring $Z_{i}$. But then clearly each $D-u_{i}$ has a spanning walk, and is thus unilateral.

As a corollary to the theorem we obtain a result from (4).
Corollary 3a. Any strong block $D$ with at least four points has at least four arcs $x_{i}$ such that each $D-x_{i}$ is unilateral.

Lemma 4. A digraph is minimally strong if and only if each arc is basic.
Corollary 4a. No minimally strong digraph contains a pseudocycle.
Corollary 4b. If $D$ is minimally strong then so is every strong subdigraph of $D$.

The next corollary follows from this lemma and the theorem of Robbins (6) that for any 2-connected graph $G$ there is a strong block $D$ such that $G=G(D)$.

Corollary 4c. If $G$ is a minimally 2-connected graph there is a minimally strong digraph $D$ such that $G=G(D)$.

Figure 1 shows the smallest minimally strong digraph for which the converse of Corollary 4 c fails to hold.

We will next give a procedure for constructing a large class of minimally strong blocks. We will see later that a closely related procedure in fact serves to construct all minimally strong blocks. Let $D_{1}$ and $D_{2}$ be digraphs with arcs $x_{1}=u_{1} v_{1} \in D_{1}$ and $x_{2}=u_{2} v_{2} \in D_{2}$, and let $D_{1} \uparrow D_{2}$ be the digraph formed from $D_{1}-x_{1}$ and $D_{2}-x_{2}$ by identifying $u_{1}$ with $u_{2}$ to get point $u$ and $v_{1}$ with $v_{2}$ to get point $v$ and then adding arc $x=u v$.


Fig. 1
Theorem 5. If $D_{1}$ and $D_{2}$ are minimally strong blocks, neither of which contains a symmetric pair, then for any choice of $x_{i} \in D_{i}, D_{1} \uparrow D_{2}$ is a minimally strong block.

Proof. It is obvious that $D_{1} \uparrow D_{2}$ is a block. To see that $D_{1} \uparrow D_{2}$ is strong we must show that for any choice of points $w_{1}$ and $w_{2}$ there are $w_{1}-w_{2}$ and $w_{2}-w_{1}$ walks. There is certainly no difficulty if $w_{1}$ and $w_{2}$ are both points of $D_{1}$ or both points of $D_{2}$. Thus, without loss of generality, choose $w_{1} \in D_{1}$ and $w_{2} \in D_{2}$. But then since there is a $w_{1}-u_{1}$ walk $W_{1}$ in $D_{1}$ and a $v_{2}-w_{2}$ walk $W_{2}$ in $D_{2}, W_{1} \times W_{2}$ is a $w_{1}-w_{2}$ walk in $D_{1} \uparrow D_{2}$. By symmetry, $D_{1} \uparrow D_{2}$ is strong.

To see that $D_{1} \uparrow D_{2}$ is minimally strong it suffices to show that each arc is basic. If $x$ is not basic then there is a $u-v$ walk, and hence a $u-v$ path, in $D_{1} \uparrow D_{2}$ which avoids $u v$. Since any walk from a point strictly in $D_{1}$ to one strictly in $D_{2}$ must contain either $u$ or $v$, a $u-v$ path which avoids $u v$ must lie completely in either $D_{1}$ or $D_{2}$, say, $D_{1}$. But then $u_{1} v_{1}$ is not basic in $D_{1}$, a contradiction. Suppose then that $y=w_{1} w_{2}$ is any other line of $D_{1} \uparrow D_{2}$ and suppose that $y$ is not basic. We may suppose that $y$ is a line of $D_{1}$. Since $y$ is basic in $D_{1}$, each $w_{1}-w_{2}$ path $P$ which avoids $y$ must contain points of $D_{2}$. But then $P$ must also contain both $u$ and $v$. If $u$ precedes $v$ on $P$ then replacing the subpath from $u$ to $v$ by $u v$ we have a $y$-avoiding $w_{1}-w_{2}$ path in $D_{1}$, which is impossible. Thus $v$ precedes $u$ on $P$. But even so, since $D_{1}$ has a $v-u$ path we also arrive at a contradiction unless every $v-u$ path (and hence every $v-u$ walk) contains $w_{1} w_{2}$. If so let $P^{\prime}=v P_{1} w_{1} w_{2} P_{2}$ be such a $v-u$ path and note that the path formed by following $v P_{1} w_{1}$ by $P$ contains a $v-u$ walk which does not contain $w_{1} w_{2}$. Thus $D_{1} \uparrow D_{2}$ is minimally strong. Notice that if, say, $D_{1}$ had contained the symmetric pair $\left(u_{1} v_{1}\right)$ then since there is a $u_{2}-v_{2}$ path $P$ in $D_{2}$, $P$ together with $v u$ forms a pseudocycle in $D_{1} \uparrow D_{2}$.

If $D$ is a digraph and $x=u v$ is an arc of $D$ then the procedure of replacing $\operatorname{arc} x$ by a new point $w$ and $\operatorname{arcs} u w$ and $w v$ is called insertion of a point of degree
E.M.S.-B
2. If $D^{\prime}$ is obtained from $D$ by repeated insertion of points of degree 2 we say that $D^{\prime}$ is a subdivision of $D$.

Lemma 6. If $D$ is minimally strong then so is every subdivision of $D$.
In particular the following procedure will thus construct only minimally strong blocks.

Step 1. Let $D_{1}$ be a triangle and form $D_{2}=D_{1} \uparrow D_{1}$.
Step 2. Let $D_{2}^{\prime}$ be any subdivision of $D_{2}$ and form $D_{3}=D_{2}^{\prime} \uparrow D_{1}$.
Step 3. Let $D_{n}^{\prime}$ be any subdivision of $D_{n}$ and form $D_{n+1}=D_{n}^{\prime} \uparrow D_{1}$.
Although Theorem 5 excluded symmetric pairs from the digraphs $D_{1}$ and $D_{2}$, we see from the proof that it was only necessary to insure that the points at which $D_{1}$ and $D_{2}$ were " merged " were not symmetrically adjacent; otherwise, as long as $D_{1}$ and $D_{2}$ were minimally strong $D_{1} \uparrow D_{2}$ would be. We will now show that the only minimally strong block which contains a symmetric pair has exactly two points.

Theorem 7. A minimally strong block $D$ with at least three points contains no symmetric pair.

Proof. Let ( $u v$ ) be a symmetric pair in $D$ and consider any choice apart from $u$ and $v$ themselves of $u_{1} \in \Gamma^{-1} u, u_{2} \in \Gamma u, v_{1} \in \Gamma v, v_{2} \in \Gamma^{-1} v$. We claim first that if each path between the $u_{i}$ and the $v_{i}$ (in either direction) contains (uv) then $u$ is a cutpoint.

To see this we first note that any path from either $u_{1}$ or $u_{2}$ to either of $v_{1}$ or $v_{2}$ containing ( $u v$ ) must contain $u v$, and that any of the converse paths from some $v_{i}$ to some $u_{i}$ which contain ( $u v$ ) contain $v u$. For example, if a $u_{2}-v_{1}$ path contained only $v u$ then the path formed from $P$ be prefixing $u u_{2}$ would contain a $u-v$ walk which avoided $u v$, in which case $u v$ would not be basic. Similar arguments will serve for the other cases.

It now follows that $D$ contains two cycles $Z_{1}$ and $Z_{2}$ such that $Z_{1} \cap Z_{2}=\phi$, $Z_{1} \cap(u v)=v, Z_{2} \cap(u v)=u$. Since $D$ is a block we can find a semipath which connects some point of $Z_{1}$ with some point of $Z_{2}$ and which avoids ( $u v$ ). Choose a shortest such semipath and label its points $w_{1}, w_{2}, \ldots, w_{n}$, with $w_{1} \in Z_{1}$, $w_{n} \in Z_{2}$ (see Figure 2 for an illustration of this situation).

Clearly there is $w_{1}-v$ path which does not contain $u$. Then each $w_{1}-v$ path must avoid $u$ or else $v u$ is not basic. Similarly, since $u v$ is basic, every $v-w_{1}$ path avoids $u$. Suppose then that each $v-w_{i}$ path and each $w_{i}-v$ path avoids $u$. We show that the same must hold for $w_{i+1}$.

Case I: Arc $w_{i+1} w_{i}$ in $D$. If some $w_{i+1}-v$ path contains $u$ there is a $w_{i+1}-w_{i}$ walk which does not contain $w_{i+1} w_{i}$, so that this arc is not basic. If some $v-w_{i+1}$ path contains $u$ then the existence of a $w_{i}-v$ path which avoids $u$ implies that of a $u-w_{i+1}-w_{i}-v$ walk not containing $u v$, which thus cannot be basic.

Case II: Arc $w_{i} w_{i+1}$ in $D$. If a $w_{i+1}-v$ path contains $u$ then since each $v-w_{i}$ path misses $u$ it follows that $v u$ is not basic. Similarly, if a $v-w_{i+1}$ path contains $u$ then since there is a $w_{i}-v$ path which avoids $u, w_{i} w_{i+1}$ is not basic.

It then follows by induction that there is a $v-w_{n}$ path which avoids $u$, and thus a $v-u$ path which avoids $(u v)$, so that $v u$ is not basic. Hence $u$ is a cutpoint. Therefore, since $D$ is a block, some path from one of the $u_{i}$ to one of the $v_{i}$ (or vice versa) misses (uv). If the path is $u_{2}-v_{2}, v_{1}-u_{2}, u_{1}-v_{2}$, or $v_{1}-u_{1}$, we get a pseudocycle and thus some line of $D$ cannot be basic. If it is a $u_{1}-v_{1}$ path (or equivalently a $v_{2}-u_{2}$ path) note that $D$ also contains a $v_{1}-u_{1}$ path $P$. If $P$ uses $v u$ then $u v$ is not basic. But since it cannot use $u v$ it must then avoid (uv), in which case the path defined by $v P u$ shows that $v u$ is not basic.


Fig. 2
It follows from this theorem that although some subdivision of a strong digraph $D$ may be minimally strong, it is not necessarily true that $D$ is. However, there are often many points of degree 2 which can be suppressed. To see this it is first necessary to show that a minimally strong block has points of degree 2.

Lemma 8. Let $u$ be any point of a minimally strong digraph with degree at least 3. Then $D-u$ is not unilateral.

Proof. It is clearly impossible for either the indegree or the outdegree of $u$ to be 0 . Suppose first that $\operatorname{id}(u) \geqq 2$ and let $u_{1}, u_{2} \in \Gamma^{-1} u$. Suppose that $D-u$ is unilateral. Then there is a path $P$ from, say, $u_{1}$ to $u_{2}$ which avoids $u$. But then $P$ together with arcs $u_{1} u$ and $u_{2} u$ forms a pseudocycle in $D$, which is impossible. If $\operatorname{od}(u) \geqq 2$ let $u_{1}, u_{2} \in \Gamma u$ and note in a similar fashion that if there is, say, a $u_{1}-u_{2}$ path which avoids $u$ then arc $u u_{2}$ is not basic.

Theorem 9. Every minimally strong block with at least four points has at least two points of degree 2.

Proof. There are certainly no points of degree 1. By the lemma, for each point $v$ with degree greater than $2, D-v$ is not unilateral. But Theorem 3 assures us of the existence of at least two points whose removal from $D$ leaves a unilateral digraph, so that these points must have degree 2.

As we saw above it is a corollary of Theorem 3 that in every minimally strong block there are some arcs whose removal leaves a unilateral digraph. It is interesting to note at this point that Harary, Norman, and Cartwright (4, p. 260) have a condition for every arc of a minimally strong block to have this property: If $D$ is a minimally strong block then for each arc $x, D-x$ is unilateral if and only if for each pair of points $u$ and $v$, whenever there is an arc $x_{1}$ which is in every $u-v$ path, there is an arc $x_{2}$ in every $v-u$ path. Notice that the minimally strong block $D$ of Figure 1, which has an arc $u v$ such that $D-u v$ is not unilateral also has the property that there is no arc which lies in every $v-u$ path.

Let $D$ be a minimally strong block and let $w_{1} u_{1} u_{2} \ldots u_{n} w_{2}$ be a path in $D$ such that each $u_{i}$ has degree 2 . Let $\theta$ be a contractive map which identifies all of the $u_{i}$ to a single point $u$ of degree 2 , and let the image of $D$ under $\theta$ be denoted $D / \theta$. Clearly $D / \theta$ is also a minimally strong block. In fact, for any minimally strong block $D$ the reduced digraph $D /$ formed by contracting each path consisting of points of degree 2 to a single point of degree 2 is likewise a minimally strong block.

Corollary 9a. Every minimally strong block has two points of degree 2 which are separated from each other by points of higher degree.

If we consider a reduced minimally strong block $E$ we can suppress any point $u$ of degree 2 by replacing the arcs from $\Gamma^{-1} u$ to $u$ and from $u$ to $\Gamma u$ by a single arc from $\Gamma^{-1} u$ to $\Gamma u$. Call the resulting digraph $E / u$. It is not always the case, as it is with the digraph of Figure 1, that such a digraph $E / u$ cannot be minimally strong.

Theorem 10. If $E$ is a reduced minimally strong block and $u$ is a point of degree 2 then $E / u$ is minimally strong if and only if $E-u$ is strictly unilateral.

Proof. Clearly if $E / u$ is minimally strong then $E-u$ cannot be strong. To see that $E-u$ is unilateral it is only necessary to note that $E$ has a closed spanning walk which can contain $u$ only once so that $E-u$ must have a spanning path.

For the converse note first that $E / u$ must be strong. Thus if $E / u$ is not minimally strong then the arc $x$ from $\Gamma^{-1} u$ to $\Gamma u$ to $\Gamma u$ is not basic and thus $E / u-x$ is strong. But $E / u-x \cong E-u$, which completes the proof.

If $E$ is a reduced minimally strong block call a point $u$ of degree 2 such that $E / u$ is minimally strong an essential point. It is clear that the digraph $E /$ formed by suppressing all essential points is also a minimally strong block. It is not hard to see that $E /$ has no essential points. But by Theorem 3, $E /$ has two points $u_{i}$ of degree 2 such that each $E /-u_{i}$ is unilateral. Thus each $E /-u_{i}$ is strong, and hence minimally strong. Further, note that if $E /-u_{i}$ is unilateral then so is $E-u_{i}$. But since it is not possible for $u_{i}$ to be an essential point of $E$, it must be true that $E-u_{i}$ is strong.

Theorem 11. If $E$ is a reduced minimally strong block there are at least two points $u_{i}$ of degree 2 such that $E-u_{i}$ is minimally strong.

Suppose that $u$ is such a point in $E$ and let $v_{1} u$ and $u v_{2}$ be arcs of $E$ such that $v_{2} v_{1} \notin E$. Then consider any $v_{1}-v_{2}$ path in $E-u$, and let $v_{1} w$ be the first arc on the path. If some $v_{2}-w$ path failed to contain $v_{1}$ then there would be, in $E$, a $v_{1}-w$ walk which avoided $v_{1} w$, so that $v_{1} w$ would not be basic. Thus each $v_{2}-w$ path contains $v_{1}$ : whenever $v_{1}$ and $v_{2}$ are joined by at least two paths $v_{1} w_{i} P_{i} v_{2}$ such that each $v_{2}-w_{i}$ path contains $<v_{1}$, we say that $v_{1}$ and $v$ satisfy condition ( $\alpha$ ).

If we remove points of degree 2 from minimally strong blocks in such a way as to leave minimally strong digraphs then we will eventually arrive at a digraph $E_{1}$ which is either a triangle, a minimally strong block which is not reduced, or a minimally strong digraph which is not a block. In the second case we continue with $E_{1} /$ while in the third case we continue on the strong blocks of $E_{1}$ separately. The process will terminate in one or more triangles. We have thus proved:

Theorem 12. Any minimally strong block can be obtained by starting with triangles and at each step applying one of the following operations to any minimally strong blocks $D_{i}$ produced thus far:
(i) Subdivision.
(ii) Choose $u$ and $v$ such that $u v \notin D_{1}$ but either $v u \in D_{1}$ or $u$ and $v$ satisfy $(\alpha)$ and add a new point $w$ together with arcs $u w$ and $w v$.
(iii) Let $D_{1}, \ldots, D_{n}$ be minimally strong blocks produced by the procedure and choose a pair of distinct points $u_{i-1}$ and $v_{i}$ in each $D_{i}$, making sure that $u_{0}$ and $v_{1}$ satisfy $(\alpha)$. To the minimally strong digraph formed by identifying each $u_{j}$ with each $v_{j}$ add a new point $w$ and arcs $u_{0} w$ and $w v_{n}$.
Corollary $12 a$ follows immediately from this procedure, and Corollary $12 b$, which also involves Corollary $4 c$, is a weak form of a result which appears in both (2) and (5).

Corollary 12a. For each minimally strong block $D$ the chromatic number $\chi(G(D)) \leqq 3$.

Corollary 12b. If $G$ is a minimally 2-connected graph then $\chi(G) \leqq 3$.

## REFERENCES

(1) C. Berge, The Theory of Graphs and its Applications (Wiley, New York, 1962).
(2) G. A. Dirac, Minimally 2-connected graphs, J. reine angew. Math. 228 (1968), 204-216.
(3) F. Harary, Graph Theory (Addison-Wesley, Reading, 1969).
(4) F. Harary, R. Z. Norman, and D. Cartwright, Structural Models: an Introduction to the Theory of Directed Graphs (Wiley, New York, 1965).
(5) M. D. Plummer, On blocks with a minimal number of lines, Trans. Amer. Math. Soc., to appear.
(6) H. E. Robbins, A theorem on graphs, with an application to traffic control, Amer. Math. Monthly, 46 (1939), 281-283.

## Logic of Computers Group <br> University of Michigan <br> Ann Arbor <br> Michigan


[^0]:    $\dagger$ Research supported by the Chemical Information Division of the National Science Foundation under Grant Number N-S66.

