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Four-dimensional scanning transmission electron microscopy (4D-STEM) has expanded the types of 

information which can be extracted from materials. However, 4D-STEM experiments also produce large 

datasets spanning GB to TB, which are often infeasible to examine manually. Consequently, there have been 

extensive efforts (e.g., Py4DSTEM [1]) for automating the analysis of these datasets. Currently, these methods 

rely on classical computer vision techniques (e.g., Fourier filtering and cross-correlation), which typically 

require significant manual tuning for each experiment. Parameter tuning is a significant roadblock towards the 

goal of robust and automated analysis of 4D-STEM datasets. Machine learning algorithms, notably deep neural 

networks (DNNs), have been demonstrated to outperform classical techniques in most computer vision tasks 

and are well suited for automated analysis [2]. While much of the utility of modern DNNs is attributable to 

increased compute performance and the evolution of open-source high-level software interfaces, the 

development of availability of large-high-quality datasets has been of pivotal importance. To train high the 

performant DNNs requires creating high-quality datasets, analogous to the role of specimen preparation in 

recording electron microscopy images. 

We present an all python, portable, scalable and efficient method for generating large datasets suitable for 

training DNNs (Figure 1). We show that the process is platform agnostic and scalable by producing examples 

on a single local machine and a high-performance computing (HPC) cluster with GPU acceleration. We also 

discuss the importance of metadata labeling and architectural decisions that maximize the data's reusability 

and the framework's flexibility and portability. 

To exemplify the data generation workflow, we produced a dataset suitable for detecting and localizing the 

Bragg scattering, a notoriously difficult but crucial task in analyzing crystalline materials. The generated 

dataset comprises convergent beam electron diffraction (CBED) patterns, projected potentials (Vg), and out-

of-plane tilt (qz). The atomic potentials and CBED images were calculated using PyPrismatic, a python wrapper 

for the Prismatic S/TEM [3,4] image simulation software. Following which, the projected potentials and out-

of-plane tilts were generated through bespoke python scripts. Finally, these datasets were densely labeled with 

metadata and stored in a HDF5 file format. The careful semantic labeling maximizes the utility and reusability 

of the data for other projects, addressing "dark data" issues [5]. Crucially, while the workflow is python-based, 

we minimize platform and device architecture considerations by containerizing the process (Figure 2). This 

approach allows the workflow to be easily shared and any work replicated, with minimal software and 

hardware compatibility concerns. Furthermore, containers offer many other compelling benefits, including 

rapid prototyping and the ability to run multiple containers in an independent or linked mode simultaneously. 

The described image generation workflow greatly simplifies generating large datasets, which are vital for 

training DNNs required for the automated and robust analysis of 4D-STEM datasets. Such networks offer great 

promise and could ultimately, for example, perform strain and orientation mapping of materials with currently 

inaccessibly large fields of view, classification of unknown polycrystalline structures, and accurate specimen 

thickness estimations. Furthermore, the work demonstrates the benefit of containerized solutions for 

distributing software to the scientific community. 
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Figure 1. Schematic representation of the containerized 4D-STEM image simulation process, and the densely labeled 

hdf5 output file. 

 
Figure 2. Schematic of the benefits of the containerizing processes. The example shows two instances of a python app 

(container 1 and 2), and a single instance of a C++ and SQL app while being agnostic to the host system operating system, 

utilizing the Docker Engine. 
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