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Abstract

A number of constructions are given for arc-transitive digraphs, based on modifications of permutation
representations of finite groups. In particular, it is shown that for every positive integer .s and for any
transitive permutation group P of degree k, there are infinitely many examples of a finite k-regular
digraph with a group of automorphisms acting transitively on s-arcs (but not on (s + l)-arcs), such that
the stabilizer of a vertex induces the action of P on the out-neighbour set.

1991 Mathematics subject classification (Amer. Math. Soc): 05C25, 20B25.

1. Introduction

In this paper we describe a number of constructions for finite arc-transitive digraphs,
including those which are 5-arc-transitive for large values of s. In particular, we show
how permutation representations of finite groups can be modified in various ways so
as to produce infinitely many 5-arc-transitive k-regular digraphs for every positive
integer s and for every integer k > 2.

This situation is quite different from that of finite undirected regular graphs of
degree greater than 2, which by a theorem of Richard Weiss [7] can be at most
7-arc-transitive.

A digraph (short for directed graph) A may be regarded as a pair (V, E) consisting
of a set V and a subset E of the Cartesian product V x V : the members of V are the
vertices of A and any member (v, w) of £ is an edge from the vertex v to the vertex
w in A. Often the definition of a directed graph allows the possibility of multiple
edges between a pair of vertices, but ours will not. The out-degree (respectively in-
degree) of a vertex v is the number of vertices w for which (u, w) e E (respectively
(w, v) e E ). An automorphism of a digraph A = (V, E) is defined to be any
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permutation n of the vertices which induces a permutation of the edges, that is, such
that (v*, w") e E whenever (v, w) e E. Under composition of permutations, the
set of all automorphisms of A forms a group, called the automorphism group of A,
and denoted by AutA. The edges of A may also be called arcs, and A is said to be
arc-transitive if its automorphism group acts transitively on E. More generally, an
s-arc in A is any sequence (v0, vuv2,..-, vs) of vertices of A such that (vj-\, Vj) is an
edge of A for 1 < j < s, and A is said to be s-arc-transitive if its automorphism group
acts transitively on the set of all s-arcs in A. It is clear that s-arc-transitivity always
implies (s — 1)-arc-transitivity, 1-arc-transitivity is the same as arc-transitivity, and,
provided every vertex is incident to at least one edge, arc-transitivity implies vertex-
transitivity: the automorphism group of A = (V, E) is transitive on V. In particular,
a vertex-transitive digraph is regular : every vertex has the same in-degree and the
same out-degree; and if these have the common value k (which happens for instance
when the digraph is finite), the digraph is regular of degree k, or simply k-regular.

For example, a simple circuit digraph made up of vertices 1, 2, 3 , . . . , n and edges
(1, 2), (2, 3) , . . . (« — 1,«), («, 1), with cyclic automorphism group of order n, is a
1-regular digraph which is s -arc-transitive for every positive integer s. Insertion of
new edges (1, 3), (2,4) , . . . (n —2, n), (n — 1, 1), (n, 2), however, produces a 2-regular
digraph which is vertex-transitive but no longer arc-transitive (for n > 4).

Fundamental to every construction we shall give in this paper is the relationship
between arc-transitivity and properties of double cosets of a vertex-stabilizer in the
automorphism group. Although this relationship is part of the folk-lore of algebraic
graph theory, we describe it here for the sake of completeness.

THEOREM. Suppose A = (V, E) is a finite digraph with arc-transitive automorph-
ismgroupG. For any particular vertex u e V,letH = {h e G\uh = u], the stabilizer
ofu in G, and define D = {g e G\(u, ug) € E}. Then

(1) D = HaH for some a e G,and
(2) there is a one-to-one correspondence between vertices of A and right cosets of

H in G given by ug <—> Hgfor all g € G, such that
(3) the ordered pair (Hx, Hy) corresponds to an edge of A if and only ifyx~l 6 D,

and
(4) the degree of A is equal to \H : H da'1 Ha\, the number of right cosets of H in

D,and
(5) A is connected if and only if D generates G.

PROOF. First, if a e D then HaH c D since (u, ufah) = (u, uah) = {uh, uah) =
(u, u")h e E for all f,h e H. Also by arc-transitivity, whenever (u, ug) e E there
is some h e G such that (u, us) = (u, u")h = (uh, uah), in which case h e H and

e H (since u = uh and ug = uah), so that g e Hah c HaH. Thus (1)
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holds. Assertion (2) is a standard consequence of the transitive action of a group
on a set : uf = ug if and only if fg~l e H, that is, if and only if Hf = Hg.
Next (ux, uy) e E if and only if (u, uyx~l) = (ux, uy)x~' e E, that is, if and only if
yx~l G D, giving (3). Also, the out-degree of the vertex u is equal to the number of
cosets of the form Hy with y e D, which is simply the number of right cosets of H in
D (= HaH). Cosets Haf and Hah are equal if and only if afhrxa~x e H, in which
case fh~x e H Ha" ' / /a , and so this number is equal to the index of H D a'1 Ha in
//. Again by arc-transitivity, every vertex has this degree, proving (4).

Finally, suppose the vertices corresponding to cosets Hx and Hy in A are joined
by a path of the form (Hx = Hx0, Hxu Hx2,..., Hx,-U Hx, = Hy) with either
(HXJ-I, HXJ) e E or (Hx}, HXJ-I) e E for 1 < j < t. Then for all such j either
XjXj\ e D orxyjrTL1! = (Xj-Xxjlyx € D"1, so that yx"1 = CK,*,"!1^*,-!*;^) • • •
(JC2A:1_1)(JC:IJC0"

1) isaproductof elements of DUD"1. It follows that if A is connected,
then D generates G. The converse is also true, for if any element g of G is expressible
as a product of elements of D or their inverses, then the vertices corresponding to H
and Hg in A are joined by a path of the above form. Thus we have (5), and hence the
theorem.

It is perhaps worth noting here that properties (2), (3) and (5) are held also by
digraphs which are vertex-transitive but not necessarily arc-transitive, and in each
case D is a union of double cosets of H and the degree remains equal to the number
of right cosets of H in D.

On the other hand, for undirected arc-transitive graphs an additional property is
satisfied, namely a2 e H (as the element a may be chosen so that (u, v)a = (v, u) for
some vertex v adjacent to u).

More importantly, the theorem gives rise to the following.

General construction. For any finite group G containing a subgroup H and an
element a of G such that a"1 £ HaH, let V be the set of all right cosets of H in
G, and define E = {(Hx, Hy)\yx'1 e HaH}. Then A = (V, E) is a digraph, on
which G acts as a group of automorphisms via the rule g : Hx H->- Hxg for all x € G
and all g e G. In particular, the subgroup H is the stabilizer in G of the vertex H
(itself), and the action of G is transitive on the arcs of A. The degree of A is equal to
\H : H D a~xHa\, and A is connected if and only if (H, a) = G.

We will denote this digraph by A(G, H, a). The proof that the construction works
is straightforward and left to the reader. Note that the subgroup H acts transitively
on the vertices of the form Hah (with h e H), and also that (H, a) — {HaH)
since h = a'1 (ah) and clearly a € HaH. The kernel of the action of G on A is
the intersection of all conjugates x~lHx of H in G. In particular, the action of G
is faithful if and only if this intersection is trivial. The condition that a~l £ HaH
(which may be restated either as Ha'1 H ^ HaH or as H D a Ha = 0) ensures that
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A cannot be viewed as an undirected graph, but of course if this is relaxed (to simply
a <£ H) then the construction can be used for undirected graphs as well.

One motivation for the research we now report on was the following question,
considered also by Peter Cameron in his D. Phil, thesis [1].

Does there exist a small (finite) 6-regular digraph A with a 2-arc-transitive group
of automorphisms, such that the stabilizer of any particular vertex v is isomorphic
to the alternating group A6, and the stabilizer of any arc (v, w) is isomorphic to
the alternating group A5, inducing the natural action of A5 on the other five out-
neighbours of v, while at the same time acting transitively (as the group PSL2(5)) on
the six in-neighbours of u?

We shall construct a number of such digraphs in this paper, the smallest of which
has 4096 vertices. The various methods of construction are dealt with separately in
the following sections.

2. 'Extra point' constructions

One of the easiest ways to obtain an arc-transitive digraph is described in the
example below.

Example 1. For any integer k > 2, let H be the subgroup of the symmetric group
S2k of degree 2k generated by the permutations x = (1, 2, 3 , . . . , k)andy = (£+1, k+
2, k+3,..., 2k). Clearly x and y commute, so that His the direct product of two cyclic
groups of order £, having two distinct orbits each of size k. Next add an extra point, say
2k+1, and define the permutation a = (1, jfc + l, 2k+l)(2, k+2)(3, k+3) ...(k, 2k).
The three permutations x, y and a together generate a transitive subgroup G of the
symmetric group S2k+\, indeed of the alternating group A^+i whenever k is odd. But
further, as x, y and a3 all fix the point 2A: + 1, it is easy to see that G is 2-transitive
and therefore primitive on {1, 2, 3 , . . . , 2k, 2k + 1}. Then since a2 is a single 3-cycle
(fixing the other 2k — 2 points), the group G is S2*+i when k is even, and A2k+\ when
k is odd, by [8; Theorem 13.3].

Note that a~l £ HaH, because a~l takes the point 2k + 1 to the point k + 1 while
every element of the double coset HaH takes 2k + 1 to one of the points of the set
{1,2,3,...,&}. In fact this particular choice for the element a was made so that
a~lxa = y, while on the other hand a~lx'yJa £ H whenever yj is non-trivial (as in
that case a~xx'y'a moves the point 2k + 1). For these reasons H n a~xHa = (y),
of index k in H, and it follows that the intersection of all the conjugates of H in G is
trivial.

By the general construction given earlier, A(G, H, a) is a connected ^-regular
digraph on (2k + 1)1/k2 or (2k + l)\/2k2 vertices, depending on whether k is even or
odd, with G as an arc-transitive group of automorphisms. (In fact the stabilizer in G

https://doi.org/10.1017/S1446788700038477 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038477


[5] Constructions for arc-transitive digraphs 65

of a 2-arc of A(G, H, a) is isomorphic to H D a~lHa D a~2Ha2, which is trivial, so
the action of G is 2-arc-regular.)

This technique of adding an extra point may be taken further: if n is any odd positive
integer, and a is taken as the permutation (l,k + l,2k+l,2k + 2, ...,2k + n)(2,k +
2)(3, k + 3) • • • (k, 2k), then the group G generated by x, y and a is either S^+n or
Au+n (depending on whether k is even or odd). Here in each case the stabilizer of the
point 2k + n contains x, y and an+2 along with a~'xa' for 1 < j < n, and x~xa~2xa2

is a 3-cycle (fixing the other 2k + n — 3 points). Again by considering what happens
to the point 2k + 1, it is easy to verify that a'1 £ HaH and that H n a~l Ha = (y),
and so on. Hence there are infinitely many 2-arc-transitive ^-regular digraphs of this
type for every integer k > 2.

Adding an even number of extra points works just as well, except that for each even
n the group G is an imprimitive subgroup of S^+n, with {1, 2 , . . . , k, 2k + 1, 2k +
3 2k + n - 1} and {k + 1, k + 2 , . . . , 2k, 2k + 2, 2k + 4 , . . . , 2k + n) as blocks
of imprimitivity. If k is odd then G is an extension of the direct product of two copies
of the alternating group Ak+n/2 (with orbits the blocks of imprimitivity for G) by an
involutory automorphism which swaps the two factors. On the other hand, if k is even
then G is much the same as in the odd case except that it contains also all the elements
of the direct product of two copies of the symmetric group Sk+n/2 which have even
parity overall. Verification of these claims is left to the reader.

Incidentally (although this has very little to do with graph theory), the above ex-
ample gives rise to a negative answer to the question of whether a common transversal
can always be found for double cosets KgL (g € G) and LgK {g e G) of subgroups
K and L in a group G. The first author is grateful to Stephen Glasby for bringing this
question to his attention.

Let x, y, H, a and G be as before, and take K = (x) and L = (y), commuting
subgroups of order k. Then a~lxa — y, so that xa = ay, but on the other hand
a~xy'a £ H unless y' is trivial, and from this it follows that the double coset
HaH contains exactly k3 elements, each uniquely expressible in the form ypaxqyr

with p, q, r € {0, 1 , . . . , k - 1}. (Note: if ypaxqyr = y'ax'y" with p ^ s then
a~lyp~sa = x'~qy"~r e H, which is impossible.)

Now there are k2 double cosets of the form Kypaxqyr L, each containing k elements
(of the form ypaxqym where m is variable, as xl{ypaxqyr)y' = ypx'axqyr+j =
ypay'xqyr+J = ypaxqy'+r+J), while on the other hand there are k double cosets of
the form LypaxqyrK, each of size k2 (with all elements of the form ymax"yr where
m and n are variable, as yj(ypaxqyr)x' = yJ+paxq+'yr). In particular, any common
transversal for the double cosets KgL (g e G) and LgK (g e G) would need to
contain k2 representatives from HaH for those of the first sort, yet only k of these
could be representatives for those of the second sort! As an illustration: in the case
k — 2 the double cosets of the form KgL include {a, ay], {ax, axy], {ya, yay} and
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{yax, yaxy], but the eight elements in the union of these fall into just two double
cosets of the form LgK, namely {a, ax, a, yax} and {ay, axy, yay, yaxy}.

Hence no common transversal exists (for any value of k > 2).
Returning now to the subject of this paper, we generalize the situation described in

Example 1 by taking a direct product of a larger number of cyclic groups, to obtain
the following result.

THEOREM 1. For every integer k > 2 and every positive integer s, there are
infinitely many finite k-regular digraphs that have an s-arc-regular group of auto-
morphisms.

A similar theorem was proved by the third author in [5, Theorem 2.8], but the class
of digraphs constructed here is quite different from the ones constructed in [5], which
have rkr~s vertices (where r > s) and automorphism group of order 2r(k\)r.

PROOF OF THEOREM 1. Let H be the group generated by the s + 1 disjoint per-
mutations

x s + 1 = (sk + l,sk + 2 , . . . , ( s

and then for any positive integer n relatively prime to s + 1 define

• • • (*, 2k,..., (s + 1)*),

and let G be the group generated by H and a. Clearly H is the direct product of s +1
copies of the cyclic group Ck, acting on {1,2, . . . , (s + l)k} with s + 1 orbits each of
size k, and the choice of the permutation a makes G a transitive subgroup of S(S+\)k+n.
In fact G is doubly transitive and therefore primitive on {1, 2 , . . . , (s + l)k + n}, since
the stabilizer in G of the point (s + l)k + n contains each xs (for 1 < j < s + 1) and
as+i+n a s w ejj a s t n e conjUgates a''x\a' of xx (for I < j < s + n), and then since
x^a~lxs+la is a 3-cycle, it follows that the group G is either Ais+m+n or S(s+l)t+n,
depending on the parities of k and s and n.

(Actually G = S(s+l)k+n unless k is odd and 5 + n is even.)
Next aT1 ^ HaH because every element of HaH takes the point 1 to one of the

points in the set [k + 1, k + 2,..., 2k} while a~l does not, and so an arc-transitive
digraph A may be constructed with the right cosets of H in G as vertices. Also
a~lxta = xi+i for 1 < / < s whereas none of the conjugates of the non-trivial powers
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of xs+1 by the permutation a lie in H (because they all move the point (s + l)k + 1),
therefore H n a'1 Ha is the subgroup generated by all the Xj other than xu implying
that this digraph A = A(G, H, a) is ^-regular. The intersection of all the conjugates
of H in G is trivial, so G acts faithfully on A.

Furthermore, for 2 <y'< s the stabilizer in G of the (_/—l)-arc(//, Ha, Ha2,..., Haj~x)
is the intersection of H with its conjugates a~' Ha' for 1 < i < j — 1, which is the
subgroup generated by Xj,xj+l,..., xs+l. The latter group acts transitively on the k
out-neighbours of the vertex Haj~l (which are all of the form Ha'h with h e (JC;)),

so that G acts transitively on the y-arcs of A, for 2 < j < s. In particular, A is s-arc-
transitive. Also the subgroup H has trivial intersection with its conjugates a~'Ha'
for 1 < i < s, hence the group G acts faithfully on the vertices of A, and regularly
on the s-arcs of A.

This completes the proof (since there are infinitely many possible values of n).

Note that the above proof works for other values of n (having a factor in common
with 5 -(- 1), but in those cases the group G is an imprimitive subgroup of Sis+l)k+n.
Also we have not proved that G is the full automorphism group of A, but we suspect
this is the case in general.

A further generalization gives rise to the following result.

THEOREM 2. Let P be any finite permutation group which is transitive on a set of
size k. Then for every positive integer s, there are infinitely many examples of a finite
k-regular digraph A having a group G of automorphisms which acts transitively on
the s-arcs (but not on the (s + X)-arcs) of A, such that also the stabilizer in G of any
vertex of A induces the action of P on the set of its k out-neighbours.

PROOF. Without loss of generality suppose P acts on the set {1, 2 , . . . , k}. Let H
be the permutation group generated by s + 1 copies P\, P2,..., Ps+i of P, such that
each copy P, has a single orbit of length &, namely {(/ — l)k + l, (i — l)k + 2,..., ik],
on which it acts in exactly the same way as P does on {1, 2, . . . , & } , for 1 < i < s + 1.
Now for any positive integer n relatively prime to s + 1 define

•••(k,2k,...,(s

and let G be the group generated by H and a. In the same way as previously, the
choice of the permutation a makes G a 2-transitive subgroup of S^+i)k+n. Also if
x is an element of P which moves the point 1 to some other point p, say, and if
x{ and xs+i are the elements of P\ and Ps+i (respectively) corresponding to x, then
Xila~lxs+ia = (1, (s + \)k + 1, p). Thus G is either A(S+l)k+n or S(s+1)k+n, depending
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on the nature of P and on the parities of k and s and n. Again a"1 £ HaH, so that
A = A(G, H, a) is an arc-transitive digraph.

Next, while a~l Pta — Pi+\ for 1 < i < s, only those conjugates by a of elements
of Ps+l fixing the point s& + 1 lie in P\, so H n a~xHa is the subgroup stabP|(l) x
P2 x • • • x Ps+\, of index & in / / . Thus A is it-regular. Also the intersection of all
the conjugates of H in G is trivial (as any element in the intersection must fix all the
points), so G acts faithfully on A. For 2 < j < s the stabilizer in G of the (j — l)-arc
(//, Ha, Ha2,..., Ha'~l) is the intersection of H with its conjugates a~'Ha' for
1 < i < _/ — 1, and because this contains the subgroup />•, it acts transitively on the k
out-neighbours of the vertex Ha'~x (which are all of the form Ha'h with the elements
h chosen from a transversal for stab^.((y — Y)k + 1) in Pj ). Hence the group G acts
transitively on the y-arcs of A, for 2 < j < s, and in particular, A is s-arc-transitive.
Moreover, the action of the stabilizer in G of the (j — 1 )-arc (//, Ha, Ha2,..., Ha'~x)
on the set of k out-neighbours of the vertex Ha'~x is the same as the action of P on
{1, 2, . . . , * } , for 2 < j < s. On the other hand, the stabilizer in G of the s-arc
(H, Ha, Ha2,..., Has) fixes every vertex of the form Ha', because this stabilizer
is the direct product of the subgroups stab/..(O" — l)k+l),l < j < s + 1, and hence
G does not act transitively on the (s + l)-arcs of A.

As there are infinitely many possible values of n, this completes the proof.

Generalizing even further, we can use a similar technique to construct an infinite
^-regular digraph which is s-arc-transitive for every positive integer s, or 'highly arc-
transitive' as denoted in [2]. Again several examples of digraphs with these properties
were given in [2], but our construction gives a new infinite family of examples, as
follows.

Let H be the direct product of a doubly-infinite sequence (..., P-2, P-1, Pi, Pi, Pi,...)
of copies of any transitive permutation group P of degree k, with each P_, acting
on the set {—(i — 1)£ — 1, — (i — \)k — 2,..., — ik] and each Pt acting on the set
{(/ — l)Jfc+ 1, (/ — l)Jfc + 2 , . . . , ik} in the same way as P does on the set {1, 2 , . . . ,k],
for i = 1, 2, 3 , . . . . Now introduce the extra point 0 and define a as the following
permutation of all the integers:

a = (..., -2k - 1, -k - 1, - 1 , 0 , 1 , k + 1, Ik + 1,...)

( . . . , -2k - 2, -k - 2, -2, 2, k + 2, 2k + 2,...)

• • • ( . . . , -3k, -2k, -k, k, 2k, 3k,...),

and let G be the subgroup of the group Sym(Z) generated by H and a.
Just as above, a~l £ HaH, so by the usual argument the right cosets of H in G

may be taken as the vertices of a digraph A, with the group G acting transitively on
the arcs of A. Again H n a~lHa has index k in H, for this is the direct product of
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all the />_,- (for / > 1) with stab/., (1) and all the remaining P, (for i > 2), so A is
/t-regular. Also as earlier, but now for every positive integer s, the stabilizer in G of the
(s — l)-arc (H, Ha, Ha2,..., Has~l) acts transitively on the set of k out-neighbours
of the vertex Has~l, as this stabilizer is the direct product of all the /*_,- (for i > 1)
and the subgroups stabP; ((/ — l)k + 1) for 1 < / < s together with all the remaining
Pi (for / > s). Thus A is highly arc-transitive, as claimed.

The group G is primitive on Z, and contains all the 3-cycles in Sym(Z). To
see this, first note that if x_x and xx are the elements of P_i and Pi (respectively)
corresponding to any element x of P which moves the point 1 to some other point p,
say, then X\Xa~lx_xa is the 3-cycle (0, p, 1). Conjugation of this by a~2x^a2 and
then by a"1 gives (0, p,k + p) and then (—1, —p, p), and subsequent conjugation of
the latter, by a2xxa~2 and then by a, gives (~k - p, —p, p) and then (—p, p,k + p).
Now the stabilizer in G of the two points 0 and 1 contains not only all the f_, (for
/ > 1) and P, (for i > 2), but also all the conjugates a~J P-Xa' for j > 3 and all the
conjugates aJ Pxa~> for j > 2, as well as all the 3-cycles of the form (—1, —p, p)
or (-p, p, k + p) for 2 < p < k. Finally because the subgroup generated by all of
these is transitive on 2\{0, 1}, it follows that G is 3-transitive on Z, and also that G
contains all possible 3-cycles.

In particular, as every even (finite) permutation can be expressed as a product of
3-cycles, this means G contains every even finitary permutation of the integers. To
be more precise, the normal closure K of H in G is either the group of all finitary
permutations of Z or, in the case where P contains no odd permutation on {1, 2 , . . . , k],
the alternating group Alt(Z). Finally, G is the semi-direct product of this group K by
the infinite cyclic group generated by the permutation a.

In all of the above variants of Example 1 the subgroup H was a direct product of
isomorphic subgroups, and the element a was chosen so as to conjugate each such
factor to the next, as far as possible. The next example shows what can happen in
other situations where H has two isomorphic but non-conjugate subgroups (analogous
to (x) and (y) in Example 1).

Example 2. The alternating group A6 (of order 360) has two classes of maximal
subgroups of index 6, each isomorphic to the simple group of order 60. One way to see
this is to consider the three permutations (1, 2, 3,4, 5), (2, 3)(4, 5) and (1, 6)(2, 5).
The first two generate a natural A5 (fixing the point 6), while the first and the third
correspond to the permutations induced by the linear fractional transformations z i->-
z + 1 and z i->- (z — 2)/(z — 1) of the projective line over the field Z5 (with the point 5
relabelled as 0 and the point 6 relabelled as oo), giving a transitive action of the group
PSL2(5) on six points. Note that in each case we have a pair (M, V) of generators
satisfying the relations u5 = v2 = (uv)3 = 1; in fact these are defining relations for
the group A5 (see [4]).
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Now although the second subgroup is not conjugate to the first one within A6 or
even S6 (their orbits having different sizes), it is not difficult to embed A6 into the
symmetric group Si2 in such a way that the images of these two subgroups become
conjugates of each other within this larger group, for instance as follows.

Define u = (1, 2, 3,4, 5)(7, 8, 9, 10, 11), x = (2, 3)(4, 5)(7, 12)(8, 11), and y =
(1,6)(2, 5)(8,9)(10, 11), and let K = (u, x), L = (u, y), and H = (u, x, y). The lat-
ter group has two orbits {1,2, 3,4,5,6} and {7, 8,9, 10, 11,12}, such that the actions
of K on the first orbit and of L on the second both duplicate the natural action of A5

(fixing one point) described above, while the actions of K on the second and of L on the
first duplicate the transitive action of A5 on six points. It follows that K = L = A5 and
H = A6. Furthermore, if c is the permutation (1,7)(2, 8)(3,9)(4,10)(5,11)(6,12),
then c~xuc = u and c~xxc — y, so that c~lKc = L; that is, K and L are conjugate in
512.

Suppose now that we add an odd number of extra points, say 13, 14,15,. . . , n
(where n is odd), and let a = (1, 7)(2, 8)(3, 9)(4, 10)(5, 11)(6, 13, 14, 15 n, 12)
and define G = (u,x,y,a) within the symmetric group Sn. Then we have the same
sort of picture as in Example 1.

Note that G is doubly-transitive and therefore primitive, as the stabilizer in G of
the point n contains u, x, v, a"~10 along with a~'xa' for 1 < j < n — 13, and in
fact G = Sn because y~la~2ya2 is a 3-cycle (fixing the other n — 3 points). Also
a~l <£ HaH, since a~* takes the point 13 to the point 6, while every element of the
double coset//a//takes 13 to one ofthe points ofthe set {7, 8,9, 10,11,12}ifn = 13,
or to 14 if « > 13. This time a~lua = u and a~xxa = y, so that a~lKa = L, but
a~lya £ H since cTx ya moves the point 13. Itfollowsthat HC\a~xHa = (u, y) = L,
which has index 6 in H, and then the intersection of all the conjugates of H in G is
trivial, because H is a simple group (isomorphic to A6 ).

The digraph A(G, H, a) in this case has n!/360 vertices and is 6-regular (and
connected), with the symmetric group Sn as an arc-transitive group of automorphisms,
in which the stabilizer of a vertex (namely H) is isomorphic to A6.

In fact A(G, H, a) is 2-arc-transitive, for the stabilizer in G of the arc (//, Ha) is
the subgroup H Ha"1 Ha, which is L, and the six in-neighbours of the vertex H are
all of the form Ha~xh with h e L (noting that a~lh e Ha~x whenever h 6 K), and
these vertices are permuted transitively among themselves by L. In particular, this
action of the stabilizer of the arc (//, Ha) on the six in-neighbours of H is the same
as the usual action of PSL2(5) on the projective line over the field 25. On the other
hand, the other five out-neighbours of H are those vertices of the form Hah with
h e K\L (since ah e Ha whenever h € L), and these are also permuted transitively
among themselves by L, even by (M). TO see this, note that in terms of the original
permutations the image of the set {7, 8, 9,10,11, 12} under any element of a coset
Hah is uniquely determined by the effect h has on the point 6. Thus the stabilizer of
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the arc (//, Ha) induces the natural action of A5 on the other five out-neighbours of
H.

Again this method works just as well with the addition of an even number of extra
points, but the group G is an imprimitive subgroup of Sn in those cases. The smallest
digraph that results is one on 70560 vertices, coming from the case n = 14 (with the
group G containing the direct product A7 x A-] as a subgroup of index 4). A much
smaller example will be constructed in the next section.

A similar approach works also for the Mathieu group Mu and its two classes of
maximal subgroups isomorphic to Mu. Take

u = (1, 2, 3,4, 5, 6, 7, 8, 9, 10, 11)(13, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14),

x = (1,4)(3,11)(5, 9)(7, 10)(13,24)(14, 20)(19,21)(22, 23), and

y = (1, 12)(2, 8)(7, 9)(10, 11)(13, 16)(15, 23)(17, 21)(19, 22).

Then the group H generated by u, x and y is isomorphic to M12 (with two orbits of size
12), and its subgroups £ = (M,;t)andL = (u, y) are non-conjugate subgroups both of
which are isomorphic to M\ i (and having orbits of size 1,11 and 12). These assertions
may be easily verified, using the CAYLEY system [3] for instance. Next for any
integer n > 25 define a = (1,13)(2,14) • • • (10,22)(11, 23)(12,25, 26 , . . . , n, 24),
and let G = (H,a).

The same arguments as used in the A5 and A6 case apply here, except that the
element w is inverted (by conjugation) by the element a, rather than centralized by a,
the reason being that every 11-element of M12 is self-centralizing in AutM12 (whereas
a 5-cycle in A6 can be centralized also by an outer automorphism of S6). Again
H fl a~lHa = (u, y) = L, which has index 12 in H this time, and so the digraph
A(G, H, a) in this case is 12-regular, with either the symmetric group Sn or some
imprimitive subgroup of Sn (depending on whether n is odd or even) as a group of
automorphisms acting transitively on its 2-arcs. Also the stabilizer of any 1-arc, say
(v, w), acts on the other 11 out-neighbours of v in the same way that K does on the
set {1, 2 , . . . , 11}, but on the set of 12 in-neighbours of v in the same way that K does
on the set {13, 14 24}.

3. 'Doubling' constructions

In this section we consider an alternative (but similarly easy) method of construc-
tion, in which permutation representations are simply duplicated rather than modified
by adding extra points.

Example 3. For any integer k > 2, let H be the subgroup of S4k which is
generated by the permutations x = (1,2,...,k)(k + I,k + 2, ...,2k) and y =
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(2* + 1 , 2k+ 2,..., 3*)(3* + 1 , 3*+ 2 4*). Note that just as in Example 1, H is
the direct product of two cyclic groups of order k, but here each factor has two orbits
of size k, one of which is like a duplicate of the other. Next define a = (l ,2* + l ,* +
1,3* + 1)(2,2k + 2)(3, 2k + 3) • • • (*, 3*)(* + 2, 3* + 2)(* + 3, 3* + 3) • • • (2*, 4*),
and let G be the group generated by x, y and a.

The choice of a ensures that a~x £ HaH, for a"1 takes the point 1 to the point
3* + 1 while every element of the double coset HaH takes the point 1 to one of
the points of the set {2k + 1, 2k + 2 , . . . , 3*}. Also arxxa = y, while on the other
hand a~lxly'a £ H whenever yj is non-trivial, again because in that case a~lx'y'a
takes the point 1 to one of the points of the set {2k + 2, 2* + 3 , . . . , 3*}. Thus
H fl a'1 Ha = (y), which has index kin H, and the subgroup H n a~l Ha D a~2Ha2

is trivial.
By the general construction given in Section 1, A(G, H, a) is a connected it-regular

digraph, with G as an arc-regular group of automorphisms.
The choice of a also makes the group G a transitive but imprimitive subgroup of

54ft, with the sets {1, 2 , . . . , 2k] and {2k +1,2*+2,..., 4*} as blocks of imprimitivity
(preserved by x and y, and interchanged by a). The stabilizer of each of these blocks
is the index 2 subgroup K generated by H and a2 and their conjugates, and this
group also acts transitively but imprimitively on each block. On one hand the blocks
{1,*+1}, {2, *+2}, . . . , { * , 2k] are fixed by each of y and a2 and cyclically permuted
byx, while on the other hand the blocks {2*+l, 3*+l}, {2*+2, 3*+2}, . . . , {3*, 4*}
are fixed by each of x and a2 and cyclically permuted by y. The stabilizer in G of all
these blocks contains both the double transpositions x~la~lya = (1, * + 1)(2, * + 2)
and y-laxa~x = (2k + 1,3* + 1)(2* + 2, 3* + 2) and the double transposition
a2 = (1, * + 1)(2* + 1,3*+ 1), and hence (after conjugation of these by x and y
and so on) all the products of an even number of the transpositions s, = (/,* + /) for
1 < / < * and tt• = (i, * + 0 for 2* + 1 < i < 3*.

In particular, as every permutation in K is even, this means that K is a subgroup of
index 2 in the direct product of two copies of an extension of an elementary Abelian
group of order 2k by the cyclic group Ck (one copy acting on each of the two large
blocks of size 2k), and therefore G is a group of order i(2**)22, that is, 22**2, and
A(G,H, a) has 22k vertices.

Again this example can be generalized, by taking H as the direct product of
more than two cyclic groups of the same order, and/or by using any finite transitive
permutation group of degree * instead of the cyclic one, as we show below.

For any integers * > 2 and s > 1, and for any transitive subgroup P of the group
5*, let H be the permutation group generated by s + 1 copies Pu P2,..., Ps+i of P,
such that each copy f, has two orbits of length *, namely {2(i — 1)* + 1,2(/ — 1)* +
2 (2i - 1)*} and {(2/ - 1)* + 1 , (2i - 1)* + 2 , . . . , 2/*}, on each of which it acts

https://doi.org/10.1017/S1446788700038477 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038477


[13] Constructions for arc-transitive digraphs 73

in exactly the same way as P does on {1, 2 , . . . , k}, for 1 < / < s + 1. Next define

a = (1,2k + 1, . . . , 2sk + l, k + 1, 3* + l , . . . , (2J + 1)* + 1)(2, 2k+2,..., 2sk+2)

• • i k , 3 k , . . . , (2s+l)k)(k+2, 3 k + 2 , . . . , ( 2 s + l ) k + 2 ) . . . (2k, 4 k , . . . , 2 (s+l )J fc) ,

and let G be the group generated by H and a.
Just as before, a~{ £ HaH, so this gives us an arc-transitive digraph A =

A(G, H, a). Also a~x Pta = Pi+i for 1 < / < s, while only the conjugates by a
of those elements of Ps+X fixing the point 2sk + 1 (and then the point (2s + l)k + l as
well) are in Px, so H n a~lHa is the subgroup stab/., (1) x P2 x . . . x Ps+l, of index
k in // . Thus A is ^-regular. Moreover, the intersection of all the conjugates of H
in G is trivial (for the same reasons as earlier), so G acts faithfully on A. Finally, by
the same argument as the one used in the proof of Theorem 2, the stabilizer in G of
the (j — l)-arc (//, Ha, Ha2,..., Ha'~x) acts transitively on the k out-neighbours of
the vertex Ha>~x (which are all of the form Ha'h with the elements h chosen from a
transversal for stab/. (2(j — l)k + 1) in Pj), for 2 < j < s. Thus A is s-arc-transitive,
and in fact the stabilizer in G of any vertex of A induces the action of P on the set of
its k out-neighbours.

The group G is a transitive but imprimitive subgroup of the symmetric group
S2(S+\)k, with s + 1 blocks of size 2k that are preserved by every element of H and
cyclically permuted by a. The stabilizer of each of these blocks is the subgroup K
generated by H and as+x and their conjugates, and then also K acts transitively but
imprimitively on each block. For example, on {1, 2 , . . . , 2k} this group K permutes
the k sets of the form {j, j + k} (for 1 < j < k) amongst themselves in the same way
as P acts on {1, 2, ...,k}. Furthermore, if xx and xs+x are the elements of Px and Ps+l

(respectively) corresponding to any element x of P which moves the point 1, to the
point j , say, then xx~

la~xxs+xa is the double transposition dj = (1, k + l)(y, k + ;').
From this it follows that the conjugates of all elements of H generate the direct product
of s + 1 copies of an extension of an elementary Abelian group of order 2k~l by the
group P (with each copy acting transitively but imprimitively on one of the 5 + 1
blocks of size 2k). Moreover K itself is a semi-direct product of this subgroup by
the cyclic subgroup (as+l) of order 2. It now follows that the group G has order
(2k-l\P\)s+l2(s + 1), that is (s + l)5*J-i+' : |/ ' |J+1, and therefore A has (s + \)2ks~s+k

vertices.

Note that the size of A is independent of the choice of the permutation group P
(in contrast to the situation following Example 1). In fact the digraph A itself is
independent of P, that is to say, the same digraph is obtained whatever particular
transitive group of degree k is chosen. One way to see this is to notice that P could
be taken as the full symmetric group of degree k, in which case the corresponding
group G has order (2k~lk\)s+12(s + 1) and contains every other group arising from
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this construction as a subgroup, and so on. But it turns out there's a much easier way
of recognising this fact, because the digraph A is actually a Cayley digraph.

If N is the group generated by a and the double transpositions dj = (I, j)(k + I,
k + j) for 2 < j < k, then N is an extension by a cyclic group of order s + 1
of an elementary Abelian group of order 2ks~s+k (generated by the involution as+1

and all the conjugates a~'dja' for 0 < / < s and 2 < j < k). In particular, N is
clearly a complement for the subgroup H in G, so the vertices of A are in one-to-one
correspondence with the elements of N. Now if Hx is any vertex of A (with x e N),
the out-neighbours of Hx in A are precisely those cosets of the form Hahx with
h € H, indeed with h e Pi since ah e Ha whenever h e Pt, i ^ 1. Also if, say,
h moves the point 1 to the point j , and g is the corresponding element of Ps+i, then
h-{a~{ga = (1,* + 1)0, £ + ;) = dh so that Hahx = Hgadjxx = Hadjxx =
HadjX. With d\ defined as the identity permutation, it follows that A is a Cayley
(di-)graph for the group N, with generating-set X = [adj 11 < j < k).

A similar technique may be used to construct a highly arc-transitive infinite &-
regular digraph, as in Section 1.

Let//be the direct sum ofa doubly-infinite sequence (..., P_2, P-u Po, Pu Pi, • • •)
of copies of any transitive permutation group P of degree k, with each Pt acting on
the two sets [2(i - l)k + 1,2(i - 1)* + 2 , . . . , (2/ - l)k} and {(2/ - l)k + 1, (2i -
l)k + 2 , . . . , 2ik} in the same way as P does on the set {1, 2 , . . . , k], for every i e / .
Next define a as the following permutation of all the integers:

(..., -4k+2, -2k+2, 2, 2k+2, 4k+2,...)(..., -34+2, -*+2,*+2,3£+2,...)

( . . . , -3k, -k, k, 3k, 5k,...)(..., -2k, 0 ,2k , Ak,...),

and let G be the subgroup of the group Sym(Z) generated by H and a.
Just as in all previous cases, the right cosets of H in G may be taken as the

vertices of a digraph A, with the group G acting transitively on the arcs of A, and
again H D a'1 Ha has index k in H, for this is the direct sum of stab/>,(l) with all
the remaining /", (for i ^ 1), so A is ^-regular. Also as earlier, but now for every
positive integer s, the stabilizer in G of the (s — l)-arc (//, Ha, Ha2,..., Has~l)
acts transitively on the set ofk out-neighbours of the vertex Has~l, as this is the direct
sum of all the subgroups stab/. (2(/ — l)k + 1) for 1 < / < s together with all the
remaining /", (for / < 0 and for / > s). Thus A is highly arc-transitive, as claimed,
and again the same digraph is obtained whatever the choice of P. Furthermore, the
normal closure K of H in G is contained in the group of all finitary permutations of
Z, and G/K is infinite cyclic (generated by Ka).
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We now proceed to see what can happen in the A5 and A6 case using this technique
of 'doubling' a permutation representation.

Example 4. Let

u = (1,2, 3,4, 5)(7, 8,9,10,11)(13, 14,15, 16, 17)(19, 20,21, 22, 23),

x = (2,3)(4,5)(8,9)(10, 11)(13,18)(14, 17)(19, 24)(20, 23),

y = (1, 6)(2, 5)(7, 12)(8, 11)(14, 15)(16, 17)(20, 21)(22, 23),

and define K = («, x), L = (u, y), and H = (u, x, y). The latter group has four
orbits { 1 , . . . , 6}, {7, . . . , 12}, {13, . . . , 18} and {19,.. . , 24}, such that the actions of
K on the first two and of L on the last two orbits both duplicate the natural action of
A5 (fixing one point in each case), while the actions of K on the last two and of L on
the first two orbits duplicate the transitive action of A5 on six points. In particular, as
in Example 2, K = L = A5 and H = A6. Next let

a = (1, 13)(2, 14)(3, 15)(4, 16)(5, 17)(6, 24, 12, 18)(7, 19)(8, 20)(9, 21)(10, 22)

(11,23),

and define G = {«, x, v, a) within the symmetric group S24- Then we have the same
sort of picture as in Example 3.

First note a~x £ HaH, since a~l takes the point 24 to the point 6, while
every element of the double coset HaH takes 24 to one of the points of the set
{7, 8, 9, 10, 11, 12}. Also the choice of a makes a~lua = u and arxxa = y, so
that a~xKa = L, but a~lya £ H since a~xya moves the point 13 to the point 24.
It follows that H n a~xHa = (u,y) = L, which has index 6 in H, and again the
intersection of all the conjugates of H in G is trivial.

The group G in this case is a transitive but imprimitive subgroup of S24, with
two blocks {1,2, . . . , 12} and {13,14,..., 24} that are preserved by each of u, x
and v, and interchanged by the permutation a. Stabilizing these two blocks is the
subgroup generated by H and a2 and their conjugates. This may be seen to be
an extension by A6 of an elementary Abelian group of order 211, containing all
the products of an even number of the transpositions {1,7}, {2, 8 } , . . . , {6,12} and
{13, 19}, {14, 20} , . . . , {18, 24}. For example, it contains the double transposition
x~la~xya = (13,19)(18,24). It follows that G is a group of order 211 x360x2,with
the subgroup H having index 212, so the digraph A(G, H, a) has only 4096 vertices.

Of course A(G, H, a) is 6-regular, the stabilizer in G of any vertex is isomorphic
to A6, and, just as in Example 2, the stabilizer in G of the arc (//, Ha) is the subgroup
H D a~lHa, namely L, and this acts on the other five out-neighbours of the vertex
H in the same way as a natural -A5, while acting on the six in-neighbours of H in the
same way as PSL2(5) acts on the projective line over the field T5.
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The same approach works also in the case of Mn and Af12, giving a digraph on 224

vertices with the same properties as those described at the end of Section 2.
Indeed both this type of 'doubling' construction and the 'extra point' technique

introduced earlier can obviously be applied in any situation where a given finite group
contains two or more isomorphic but non-conjugate subgroups. In Examples 1 and 3
(and their generalizations) the group H is a direct product and the relevant subgroups
are its factors, while in Examples 2 and 4 (and their analogues) these subgroups are
non-conjugate maximal subgroups of a simple group.

Also this technique of duplicating permutation representations can obviously be
taken further, for example by 'tripling' instead of doubling, and a whole raft of
possibilities arise.

Unfortunately we note that the question raised in [2] about the existence of a vertex-
primitive 2-arc-transitive digraph remains unanswered. Even though our constructions
are quite general we have so far found only examples which are vertex-imprimitive.

Note also that in all of our constructions of infinite highly arc-transitive digraphs
the group G acting on the digraph has a normal subgroup K containing the vertex-
stabilizers, such that G/K is an infinite cyclic group. In [2, Question 2] it was asked
whether this must always be the case when the in- and out-degrees are finite. It
was proved in [6] that this must be the case when the (finite) in- and out-degrees
are unequal, but the question is unanswered for regular infinite highly arc-transitive
digraphs of finite valency.

4. Miscellany

We conclude this paper with a couple of other (miscellaneous) constructions which
we have also discovered during the course of our investigations.

Example 5. The group PSL2(l 1) in its natural action on the projective line over
the field 211 may be generated by the four linear fractional transformations z i-> — 1 /z,
z i-> (z + 5) / (4z- l),z (-• (z + 3) / (3z- l ) ,andz i->- (z + l ) / ( z - 1), which induce
the respective permutations

p = (0, oo)(l, 10)(2, 5)(3, 7)(4, 8)(6, 9),

q = (0, 6)(1, 2)(3, oo)(4, 5)(7, 9)(8, 10),

r = (0, 8)(1, 2)(3, 9)(4, oo)(5, 10)(6, 7), and

s = (0, 10)(l, oo)(2, 3)(4, 9)(5, 7)(6, 8).

Let H be the group generated by these four permutations, so that H is isomorphic
to />5L2(11) in its natural transitive action on 12 points. Now, because p, q and r
satisfy the relations p2 = q2 = r2 = (pq)3 = iqr)5 = (pr)2 = (pqr)5 = 1, the
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subgroup K = {p, q, r) is isomorphic to A5 (cf. the group G3>5>5 in [4]). Similarly,
because q2 = r2 = s2 = (qr)5 = (rs)3 = (qs)2 = (qrs)5 = 1, also the subgroup
L = (q, r, s) is isomorphic to A5.

Next define a new permutation a = (3, 6, 10, oo, 7, 8,4, 9, 11, 5), and let G be
the group generated by H and a. This choice of a is made so that a~lpa = q,
a~lqa = r, and a~xra = s. On the other hand, a~lsa g H, since for example
the product of a'lsa with pqrs has order 14 and hence is not in H. In particular,
H C\a~l Ha = (q,r,s) = L, which is a maximal subgroup (of index 11) in / / .

The group G itself is primitive on {0, 1, 2 , . . . , 10, oo}, and contains not only the
odd permutation a, but also the 7-cycle (a"1 sa pqrs)2 = (0, 1, 4, 3, 6, 9, oo), so that
by Jordan's theorem [8, Theorem 13.9], we find G is isomorphic to Si2-

In the canonical action of G on right cosets of H, the subgroup L fixes the coset
Ha, and has a single orbit of length 10 on the remaining cosets of the form Hah with
h e H, since if Hapx = Hapy with x, y e L then apxy~}pa'1 e H and therefore
pxy~x p € a"1 Ha D pLp, which is easily found to be the subgroup (r, s), of index 10
in L. On the other hand, L has two orbits on cosets of the form Ha~lh with h e H,
one of length 6 consisting of all those of the form Ha~lx with x € L, and another
of length 5 made up of those remaining, all of the form Ha~ltx with t = srqp (for
instance) and x e L. (Details are left to the reader.)

As a consequence, the actions of L on the right cosets of H in HaH and in Ha~1H
are distinct, implying that HaH ^ Ha~xH. Thus we have an 11-regular arc-transitive
digraph A on 725760 vertices (by our usual construction), with the group G = Su

acting on A in such a way that the stabilizer in G of an arc (v, w) in A is isomorphic
to P5L2(11), and this group has one orbit of length 10 on the other out-neighbours
of v, and orbits of lengths 5 and 6 on the 11 in-neighbours of v. In particular, G has
two orbits on 2-arcs.

Example 6. The intersection of two non-conjugate subgroups of index 6 in the
group A6 is a dihedral group of order 10, of index 36. Using CAYLEY (for instance)
it is not difficult to calculate the permutations induced by generators given for A6 at
the beginning of Example 2 on the right cosets of this intersection. In fact these may
be taken as

u = (2, 3,4, 5, 6)(7, 8, 9, 10, 11)(12, 13, 14, 15, 16)(17, 18, 19, 20, 21)

(22, 23, 24, 25, 26)(27, 28, 29, 30, 31)(32, 33, 34, 35, 36),

x = (1, 2)(4, 5)(7, 12)(8, 17)(9, 27)(10, 32)(11, 22)(13, 23)(14, 35)(15, 29)

(16,21)(18, 33)(19,25)(20, 34)(24, 30)(26, 31), and

v = (1, 7)(2, 12)(3, 25)(4, 36)(5, 28)(6, 19)(9, 10)(13, 20)(14, 31)(15, 33)

(16, 24)(17, 22)(18, 35)(21, 34)(23, 30)(26, 29),
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with u and (xy)2 generating the (dihedral) stabilizer of the point 1.
Let H = (u,x,y), and K = (u,x) and L = (u,y), so that H = A6 while

K = L ~ A5. Note that each of K and L has two orbits on {1, 2 , . . . . 36} : one
of length 6 containing the point 1, and another of length 30. Those of length 6 are
{1,2, 3,4, 5, 6} and {1, 7, 8,9, 10, 11} respectively, and the actions of K and L on the
other orbits are easily seen in the diagrams below.

is u_

15 14

Here the cycles of the permutation u are depicted by pentagons (whose vertices
are shifted anti-clockwise by u), and the points at the ends of all remaining edges are
interchanged by x and by y in the respective cases.

Now in this representation of A6, there are two possibilities for a permutation a of
the same 36 points which centralizes u and conjugates x to y (as in Example 2). In
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one case a is an involution, fixing the point 1 and interchanging 2 with 7, and 3 with
8, and so on, in a way that can be seen from the diagrams by placing one immediately
on top of the other. In this case, however, a~l = a e HaH, which is not appropriate
for the construction of a digraph. On the other hand, if the first diagram is rotated 180
degrees and then placed on top of the second, we find a second possibility for a is the
following:

a = (2, 7, 12)(3, 8, 13)(4, 9, 14)(5, 10, 15)(6, 11, 16)(17, 20, 18, 21, 19)

(22, 24, 26, 23, 25)(27, 31, 30, 29, 28)(32, 33, 34, 35, 36).

Again in this case H (1 a'1 Ha = L, because a~1ua = u and a~xxa = y, but
a~lya £ H for the element {a~lya)xu2y has order 12 and therefore cannot be in H.
Moreover, just as in Example 5, the actions of L on right cosets of H in HaH and
in Ha~xH are distinct. On the one hand L has two orbits on those of the first type
(one being {Ha} by itself and the second consisting of the other five cosets, all of
the form Haxh with h € L), while on the other hand L acts transitively on the six
cosets of the form Ha~lh with h e H (since if Ha~xp = Ha~xq with p,q e L then
a~lpq~xa € H and therefore pq~x € aHa"1 D L, which is easily found to be the
subgroup (u, (xy)2), of index 6 in L). In particular, a~l <£ HaH. Finally we note that
the permutation a6xu is made up of a 19-cycle, a 7-cycle, a 5-cycle, a 3-cycle and two
fixed points, and then since (a6xu)m is a single 19-cycle, G must be primitive, and
by Jordan's theorem, in fact G = A36.

Thus we have yet another example of a 6-regular 2-arc-transitive digraph A with a
group of automorphisms having the properties stated in the introduction.
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