
PROJECTIVE SYSTEMS ON TREES AND VALUATION 
THEORY 

OLAV ARNFINN LAUDAL 

Introduction. It is our aim in this note to introduce methods from 
homological algebra in the study of some problems in valuation theory. In 
particular, we will use such methods to give a new, and, in some respect, 
simpler proof of a well-known theorem of Krull and Ribenboim; see (2). We 
shall also show that the same methods can be used to prove the Riemann-Roch 
theorem for algebraic curves and the Weierstrass product theorem. 

In § 1 we study the functor lim on the category of projective systems of 

modules on an ordered set V. If F is a tree, we show, (1.2), that 

lim(p) = 0 for p ^ 2 

and we give an explicit formula for 

lim(1). 

If V is either a finite tree or the ordered set of the integers, we give condi
tions on the projective system F such that we have lim(1)i? = 0; see (1.4) 

and (1.8). In §2 we specialize to the case where V is the ordered set of valua
tions of a field. I t is known that F is a tree, and we may therefore use the 
results of § 1. Using (1.4), respectively (1.2), the Krull-Ribenboim approxi
mation theorem and a weak form of the Riemann-Roch theorem for algebraic 
curves come out. The last section contains a proof of a "global" approxima
tion theorem. As an example, we show that this generalizes the existence part 
of the Weierstrass product theorem. 

1. Let L be an unitary ring and let V be an ordered set. If M is a subset 
of V and v an element of F, we put 

M = \v' £ V\v' <v£ M], 

v = {»}, 

vv= \v'e v\v'>v}. 
Let c be the abelian category of all projective systems of L-modules on V. 
An object F of c is then a family of L-modules {Fv} vçV, together with a family 
of homomorphisms j / : Fv> —> Fvy v' > v such that, for v" > v' > v, 
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j / ' = j / o j V " . 

For the definition and the main properties of the projective limit functor: 

lim: c —> category of L-modules, 

see (1). We denote by lim(2,) the pth right derived functor of lim. By (1) we 
have 

Ext,(2?)(7, F) ~ H o m ( L , hm(p)F) ~ Km(p)F, 

where I denotes the constant projective system on V associated with the 
L-module L. If for each v G V we are given an L-module Fv, then we may 
construct a projective system F on F by defining 

v'£Vv 

If Vi > v2} then the homomorphism jV2
Vl: F9l —» FV2 is induced by the in

clusion Vvl C VV2. We shall call such projective systems elementary. 
We easily prove that if all Fv are projective L-modules, then F is a pro

jective object in c. 

Definition 1.1. An ordered set V is called a tree if, for every v € V, 
(1) v is totally ordered, 
(2) there exists a subset Rv of V such that 

(a) if v' (E Rv, then z/ > v and «/' ^ z>, 
(b) if u" > v, v" 9^ v, then there exist a unique u; Ç i ^ such that 

i>" > z/. 

PROPOSITION 1.2. Le/ V be a tree and suppose that for every v Ç V, v is finite, 
then 

(i) Km(p) = 0 for p ^ 2, 

(ii) lim(1)F = coker 0, 

where 

<£'• I I ^ P — ^ n -̂ mln (»,»') 

is giy£W 63; 

Proof. For every z; Ç F let 

p\ = L and v\ = IIL. 

Denote by £° and £* the elementary objects of c generated by the families 
{p°v}v£v and \filv)v£v, respectively. Let e: p° —> I be the morphism induced 
by the family of identity homomorphisms 

https://doi.org/10.4153/CJM-1968-096-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-096-x
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Now, as for every v £ V, Vv is the disjoint union 

v'evv 
we have 

P\= U L, p\= ML. 
v'evv-{v} v'evv 

If {eV')V'ç.Vv is a base for p°vy then {ev>}v>çRv is a base for pl
v. Let d: p 1 —» £° 

be the morphism induced by the family of homomorphisms 

iv\ p v > p v 

given by 

Obviously, eo d = 0 so that d defines a morphism d*: p1 —> ker e. We shall 
show that d* is an isomorphism. Let x £ pl

v and suppose that 

X = 22 /„'£»' 5* 0. 
v'£Vv-{v} 

If z/0 is maximal among those v' for which lv> ?£ 0, then we may write 

A ' V P ' O 

so that d(x) ?̂  0. Therefore, d* is monomorphic. Let y £ ker ev, then 

y = 22 h'tv' with 22 ^' = 0. 
v'zvv v'evv 

For every v' £ Fv we know, since y' is finite, that there exists a finite maximal 
sequence 

v = VQ ^ Vi ^ . . . ^ vn = v' ^ V! ^ . . . ^ Vn = 

such that vi+i £ i?^ for i = 0, 1, . . . , n — 1. Then 
« - 1 

and 

v'ZVv v'ÇVv v"£Rv
f; 

v'ZVv 

so that y £ im d*. Therefore d* is epimorphic, and we then know that 

is an exact sequence of objects in c. As p° and p1 are projectives, we may 
calculate lim(p) by using the complex Homc(£-, — ). In particular, we find: 

lim(p) = 0 
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for p ^ 2, and 

lim(1)F = coker i r lom^ 0 , F) ^^i^XHom(p\ F)\ . 

Now 

Hom_c(p°, F)~Ylpv and Hom_ c (p\F)~Yl Fm™(v, v'), 
v£V v'€Rv; 

and <t> = Hom(d, itfF) is given by *({/„}P€F)(*.»') = A ~ Jv'vfv-

Suppose ikf is a subset of the ordered set V, and suppose F is a projective 
system on V, then there is a canonical homomorphism 

F(V,M): UmF->HmF. 

We shall use the following lemma. 

LEMMA 1.3. Let Mu M2l and N be subsets of the ordered set V such that 
Mt = Mt for i = 1, 2, V = Mi KJ M2 and N = MXC\ M2. Then we have an 
exact sequence 

0 -> Hm F/'im F(Mh N) + im F(M2, N) -> lim(1)F -> Jfon(1) F X Jim(1)F -> 0 
t/V *F *Mt ^ 

lim(1)F. 
N~ 

Proof. Let TF = {0, a, &} be the ordered set with the only non-trivial 
relations 0 < a, 0 < b. Let 

K: W-+PV 

be the K-functor given by n(a) — Mi, K(6) = M2 and K(0) = iV. If G is a 
projective system on W, we find 

Km G = Ga X G6, lim(1)G = Go/im a + im 0, 
*W Go *W 

where a: Ga —> Go and 0: G6 —> Go are the obvious homomorphisms. The lemma 
now follows from (1.3.1) of (1). 

LEMMA 1.4. Suppose V is a finite tree, then the following statements are equi
valent. 

(i) Hm(1)^ = 0. 

(ii) If v ^ V and Rv = {vi, . . . , vT), £#£ 

M* = Ù 7W , M / = Vvs+1, 

^ew, /or every j = 1, . . . , r — 1, we have 
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Fv = im F(M}\ v) + im F(Mj2, v). 

Proof. Define the function h: V—> Z+ by h(v) = max{.s| there exists in V 
a sequence vs ^ vs-i ^ . . . ^ v0 = »}. Suppose 

lim(1)F = 0. 

By induction on &(Î>) we shall prove that for every v Ç. V, 

\im(1)F = 0. 

If /z(y) = 0, then Vv is a connected component of F, and therefore 

hm(1)F = Iim(1)^ = 0. 

X V 
Suppose now that 

lim(1)^ = 0 

X 
for all v with A(v) < n, and let z>r be such that h(vT) = n. Since we may 
suppose h(vr) ^ 1, there exists a unique z; such that Rv = \vi, . . . , vT). Then 

Ml.! = VVr} Vv = M1^! U Ml-i and N = M*_i H I f *_i = tf. 

As 

Hm(1)F = 0, 

we have 

lim (1)F X l im_ ( 1 ) ^~ lim_(1)F X lim (1)F 
"JlU ^ _ i *Ml-i *M2

r-i 
lim(1) 

By the induction hypothesis, we have 

lim(1)F = 0, 

X 
thus Lemma 1.3 implies 

Hm(1)^ = ( lim WF = 0, and ^_lim_(1)^ = 0. 

Xr *M2r-i *Ml-i 
Therefore 

\im(1)F = 0 for every v G V. 

X 
Now, since 

M)+1 = Ml \J M3
2 and M* Pi Af/ = £0 for every 7 = 1, . . . , r - 1, 
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we may use the same method to prove that for every v Ç. V and every 
j = 1, . . . , r — 1, we have that 

lim a)F = 0. 

But (ii) is then an immediate consequence of Lemma 1.3. Reversing every
thing, we prove that (ii) implies (i). 

COROLLARY 1.5. Suppose that V is a finite tree and that 

\\m(1)F = 0. 

If M is a subset of V, then 
lim(1)F = 0. 

Proof. If V satisfies condition (ii) of Lemma 1.4, then so will M. 

Suppose V is the ordered set of the positive integers Z+. Then, given a 
projective system F, we define the completion F of F by 

n > n 

There is an obvious morphism 
g: F-+F. 

Now we have the following result. 

THEOREM 1.6. If 

lim(1).F = 0, 

then g is epimorphic. If F is monomorphic and g is epimorphic, then 

lim(1)F = 0. 

Proof. If 
l im ( 1 ) F=0 , 

then, using the fact that 
lim(p) = 0 for p ^ 2 

and applying limz+ to the exact sequence 

0 -> im j / -> Fn -H> FJ im j / ->0, 
we easily find that 

: Fn —» j lim 7 ^ / i m j / 
n > n 
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is onto, so that g is epimorphic. Now, if F is monomorphic, then 

(kerg)„ = Pl imjn
n ' 

n'>n 

so that ker g is constant. 
If, in addition, g is epimorphic, we have an exact sequence 

0 -> ker g -» F -> F -> 0. 

lim(1) ker g = 0 
*ZT 

lima)F = lim(1)£ 
*Z+ *Z+ 

imiv)F = 0 
Z+ 

for p ^ 0. 

As ker g is constant, 

so that 

But we always have 

In fact, consider the projective system H on Z + X Z + defined by 

TT — 77 /{m -max (TO,») 
£l-m,n r min(m,w)/ I111 Jm\n(m,n)* 

We have i^m,m = 0 for m £ Z + and therefore 

lim {P)H = 0 for £ > 0. 
<r—-r x ^ ~~ 

z+ x z+ 

However, by (1.3.2) of (1), there exists a spectral sequence converging to 

l im ( 0 H with ElQ=i lim (p) lim ( g ) i ^ . 

*z+ x z+ ^"e Z + ~̂e z+ 

It follows that Eptff = 0 for all p, q ^ 0 and, in particular, 

lim(p)F = £ ^ 0 = 0 for p ^ 0. 

*z+ 

THEOREM 1.7. Let F be a projective system of topological abelian groups and 
continuous homomorphisms on the ordered set Z+. Suppose that 

(i) for all n Ç Z+ , Fn is complete metrizable, 
(ii) for all n' > n, imjn

n' is dense in Fn, 
then we may conclude that g: F —> Fis onto. 

Proof. We fix an n € Z + and we shall prove that gn: Fn—+ Fn is onto. Let 
um:Fn->Fn/imj:+n 

be the canonical homomorphism, and fix an element / = {fm} £ Fn. For each 
m 6 Z+ , let fm Ç Fn be such that um(fm) = /TO. We then have: 

fm+i ~ fm G im jT+w for all m G Z+ . 

https://doi.org/10.4153/CJM-1968-096-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-096-x


PROJECTIVE SYSTEMS 991 

Let ôm be the metric on Fn+m, and p u t / 0 = 0. Since i m ^ + 1 is dense in Fn, we 
may find an element g10 G Fn+1 such that if g0i = Jrc+1(gio), then 

&o(fi-fo + goi,0) <^o = 1' 

Put / i = / i + goi ; then we have: 

« i ( / i ) = * i ( / i ) = / l f / 2 - / 1 6 i m 7 : + 1 . 

Thus we may find an element h 10 G Fw+i such that A0i = i^+1(^io) = f* — / 1 . 
Since all j / ' are continuous, we may, using (ii), find an element g2o G Fn+2 

such that if 
•n+2/ \ «n+2/ 

g l l = 7n+l(g2o), #02 = Jw (#20 J, 
then 

50( f2 - / l + £02,0) < J, 

*i(*io + £n,0) < - = 1. 

Put f2 = f2 + g02, then 

Uiift) = Ui(fi) = /2, / 8 - /2 G im jl+\ 

Continuing this process, we construct elements fm G Fn, h^ G Fn+i, i+j = m, 
grs G Fn+r, r + s = m + 1, such that: 

8r(hr,s-i + gr,s, 0) < | r for r + s = m, 

Jn+i—l\hij) = hi—l,j+h Jn \">m,0) = /ra+1 ~~ /»»» 

jn+r-l(ir,s) = gr-l,s+li Um(Jm) = Um(Jm) = fm, / r o + 1 — / r o G im /JJ W. 

By construction, 
CX) OO 

/ = Z) (fi+l - fi) = X) (Ao.i + go,z+l) 
i=0 i=0 

exists. Further, by construction, 
OO 

hj = X) (Ay* + gj,i+i) 

exists, A;- G Fn+j, and we have 

i=0 
therefore,we have 

«;(/) =uj(jj) =}j for all i € Z+. 

This means that gn(J) = J and the proof is complete. 

COROLLARY 1.8. Under the hypotheses of Theorem 1.7, tf F M monomorphic, 
then 

lim(1)F = 0. 
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2. Let K be a field and let V be the ordered set of all non-archimedean 
valuations of K. 

If v € V, we denote by tnv the maximal ideal of the valuation ring ûv, 
and by Tv the linearly ordered value group of v. 

For every v € V, we then have an exact sequence of abelian groups 

(1) \1}->UV-*K*1>TV-+0, 

where Uv is the multiplicative group of units in ûv. 
Obviously, the families {ûv}v€Vt {UV}V£V> and {1%}^^ define projective 

systems of abelian groups on V. We shall denote these by û K, UK, and TKl 

respectively. Then we have an exact sequence of projective systems of abelian 
groups: 

(2) \l}-*UK^K*->TK-*0. 

Suppose that the subset N of V has a least element, then we have 

\im(1)K* = 0. 
AT 

Applying the functor lim^ to the exact sequence (2) we then get the exact 
sequence 

(3) {1} -> Km UK-^K*V-^X lim r x -* lim(1)£7* -> 0. 

Definition 2.1. Let N be a subset of V, then we shall call N an A-set (approxi
mation set) if for every 

7 £ lim IV 
N~ 

there exists an element x G K* such that v(N)(x) = y. 

LEMMA 2.2. Suppose N contains a least element, then N is an A-set if and 
only if 

\im(l)UK = 0. 

Proof. This follows immediately from the definition and from the exact 
sequence (3). 

Let Vo = 7 0 be a subset of V, then Vo has an induced order. If N is a 
subset of VQ, let D(N, Vo) denote the subset of F0 consisting of all v' such 
that v' C\ N = {*}, where * is the trivial valuation. 

Definition 2.3. Let N C V0 be subsets of V. We shall say that N is a GA-set 
(global approximation set) with respect to Vo, if for every 
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7 € Jim_ r * 
F0/£(iV, Vo) 

there exists an element x £ K* such that v(N)(x) = y. 

LEMMA 2.4. Le/ iV C Fo, /&eft iV w a.GA-se/ zw7& respect to Vo if and only 
if the canonical homomorphism 

lim (1 )Efc-> lim (1)£7* 

w monomorphic. 

Proof. We may assume that D(N, Vo) 9^ Vo. Applying the functors 

lim and lim  
Yo *Vo/D(N, Vo) 

to the exact sequence (2) we get a commutative diagram of exact sequences 

{1} -> lim UK -> K* -> lim F* ^ • lim( 1} UK -> 0 

v; v; "Vo 
\t 

{l}-> < lim rg-g> lim(1) t ^ - > 0 . 
F0/£>(iV, Vo) V/D(N, Vo) 

Now iV is a GA-set with respect to Vo if and only iî t o s = j o i = 0. s being 
an isomorphism, this is equivalent to t = 0. From the exact sequence 

... y lim UK -+ _ I jm^ __ t/jc -̂ > Um(1) tf* -*^_ lim(1) UK-+. . . , 
D(N, Vo) Vo/D(N, Vo) - Vo D(N,Vo) 

it follows that t = 0 if and only if 

l i m ( 1 ) ^ - > ( lim , LTg 

Yo *D(Nf Vo) 
is monomorphic. 

L E M M A 2.5. Suppose that N is a finite subset of V, containing a least element 
Vo. Consider the field k = ûVQ/mVQ and let M = {v/vo\ v £ N] be the set of 
valuations on k associated with N. Then 

Km(1)UK~\un(1)Uk. 
*W • • *M 

Proof. Le t UQ = {x\ x Ç K, 1 — x Ç m c o}, then Uo £ '£/» for all v £ N 
and UJC,(V/VO)— UK,v/Uo. T h e family of exact sequences 

' { l } - > t/o ->' £/^.. -> 'Z7*.(„.o) -^ (1} 

defines an exact sequence of projective systems on the ordered set N ~ M. 
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Since 

Hm(!"[/o = 0 for p ^ 1, 

it follows that 

lim ( 1 )£/x~lim ( 1 )[/*. 
*N~ *M 

LEMMA 2.6. Suppose that N is a finite subset of V, and let v 6 N. If 
Rv — {vu • • • . vr\ and 

Mf= U ÏÏvi, M) = ff,i+1, 

then for every j = 1, . . . , r — 1, 

UK,V= H 17*,,*. H tfjc.,'. 

Proof. We must prove that for every x G £/*,» there exist 

xi 6 D #*.*' and x2 G O £/*,»' 
v'ÇMj1 v'ÇMj2 

such that As iV is finite, the function h: N —» Z + has a maximum 
n0 (see the proof of Lemma 1.4). If h(v) = n0f then Rv = 0 and there is 
nothing to prove. Suppose that the lemma has been proved for all v 6 N 
such that h(v) ^ m + 1 and let v £ iV be such that h(v) = m. By Lemma 
1.4 we know that the conclusion of the lemma is equivalent to 

lrnia)UK = 0. 
*N, 

By Lemma 2.5 we may therefore suppose that v is the trivial valuation. Let 
usi s = 1, . . . , k, be the maximal elements of Mf and let wu t = 1, . . . , /, 
be the maximal elements of M/. For each i = 1, . . . , j , let # / be an element 
of F such that v < v/ <vt and such that v/ is of rank 1. By (4, Lemma 1, 
Chapter VI, § 7) we may find elements ys, s = 1, . . . , k, and zt1 t = 1, . . . , /, 
in K such that 

^5(;ys) = 0, u8(yt*) > 0 for s ^ s' 
and 

tf/(y«) > 0 for i = 1, . . . , j , 5 = 1, . . . , k; 

Wf(*i) = 0, w,(s,0 > 0 for t ^ /', 
and 

^*(**) > 0 for ^ = 1, . . . , k, t = 1, . . . , /. 

We may suppose that vj+i(x) ^ 0. If this is not the case, we might consider 
x_1. Since v/> i = 1, . . . , j , are of rank 1 we may, by taking high enough 
powers of the ySJ assume that v/(ys) > —v/(x) for i = 1, . . . , j . This implies 
that wt(ys) > —wt(x) for t = 1, . . . , I. Since vj+i(x) g 0 we have us(x) ^ 0 
for s = 1, . . . , k. Put 
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I k 

We then have wt(xi) = 0 for / = 1, . . . , / so that 

xi £ H C/JC.,/, 

and 
w,(xi) = us(x) for 5 = 1, . . . , k. 

Let x2 = #/#i, then the last relations imply that us(x2) = 0 for s = 1, . . . , k 
so that 

X2 6 H C/jr,C'. 

I t follows that the conclusion of the lemma is true for all v £ N. 

From this lemma we easily deduce the following well-known theorem. 

THEOREM 2.7 (Krull-Ribenboim). If vtJ i — 1> • • • » r, #re valuations of a 
field K, and if for every i = 1, . . . , r, ytis an element of Tvi such that for each 
couple (i,j) the image of yt and yi in the value group of vt A Vj coincides, then 
there exists an element x Ç K* such that vt(x) = Y* for all i = 1, . . . , r. 

Proof. Let N be a finite subset of V containing all viy i = 1, . . . , r, and 
being closed under the operation A. The conclusion of the theorem is by 
Definition 2.1 and Lemma 2.2 equivalent to 

Um(1)UK = 0. 
*N~ 

But this follows from Lemmas 1.4 and 2.6. 

We now let V be a subset of V consisting of discrete valuations of rank 1. 
Let D(V) denote the free group generated by V. If 

D = X nvV, 

we put 

d(D) = £ n„ v(D) = nv. 

Let V* = V' and let L(D) be the projective system of abelian groups on 
V* given by 

L(D), = {x e K\ v(x) ^ -v{D)} if v G V, 

L(D)* = K. 

Note that V* = V W {*}, where * is the trivial valuation. If Di and D2 are 
elements of D{Vr), then, by definition, D\ ^ Z>2 if for every v 6 V , 
z;(Z î) ^ v(D2). Suppose that Z>i ^ Z>2, then there is an exact sequence of 
projective systems on V* 

https://doi.org/10.4153/CJM-1968-096-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-096-x


996 OLAV ARNFINN LAUDAL 

0 -> L(Di) -> L(D2) -> P -> 0, 
where P is given by: 

P , ~ mrv(Dl)/mrHD%). 
If we put 

L(Z?) = HmI(D) , F(D) = lim (1)L(P), 
^* V* 

then the above exact sequence induces an exact sequence 

o-*i(2?!) ->z(2?,) ̂ n *»r,(B,)/«.-"*) ̂  /'PO -> /'(/?,) ->o. 

By Proposition 1.2 we have 

F(D) = cokeri U MD)V-^U L(D)min(vA 
) v£V* v£V*\ ( 

Let 7(Z>) denote the subgroup of F (D) consisting of those elements x with 
representatives 

vev 

such that for all but a finite number of the v's, xv £ Ûv. Then we easily 
find that imd C 7(7>i) and that 7(7>i) —> 7(7>2) is epimorphic. I t follows 
that we have the exact sequence 

O-L(Z>I) -»L(D2) ->n wr,(!)1,Mr'(i),) -» W ) -> /(^2) ->o. 
Suppose that X contains a subfield fe such that all valuations of V are trivial 
on k. Suppose further that: 

(i) dim,L(0) < » , 
(ii) dim*7(0) < « , 

(iii) for every v £ V, ev = dimk(ûv/mv) < 00. 
Then 

d i m . n mv-
iDl)/mv-

viM = Z M A ) - »(Z?i)K 
VÇ.V v£V 

and for every D £ D(V) 

1(D) = dimkL(D) < » , i(D) = dimkI(D) < 
and 

/(7>2) - ^ 2 ) = Z(Z>i) - i(D1) + £ (»(Z>2) - v(D1))ev. 

From this, the "weak" form of the Riemann-Roch theorem for non-singular 
algebraic curves follows easily; see (3, Chapter 2). 

THEOREM 2.8. If K is an algebraic function field over the algebraically closed 
field kf then, if D is a divisor, we have that 
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1(D) -i(D) = 1 -i(0)+d(D), 

where i(D) = dimkI(D), 1(D) ~ R/K + R(D), and R is the k-algebra of 
repartitions. 

3. Suppose we are given a sequence of fields 

Let F* and V be the ordered set of all non-archimedean valuations of Ku 

respectively K. Then there is a sequence of epimorphisms of ordered sets: 

Vo Sj> Vx ^ . . . -> V A • • • -> 7. 

Let F°i be a subset of F such that V\ = F°„ and such that st(V\) C F 0
m . 

We put 

F° = U i m ( F ° , - > F ) . 

Denote by tt the map V\ -> F° and let K,: F ° - * P F ° i be the K-functor 
defined by /ĉ (z;) = {#* € F°j| tt(v') ^v). Then there are natural homo-
morphisms: 

< Km UK,^ -> Hm E7g,, 
K*fl(lO Kt(v) 

lim [ 7 ^ , —> lim £/*.. 
F,+ 1 7 , 

If iV is a subset of F and iV* = ti~
1(N), then there are also natural homo-

morphisms 

< Hm UK.+l -> ( Hm UKi. 
D(Ni+1, Vi+1) D(NU V,) 

THEOREM 3.1. If for every i £ Z+, Nt is a GA-set with respect to F°<, then 
N is a GA-set with respect to V° if the natural homomorphism 

lim (1) lim UKi -> Km (1)
( lim UKi 

*Z+ *V°i % *Z+ 'D(NU V\) 
is monomorphic. 

Proof. By Lemma 2.4 we know that, for every i £ Z+ , 

j t : l im ( 1 ) t ^ , -> lim ™UKi 

V°i D(Nt9 V\) 

is monomorphic, and we have to prove that 

/: Hm(1) £/"*-> Hm(1) 

*~V° *Ï>(N, V°) 
is monomorphic. 
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By (1.3.1) of (1) we have a commutative diagram of exact sequences: 

0 -> lim(1) lim UKi -> lim(1) UKi -> Km lim(1) UK. -> 0 
V Ki V i V Kt 

0 lim ( i ) 

U 

lim UKi lim (1) 
^Ki ~~* lim lim UKi —» 0. 

D{NhV\) l *D(N, V°) V ; D(N,V°) Kt 

As ji is monomorphic, lt is monomorphic, and therefore, so is the homo-
morphism 

r. lim lim_(1) lim UKi —» lim lim (1) lim £7^.. 
*Z+<~>° V * *Z+ *D(N,V°) V 

Using the same spectral-sequence argument as above (1, (1.3.2)), we 
find abelian groups G and H and a homomorphism <j>: G -+ H such that the 
following diagrams are commutative. 

0 0 

lim_ lim lim UKi s lim_ lim lim_ UR 

i 
4> H 

lim lim lim UKi I lim lim lim UKi, 
*Z+*V~° ^ 7 S_>*Z* *D(N,V°) X" 

1 1 
0 0 

I 
(1) lim lim lim UK ""* lim lim lim UK-

1/ Z. Ki 

1 
£>(7V,FU) Z +

 Ki 

lim lim(1) lim £/« 

i 
0 

-» H 

I 
lim lim(1> lim UKi D(N, V°) Z+

 K{ 

I 
0 
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Now we can easily find: 

Km lim UKi — Hm UKv 

V Kt V i 

lim lim UK. ~ lim UK., 
^D(N,V°)X % 'D{NU V°t) 

lim (lim UK. ~ UKtV for i> 6 V\ 

As / is monomorphic and as, by assumption, 5 is monomorphic, the first 
diagram shows that 0 is monomorphic. Therefore, the second diagram shows 
that / is monomorphic. 

COROLLARY 3.2. If for every i G Z+, Nt is a GA-set with respect to V°u then 
N is a GA-set with respect to V° if 

lim(1) lim UK. = 0. 

As an example, we prove the product theorem of Weierstrass. Let K be 
the field of meromorphic functions on an open and connected subset D of 
the complex plane. Let Du i G Z+ , be relatively compact open connected 
subsets of D such that 

D = \JDt, DtQD^u *€ Z+. 

Let Kt be the field of meromorphic functions on Dif i G Z+ , then we have 
a sequence of fields 

i£Z 

Let V°t = Dt be the set of valuations on Kt corresponding to the points 
in Du and put V° = D. Let N be a subset of V° such that iV* = N H F0* is 
finite for every i G Z+ . Then we know that Nt is a GA-set with respect to 
V°t (this is the obvious rational case), and, therefore, a condition for N to 
be a GA-set with respect to V° is: 

lim_(1) lim__^. = 0. 

*z+ V°, 
But, 

Jim C/JS; 

is the multiplicative group of units Ut in the complete metrizable algebra 
Ai of all holomorphic functions on Du with the topology of uniform con
vergence on compact subsets. Now, At+i is a dense subset of Au i G Z+ . I t 
can then be seen that Ut are all complete metrizable and that Ui+i is a 
dense subset of Ut, thus, by Corollary 1.8, 
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Hm(1) Ut = 0 

and this implies the existence part of the Weierstrass product theorem. 

REFERENCES 

1. O. A. Laudal, Sur la théorie des limites projectives et inductives, Ann. Sci. Ecole Norm. Sup. 
82 (1965), 241-296. 

2. P. Ribenboim, Le théorème d* approximation pour les valuations de Krull, Math. Z. 68 (1957), 
1-18. 

3. J.-P. Serre, Groupe algébriques et corps de classes (Hermann, Paris, 1959). 
4. O. Zariski and P. Samuel, Commutative algebra, Vol. II (Van Nostrand, New York, 1960). 

University of Oslo, 
Oslo, Norway] 
Syracuse University, 
Syracuse, New York 

https://doi.org/10.4153/CJM-1968-096-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-096-x

